TY - JOUR
T1 - Agile digital machine development
AU - Hansen , Jesper Puggaard de Oliveira
AU - Ribeiro da Silva, Elias
AU - Bilberg, Arne
PY - 2024/2
Y1 - 2024/2
N2 - In mechatronic machine design and development, it is no longer enough to think about machine functionality and integration as machines are increasingly digitalized. Virtual upgrades are being made to manufacturing systems to keep up with the need for faster product cycles, higher quality, and the introduction of Industry 4.0 technologies. The design and development of new mechatronic discrete manufacturing machines (MDMM) should thus include these characteristics in their design. However, most machine builders do not have the capabilities and resources to do virtual engineering (VE) at the required level, which means these machines are made with limitations or sometimes without their virtual counterparts. Reusable VE MDMM modularization allows machine builders to obtain these competencies quickly and with fewer resources. This research proposes developing adaptable digital twins (DT) by modularizing all virtual and physical mechatronic machine aspects. DTs are well-explored in literature, but re-engineering them requires massive resources and is often unviable. We introduce a new DT-based approach that allows machine builders to quickly re-engineer, adapt, and test machines, given its modular confined approach. Although VE on different abstraction levels still must be developed, confined modularization allows hiding the complexity into modules rather than addressing the entire machine simultaneously. Building machines through modularization is thus an investment, as machine builders and other stakeholders will be able to use and reuse them later for other machines, reducing the overall resources that go into the development. The paper shows how to develop adaptable DT machines using Siemens tools related to virtual engineering.
AB - In mechatronic machine design and development, it is no longer enough to think about machine functionality and integration as machines are increasingly digitalized. Virtual upgrades are being made to manufacturing systems to keep up with the need for faster product cycles, higher quality, and the introduction of Industry 4.0 technologies. The design and development of new mechatronic discrete manufacturing machines (MDMM) should thus include these characteristics in their design. However, most machine builders do not have the capabilities and resources to do virtual engineering (VE) at the required level, which means these machines are made with limitations or sometimes without their virtual counterparts. Reusable VE MDMM modularization allows machine builders to obtain these competencies quickly and with fewer resources. This research proposes developing adaptable digital twins (DT) by modularizing all virtual and physical mechatronic machine aspects. DTs are well-explored in literature, but re-engineering them requires massive resources and is often unviable. We introduce a new DT-based approach that allows machine builders to quickly re-engineer, adapt, and test machines, given its modular confined approach. Although VE on different abstraction levels still must be developed, confined modularization allows hiding the complexity into modules rather than addressing the entire machine simultaneously. Building machines through modularization is thus an investment, as machine builders and other stakeholders will be able to use and reuse them later for other machines, reducing the overall resources that go into the development. The paper shows how to develop adaptable DT machines using Siemens tools related to virtual engineering.
KW - Machine Development
KW - Digital Twins
KW - Reconfigurability
KW - Adaptability
KW - Modularization
KW - Virtual Engineering
U2 - 10.1016/j.compind.2023.104061
DO - 10.1016/j.compind.2023.104061
M3 - Journal article
SN - 0166-3615
VL - 155
JO - Computers in Industry
JF - Computers in Industry
M1 - 104061
ER -