TY - JOUR
T1 - A multivariable analysis to predict variations in hospital mortality using systems-based factors of healthcare delivery to inform improvements to healthcare design within the English NHS
AU - Gardner, Andrew J
AU - Kristensen, Søren Rud
PY - 2024/7
Y1 - 2024/7
N2 - Over the last decade, the strain on the English National Health Service (NHS) has increased. This has been especially felt by acute hospital trusts where the volume of admissions has steadily increased. Patient outcomes, including inpatient mortality, vary between trusts. The extent to which these differences are explained by systems-based factors, and whether they are avoidable, is unclear. Few studies have investigated these relationships. A systems-based methodology recognises the complexity of influences on healthcare outcomes. Rather than clinical interventions alone, the resources supporting a patient's treatment journey have near-equal importance. This paper first identifies suitable metrics of resource and demand within healthcare delivery from routinely collected, publicly available, hospital-level data. Then it proceeds to use univariate and multivariable linear regression to associate such systems-based factors with standardised mortality. Three sequential cross-sectional analyses were performed, spanning the last decade. The results of the univariate regression analyses show clear relationships between five out of the six selected predictor variables and standardised mortality. When these five predicators are included within a multivariable regression analysis, they reliably explain approximately 36% of the variation in standardised mortality between hospital trusts. Three factors are consistently statistically significant: the number of doctors per hospital bed, bed occupancy, and the percentage of patients who are placed in a bed within four hours after a decision to admit them. Of these, the number of doctors per bed had the strongest effect. Linear regression assumption testing and a robustness analysis indicate the observations have internal validity. However, our empirical strategy cannot determine causality and our findings should not be interpreted as established causal relationships. This study provides hypothesis-generating evidence of significant relationships between systems-based factors of healthcare delivery and standardised mortality. These have relevance to clinicians and policymakers alike. While identifying causal relationships between the predictors is left to the future, it establishes an important paradigm for further research.
AB - Over the last decade, the strain on the English National Health Service (NHS) has increased. This has been especially felt by acute hospital trusts where the volume of admissions has steadily increased. Patient outcomes, including inpatient mortality, vary between trusts. The extent to which these differences are explained by systems-based factors, and whether they are avoidable, is unclear. Few studies have investigated these relationships. A systems-based methodology recognises the complexity of influences on healthcare outcomes. Rather than clinical interventions alone, the resources supporting a patient's treatment journey have near-equal importance. This paper first identifies suitable metrics of resource and demand within healthcare delivery from routinely collected, publicly available, hospital-level data. Then it proceeds to use univariate and multivariable linear regression to associate such systems-based factors with standardised mortality. Three sequential cross-sectional analyses were performed, spanning the last decade. The results of the univariate regression analyses show clear relationships between five out of the six selected predictor variables and standardised mortality. When these five predicators are included within a multivariable regression analysis, they reliably explain approximately 36% of the variation in standardised mortality between hospital trusts. Three factors are consistently statistically significant: the number of doctors per hospital bed, bed occupancy, and the percentage of patients who are placed in a bed within four hours after a decision to admit them. Of these, the number of doctors per bed had the strongest effect. Linear regression assumption testing and a robustness analysis indicate the observations have internal validity. However, our empirical strategy cannot determine causality and our findings should not be interpreted as established causal relationships. This study provides hypothesis-generating evidence of significant relationships between systems-based factors of healthcare delivery and standardised mortality. These have relevance to clinicians and policymakers alike. While identifying causal relationships between the predictors is left to the future, it establishes an important paradigm for further research.
KW - Humans
KW - Hospital Mortality/trends
KW - Delivery of Health Care
KW - State Medicine
KW - Multivariate Analysis
KW - Cross-Sectional Studies
KW - England/epidemiology
KW - Hospitals
U2 - 10.1371/journal.pone.0303932
DO - 10.1371/journal.pone.0303932
M3 - Journal article
C2 - 38968314
SN - 1932-6203
VL - 19
JO - PLOS ONE
JF - PLOS ONE
IS - 7
M1 - e0303932
ER -