SDU -+

University of Southern Denmark

Topology and prediction of RNA pseudoknots

Reidys, Christian; Huang, Fenix W.D.; Ellegaard Andersen, Jargen; Penner, Robert; Stadler,
Peter F.; Nebel, Markus E.

Published in:
Bioinformatics

DOl:
10.1093/bioinformatics/btr090

Publication date:
2011

Document version:
Submitted manuscript

Citation for pulished version (APA):
Reidys, C., Huang, F. W. D., Ellegaard Andersen, J., Penner, R., Stadler, P. F., & Nebel, M. E. (2011). Topology
and prediction of RNA pseudoknots. Bioinformatics, 27(8). https://doi.org/10.1093/bioinformatics/btr090

Go to publication entry in University of Southern Denmark’'s Research Portal

Terms of use

This work is brought to you by the University of Southern Denmark.

Unless otherwise specified it has been shared according to the terms for self-archiving.
If no other license is stated, these terms apply:

* You may download this work for personal use only.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim.
Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 12. Jan. 2025


https://doi.org/10.1093/bioinformatics/btr090
https://doi.org/10.1093/bioinformatics/btr090
https://portal.findresearcher.sdu.dk/en/publications/4bf143e1-acb3-430a-9c1e-44f891ba1fea

Vol. 00 no. 00
Pages 1-10

Topology and prediction of RNA pseudoknots

Christian M. Reidys!?7 Fenix W.D. Huang!, Jgrgen E. Andersen?, Robert C.
Penner?*, Peter F. Stadler"~1°, and Markus E. Nebel'!

LCenter for Combinatorics, LPMC-TJKLC, Nankai University Tianjin 300071, P.R. China

2College of Life Science, Nankai University Tianjin 300071, P.R. China

3Center for Quantum Geometry of Moduli Spaces Aarhus University, DK-8000 Arhus C, Denmark

4Math and Physics Departments, California Institute of Technology, Pasadena, California, USA

5Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for
Bioinformatics, University of Leipzig, Hartelstral3e 16-18, D-04107 Leipzig, Germany.

SMax Planck Institute for Mathematics in the Sciences, InselstraRe 22, D-04103 Leipzig, Germany

"RNomics Group, Fraunhofer IZI, PerlickstraRe 1,D-04103 Leipzig, Germany

8Inst. f. Theoretical Chemistry, University of Vienna, Wahringerstrae 17, A-1090 Vienna, Austria

9Center for non-coding RNA in Technology and Health, University of Copenhagen,

Grgnnegardsvej 3, DK-1870 Frederiksberg, Denmark

10The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, New Mexico, USA
HDepartment of Computer Science, University of Kaiserslautern, Germany

Received on *****; revised on *****; gaccepted on *****

Associate Editor: *****

ABSTRACT

Motivation: Several dynamic programming algorithms for predicting
RNA structures with pseudoknots have been proposed that differ
dramatically from one another in the classes of structures considered.
Results: Here we use the natural topological classification of RNA
structures in terms of irreducible components that are embedable
in surfaces of fixed genus. We add to the conventional secondary
structures four building blocks of genus one in order to construct
certain structures of arbitrarily high genus. A corresponding unam-
biguous multiple context free grammar provides an efficient dynamic
programming approach for energy minimization, partition function,
and stochastic sampling. It admits a topology-dependent parame-
trization of pseudoknot penalties that increases the sensitivity and
positive predictive value of predicted base pairs by 10-20% compa-
red to earlier approaches. More general models based on building
blocks of higher genus are also discussed.

Availability: The source code of gf ol d is freely available at ht t p:
/ / www. conmbi natori cs. cn/ cbpc/gfold.tar. gz

Contact: duck@santafe.edu

Supplementary information: Supplementary material containing a
complete presentation of the algorithms, full proofs of theorems, and
detailed performance data are available at Bioinformatics online.

1 INTRODUCTION

helices (Bailoret al, 2010). In this context, secondary structure is
understood in a wider sense that includes pseudoknotsoddtinthe
vast majority of RNAs has simple, i.e., pseudoknot-freepseary
structure,PseudoBase (Tauferet al, 2009) lists more thaR50
records of pseudoknots determined by a variety of experiaiamd
computational techniques including crystallography, NMRuta-
tional experiments, and comparative sequence analysigalmy
cases, they are crucial for molecular function. Examplesuite
the catalytic cores of several ribozymes (Doudna and CeadR)2
programmed frameshifting (Nangt al., 2006), and telomerase acti-
vity (Theimeret al.,, 2005), reviewed in (Staple and Butcher, 2005;
Giedroc and Cornish, 2009).

Secondary structures can been interpreted as matchinggaph
of permissible base pairs (Tabaska al, 1998). The energy of
RNA folding is dominated by the stacking of adjacent basespai
not by the hydrogen bonds of the individual base pairs (Mashe
et al, 1999). In contrast to maximum weighted matching, the gene-
ral RNA folding problem with a stacking-based energy fuoati
is NP-complete (Akutsu, 2000; Lyngsg and Pedersen, 200%. T
most commonly used RNA secondary structure predictionstool
includingnf ol d (Zuker, 1989) and th¥i enna RNA Package
(Hofackeret al,, 1994), therefore exclude pseudoknots.

