TY - JOUR
T1 - How systemic cognition enables epistemic engineering
AU - Cowley, Stephen John
AU - Gahrn-Andersen, Rasmus
PY - 2023
Y1 - 2023
N2 - Epistemic engineering arises as systems and their parts develop functionality that is construed as valid knowledge. By hypothesis, epistemic engineering is a basic evolutionary principle. It ensures that not only living systems identify the differences that make differences but also ensure that distributed control enables them to construct epistemic change. In tracking such outcomes in human life, we stress that humans act within poly-centered, distributed systems. Similar to how people can act as inert parts of a system, they also actively bring forth intents and vicariant effects. Human cognitive agents use the systemic function to construct epistemic novelties. In the illustration, we used a published experimental study of a cyborg cockroach to consider how an evoneered system enables a human subject to perform as an adaptor with some “thought control” over the animal. Within a wide system, brains enable the techniques to arise ex novo as they attune to the dictates of a device. Human parts act as adaptors that simplify the task. In scaling up, we turn to a case of organizational cognition. We track how adaptor functions spread when drone-based data are brought to the maintenance department of a Danish utility company. While pivoting on how system operators combine experience with the use of software, their expertise sets off epistemically engineered results across the company and beyond. Vicariant effects emerge under the poly-centered control of brains, persons, equipment, and institutional wholes. As a part of culture, epistemic engineering works by reducing entropy.
AB - Epistemic engineering arises as systems and their parts develop functionality that is construed as valid knowledge. By hypothesis, epistemic engineering is a basic evolutionary principle. It ensures that not only living systems identify the differences that make differences but also ensure that distributed control enables them to construct epistemic change. In tracking such outcomes in human life, we stress that humans act within poly-centered, distributed systems. Similar to how people can act as inert parts of a system, they also actively bring forth intents and vicariant effects. Human cognitive agents use the systemic function to construct epistemic novelties. In the illustration, we used a published experimental study of a cyborg cockroach to consider how an evoneered system enables a human subject to perform as an adaptor with some “thought control” over the animal. Within a wide system, brains enable the techniques to arise ex novo as they attune to the dictates of a device. Human parts act as adaptors that simplify the task. In scaling up, we turn to a case of organizational cognition. We track how adaptor functions spread when drone-based data are brought to the maintenance department of a Danish utility company. While pivoting on how system operators combine experience with the use of software, their expertise sets off epistemically engineered results across the company and beyond. Vicariant effects emerge under the poly-centered control of brains, persons, equipment, and institutional wholes. As a part of culture, epistemic engineering works by reducing entropy.
KW - distributed cognition
KW - evoneering
KW - pre-reflective experience
KW - radical embodied cognitive science
KW - simplexity
KW - social organizing
KW - systemic cognition
KW - vicariance
U2 - 10.3389/frai.2022.960384
DO - 10.3389/frai.2022.960384
M3 - Journal article
C2 - 36825254
SN - 2624-8212
VL - 5
JO - Frontiers in Artificial Intelligence
JF - Frontiers in Artificial Intelligence
M1 - 960384
ER -