TY - JOUR
T1 - The mitochondrial mRNA-stabilizing protein SLIRP regulates skeletal muscle mitochondrial structure and respiration by exercise-recoverable mechanisms
AU - Pham, Tang Cam Phung
AU - Raun, Steffen Henning
AU - Havula, Essi
AU - Henriquez-Olguín, Carlos
AU - Rubalcava-Gracia, Diana
AU - Frank, Emma
AU - Fritzen, Andreas Mæchel
AU - Jannig, Paulo R
AU - Andersen, Nicoline Resen
AU - Kruse, Rikke
AU - Ali, Mona Sadek
AU - Irazoki, Andrea
AU - Halling, Jens Frey
AU - Ringholm, Stine
AU - Needham, Elise J
AU - Hansen, Solvejg
AU - Lemminger, Anders Krogh
AU - Schjerling, Peter
AU - Petersen, Maria Houborg
AU - de Almeida, Martin Eisemann
AU - Jensen, Thomas Elbenhardt
AU - Kiens, Bente
AU - Hostrup, Morten
AU - Larsen, Steen
AU - Ørtenblad, Niels
AU - Højlund, Kurt
AU - Kjær, Michael
AU - Ruas, Jorge L
AU - Trifunovic, Aleksandra
AU - Wojtaszewski, Jørgen Frank Pind
AU - Nielsen, Joachim
AU - Qvortrup, Klaus
AU - Pilegaard, Henriette
AU - Richter, Erik Arne
AU - Sylow, Lykke
PY - 2024/11/13
Y1 - 2024/11/13
N2 - Decline in mitochondrial function is linked to decreased muscle mass and strength in conditions like sarcopenia and type 2 diabetes. Despite therapeutic opportunities, there is limited and equivocal data regarding molecular cues controlling muscle mitochondrial plasticity. Here we uncovered that the mitochondrial mRNA-stabilizing protein SLIRP, in complex with LRPPRC, is a PGC-1α target that regulates mitochondrial structure, respiration, and mtDNA-encoded-mRNA pools in skeletal muscle. Exercise training effectively counteracts mitochondrial defects caused by genetically-induced LRPPRC/SLIRP loss, despite sustained low mtDNA-encoded-mRNA pools, by increasing mitoribosome translation capacity and mitochondrial quality control. In humans, exercise training robustly increases muscle SLIRP and LRPPRC protein across exercise modalities and sexes, yet less prominently in individuals with type 2 diabetes. SLIRP muscle loss reduces Drosophila lifespan. Our data points to a mechanism of post-transcriptional mitochondrial regulation in muscle via mitochondrial mRNA stabilization, offering insights into how exercise enhances mitoribosome capacity and mitochondrial quality control to alleviate defects.
AB - Decline in mitochondrial function is linked to decreased muscle mass and strength in conditions like sarcopenia and type 2 diabetes. Despite therapeutic opportunities, there is limited and equivocal data regarding molecular cues controlling muscle mitochondrial plasticity. Here we uncovered that the mitochondrial mRNA-stabilizing protein SLIRP, in complex with LRPPRC, is a PGC-1α target that regulates mitochondrial structure, respiration, and mtDNA-encoded-mRNA pools in skeletal muscle. Exercise training effectively counteracts mitochondrial defects caused by genetically-induced LRPPRC/SLIRP loss, despite sustained low mtDNA-encoded-mRNA pools, by increasing mitoribosome translation capacity and mitochondrial quality control. In humans, exercise training robustly increases muscle SLIRP and LRPPRC protein across exercise modalities and sexes, yet less prominently in individuals with type 2 diabetes. SLIRP muscle loss reduces Drosophila lifespan. Our data points to a mechanism of post-transcriptional mitochondrial regulation in muscle via mitochondrial mRNA stabilization, offering insights into how exercise enhances mitoribosome capacity and mitochondrial quality control to alleviate defects.
KW - Animals
KW - Humans
KW - Muscle, Skeletal/metabolism
KW - RNA-Binding Proteins/metabolism
KW - Male
KW - RNA, Messenger/metabolism
KW - Female
KW - Mitochondria, Muscle/metabolism
KW - Physical Conditioning, Animal
KW - Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
KW - Mitochondrial Proteins/metabolism
KW - DNA, Mitochondrial/genetics
KW - Mice
KW - Drosophila melanogaster/genetics
KW - RNA Stability
KW - RNA, Mitochondrial/metabolism
KW - Exercise/physiology
KW - Drosophila/metabolism
KW - Neoplasm Proteins
U2 - 10.1038/s41467-024-54183-4
DO - 10.1038/s41467-024-54183-4
M3 - Journal article
C2 - 39537626
SN - 2041-1723
VL - 15
JO - Nature Communications
JF - Nature Communications
M1 - 9826
ER -