Sp(1)-symmetric hyperkähler quantisation

Jørgen Ellegaard Andersen*, Alessandro Malusà, Gabriele Rembado*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

8 Downloads (Pure)

Abstract

We provide a new general scheme for the geometric quantisation of Sp(1)- symmetric hyperkahler manifolds, considering Hilbert spaces of holomorphic sections with respect to the complex structures in the hyperkahler 2-sphere. Under properness of an associated moment map, or other finiteness assumptions, we construct unitary (super) representations of groups acting by Riemannian isometries preserving the 2-sphere, and we study their decomposition in irreducible components. We apply this scheme to hyperkahler vector spaces, the Taub–NUT metric on R4, moduli spaces of framed SU(r)-instantons on R4, and in part to the Atiyah–Hitchin manifold of magnetic monopoles in R3.

Original languageEnglish
JournalPacific Journal of Mathematics
Volume329
Issue number1
Pages (from-to)1-38
ISSN0030-8730
DOIs
Publication statusPublished - 2024

Bibliographical note

Publisher Copyright:

Keywords

  • geometric quantisation
  • Hitchin connection
  • hyperkahler geometry
  • moduli spaces
  • quantum representations

Fingerprint

Dive into the research topics of 'Sp(1)-symmetric hyperkähler quantisation'. Together they form a unique fingerprint.

Cite this