TY - JOUR
T1 - Land-use and climate controls on aquatic carbon cycling and phototrophs in karst lakes of southwest China
AU - Liu, Yuanyuan
AU - Chen, Guangjie
AU - Meyer-Jacob, Carsten
AU - Huang, Linpei
AU - Liu, Xiaolong
AU - Huang, Guangcai
AU - Klamt, Anna Marie
AU - Smol, John P.
N1 - Funding Information:
This work was supported by National Key Research & Development Program of China ( 2017YFA0605202 ) and National Natural Science Foundation of China ( 41771239 , U1133601 ).
PY - 2021/1/10
Y1 - 2021/1/10
N2 - Land-use and climate changes have been repeatedly identified as important factors affecting terrestrial carbon budgets, however little is known about how deforestation and catchment development affect aquatic systems in carbonate-rich regions. Multi-proxy analyses of 210Pb-dated sediment cores from two hard-water lakes with different land-use histories were applied for assessing carbon cycling and limnological changes in response to land-use changes over the past century in southwest China. Logging of primary forests in the catchment of Lugu Lake, starting in the 1950s, led to a significant increase of catchment erosion, as well as a consistent decline in inferred lake-water total organic carbon (TOC) levels and sediment carbonate accumulation. This process of recent deforestation may significantly reduce the role of lake systems to act as carbon sinks through hampering of both the soil organic carbon flux and the dissolution of catchment carbonate. The decline in lake-water TOC in Lugu Lake further increased algal production (i.e. tracked through sediment trends in chlorophyll a and its main diagenetic products) and changes in diatom composition. In comparison, there was little variation of sediment carbonate content in Chenghai Lake, which has a long history of catchment deforestation, while both primary production and lake-water TOC increased following cultural eutrophication during the last three decades. Furthermore, regional warming was associated with an increase in small-sized diatoms in both deep lakes, likely due to enhanced thermal stability. This study highlights the significant role of vegetation cover and land use in driving aquatic carbon cycling and phototrophs, revealing that deforestation can strongly reduce both inorganic and organic carbon export to lakes and thus aquatic carbon storage in karst landscapes.
AB - Land-use and climate changes have been repeatedly identified as important factors affecting terrestrial carbon budgets, however little is known about how deforestation and catchment development affect aquatic systems in carbonate-rich regions. Multi-proxy analyses of 210Pb-dated sediment cores from two hard-water lakes with different land-use histories were applied for assessing carbon cycling and limnological changes in response to land-use changes over the past century in southwest China. Logging of primary forests in the catchment of Lugu Lake, starting in the 1950s, led to a significant increase of catchment erosion, as well as a consistent decline in inferred lake-water total organic carbon (TOC) levels and sediment carbonate accumulation. This process of recent deforestation may significantly reduce the role of lake systems to act as carbon sinks through hampering of both the soil organic carbon flux and the dissolution of catchment carbonate. The decline in lake-water TOC in Lugu Lake further increased algal production (i.e. tracked through sediment trends in chlorophyll a and its main diagenetic products) and changes in diatom composition. In comparison, there was little variation of sediment carbonate content in Chenghai Lake, which has a long history of catchment deforestation, while both primary production and lake-water TOC increased following cultural eutrophication during the last three decades. Furthermore, regional warming was associated with an increase in small-sized diatoms in both deep lakes, likely due to enhanced thermal stability. This study highlights the significant role of vegetation cover and land use in driving aquatic carbon cycling and phototrophs, revealing that deforestation can strongly reduce both inorganic and organic carbon export to lakes and thus aquatic carbon storage in karst landscapes.
KW - Algae
KW - Carbonate dissolution
KW - Deforestation
KW - Eutrophication
KW - Karst lake
KW - Total organic carbon (TOC)
U2 - 10.1016/j.scitotenv.2020.141738
DO - 10.1016/j.scitotenv.2020.141738
M3 - Journal article
C2 - 32882557
AN - SCOPUS:85090005456
SN - 0048-9697
VL - 751
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 141738
ER -