TY - JOUR
T1 - Assessments of Thioridazine as a Helper Compound to Dicloxacillin against Methicillin-Resistant Staphylococcus aureus
T2 - In Vivo Trials in a Mouse Peritonitis Model
AU - Stenger, Michael
AU - Hendel, Kristoffer
AU - Bollen, Peter
AU - Licht, Peter Bjørn
AU - Kolmos, Hans Jørn
AU - Klitgaard, Janne Kudsk
PY - 2015/8/12
Y1 - 2015/8/12
N2 - Introduction The rise in antimicrobial resistance is a major global concern and requires new treatment strategies. The use of helper compounds, such as thioridazine (TDZ), an antipsychotic drug, in combination with traditional antibiotics must be investigated. Objectives The aim of this study was to investigate the efficacy of TDZ as a helper compound for dicloxacillin (DCX) against methicillin-resistant Staphylococcus aureus (MRSA) in vivo, and compare the combination treatment of DCX+TDZ with vancomycin (VAN). Methods Mice were inoculated with an intraperitoneal (IP) injection of MRSA (108 CFU) and treated in a 12-hour cycle for 48 hours. By termination, bacterial quantities in a peritoneal flush, spleen and kidneys were obtained. In the main trial the drugs were administered subcutaneously in five treatment groups: 1) DCX, 2) TDZ, 3) DCX+TDZ, 4) VAN, 5) SALINE. Additional smaller studies with IP administration and higher subcutaneous dosages (×1.5 and ×4) of the drugs were subsequently performed. Results In the main trial no significant differences were found between DCX+TDZ and DCX or TDZ alone (p≥0.121-0.999). VAN performed significantly better than DCX+TDZ on all bacteriological endpoints (p<0.001). Higher subcutaneous dosages of DCX and TDZ improved the antibacterial efficacy, but the combination treatment was still not significantly better than monotherapy. IP drug administration of DCX+TDZ revealed a significantly better antibacterial effect than DCX or TDZ alone (p<0.001) but not significantly different from VAN (p>0.999). Conclusion In conclusion, TDZ did not prove to be a viable helper compound for dicloxacillin against MRSA in subcutaneous systemic treatment. However, IP-administration of DCX+TDZ, directly at the infection site resulted in a synergetic effect, with efficacy comparable to that of VAN.
AB - Introduction The rise in antimicrobial resistance is a major global concern and requires new treatment strategies. The use of helper compounds, such as thioridazine (TDZ), an antipsychotic drug, in combination with traditional antibiotics must be investigated. Objectives The aim of this study was to investigate the efficacy of TDZ as a helper compound for dicloxacillin (DCX) against methicillin-resistant Staphylococcus aureus (MRSA) in vivo, and compare the combination treatment of DCX+TDZ with vancomycin (VAN). Methods Mice were inoculated with an intraperitoneal (IP) injection of MRSA (108 CFU) and treated in a 12-hour cycle for 48 hours. By termination, bacterial quantities in a peritoneal flush, spleen and kidneys were obtained. In the main trial the drugs were administered subcutaneously in five treatment groups: 1) DCX, 2) TDZ, 3) DCX+TDZ, 4) VAN, 5) SALINE. Additional smaller studies with IP administration and higher subcutaneous dosages (×1.5 and ×4) of the drugs were subsequently performed. Results In the main trial no significant differences were found between DCX+TDZ and DCX or TDZ alone (p≥0.121-0.999). VAN performed significantly better than DCX+TDZ on all bacteriological endpoints (p<0.001). Higher subcutaneous dosages of DCX and TDZ improved the antibacterial efficacy, but the combination treatment was still not significantly better than monotherapy. IP drug administration of DCX+TDZ revealed a significantly better antibacterial effect than DCX or TDZ alone (p<0.001) but not significantly different from VAN (p>0.999). Conclusion In conclusion, TDZ did not prove to be a viable helper compound for dicloxacillin against MRSA in subcutaneous systemic treatment. However, IP-administration of DCX+TDZ, directly at the infection site resulted in a synergetic effect, with efficacy comparable to that of VAN.
KW - Animals
KW - Anti-Bacterial Agents/pharmacology
KW - Dicloxacillin/pharmacology
KW - Disease Models, Animal
KW - Female
KW - Methicillin-Resistant Staphylococcus aureus/drug effects
KW - Mice
KW - Peritonitis/drug therapy
KW - Staphylococcal Infections/drug therapy
KW - Thioridazine/pharmacology
U2 - 10.1371/journal.pone.0135571
DO - 10.1371/journal.pone.0135571
M3 - Journal article
C2 - 26267376
SN - 1932-6203
VL - 10
JO - PLOS ONE
JF - PLOS ONE
IS - 8
M1 - e0135571
ER -