Polynomial-time dynamic programming (DP) algorithms ca&n b
devised, however, for certain restricted classes of psaats. In
contrast to theD(N?) space and)(N®) time solution for sim-
ple secondary structures (Waterman, 1978; Nusskgtoal,, 1978;

The global conformation of RNA molecules is to a large extentZuker and Stiegler, 1981), however, most of these appreaare

determined by topological constraints encoded at the tevacon-
dary structure, i.e., by the mutual arrangements of the pased

*to whom correspondence should be addressed. Phone: *@8526800;
Fax: *86-22-2350-9272luck@ant af e. edu

computationally much more demanding. The design of pseudo-
knot folding algorithms thus has been governed more by tleel ne
to limit computational cost and achieve a manageable cotitple

of the recursion than the conscious choice of a particulastu-

ral search space of RNA structures. As a case in point, thescla

(© Oxford University Press .
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of structures underlying the algorithm by Rivas and Eddyo@)9 ?‘
(R&E-structurespknot - R&E) was characterized only in a subse- f‘f\

quent publication (Rivas and Eddy, 2000). The followingerefices M J\,{}\
provide a certainly incomplete list of DP approaches to RWNAc _(-(
ture prediction using different structure classes charagd in f\ 30 40.(’\4-{::) 1
terms of recursion equations and/or stochastic grammavasRnd T‘ "iﬁﬁ*fﬁ‘ﬁ‘
Eddy (1999); Uemura Yet al. (1999); Akutsu (2000); Lyngsg and {J\ E‘V;‘) o2 p-o-
Pedersen (2000); Cai al. (2003); Dirks and Pierce (2003); Deo- (&

gunet al. (2004); Reeder and Giegerich (2004); Li and Zhu (2005); <
Matsui et al. (2005); Katoet al. (2006); Cheret al. (2009). The —o
inter-relationships of some of these classes of RNA stresthave

been clarified in part by Condcet al. (2004) and Rgdland (2006).
In addition to these exact algorithms, a plethora of heiarégiproa-
ches to pseudoknot prediction have been proposed in thatlite;
see e.g., (Metzler and Nebel, 2008; Chen, 2008) and thecrefes
therein. N

At least three distinct classification schemes of RNA cadntac ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,@,,,ww,,,,,,,,,,,,,,,,,
structures have been proposed: Haslinger and Stadler$88ge- ' 1 * % “© *0 *0 7 oo
sted using book-embeddings, &al.(2008) focused on the maxi- (b)
mal set of pairwise crossing base pairs, and Bbal. (2008) based
the classification on topological embeddings. While thdassifi-
cations have in common that simple secondary structuresfahe  Fig- 1. RNA structure as planar graph (hydrogen bonds (resp. babo
most primitive class of structures, they differ already e ton- ~ "ePresented by red (resp. black) edges) and diagram.
struction of the first non-trivial class of pseudoknots. piestheir
mathematical appeal, however, no efficient (polynomialef algo-
rithms are available for predicting pseudoknotted strgsieven in
the simplest case df-noncrossing RNA structures. A practically
workable approach t8-noncrossing structures requires the enume-
ration of an exponentially growing number of diagrams which
then “filled in” by means of DP (Huangt al, 2009); a Monte-
Carlo approach utilizing the topological approach with grgmple
matching-like energy model was explored by (Vernizzi anth@xu,
2005).

In this contribution, we show that the topological classifion of
RNA structures can be translated into efficient DP algorghifo
this end, we introduce-structures and prove that they can be deri-
ved from afinite family of abstract shapes called shadows. In Theo-
rem 2.3, we enumerate these four shadowsyfer 1, which can be
cast as explicit construction rules for a unique multiplateat-free
grammar (Section 2.3). Corresponding DP algorithms forgne
minimization, partition function, and Boltzmann-samplifunc-
tionalities are implemented in the software packageol d. An
important feature is tha-structures can be treated algorithmically
like pseudoknot-free secondary structures in sense tleae thre
finitely many motifs, i.e., shadows, for fixeg each of which is
assigned a specific energy. Because of the multiplicity ofifsjo  Fatgraph representationln order to understand the topological pro-
which rapidly increases withy, this allows for a more detailed perties of RNA molecules we need to pass from the picture ARN
energy model of pseudoknotted structures based on theildgigal as diagrams or contact-graphs to that of topological saga©nly
complexity. the associated surface carries the important invariaaiding to a

meaningful filtration of RNA structures. Formally, we willew an
RNA molecule as a topological surface (Anders¢al., 2010). The
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andAU as well as the wobbl&U are admissible. These base pairs
determine the secondary structure. Note that we have riedleere
base triples and other types of more complex interactioeso-
dary structures can thus be represented as graphs wheeotideb
are represented by vertices, the backbone of the molecwlelaas
the hydrogen bonds are represented by edges; see Fig. 1¢g. M
conveniently, we use the convention to represent the baxekbbthe
polymer by a horizontally drawn chain. As before, this chedm-
sists of vertices and arcs respectively representing tloéeatides
and covalent bonds. However, the edges representing teepairs
now are depicted as arcs in the upper half-plane; see Fig. Wb
call this representation ttdiagramof the molecule.

Thus, we shall identify a structure with a labelled graphrdhe
vertex sefN] = {1,2,..., N} represented by drawing the vertices
1,2,...,N on a horizontal line in the natural order and the arcs
(4,7), wherei < j, in the upper half-plane.

2 RESULTS main idea is to “thicken” the edges into (untwisted) bandsilor
bons and to expand each vertex to a disk as shown in Fig. 2. This
2.1 Topology of RNA Structures inflation of edges leads to a fatgrajsh(Loebl and Moffatt, 2008;

Diagram RepresentatiorRNA molecules are linear biopolymers Penneet al, 2010).

consisting of the four nucleotides, U, C, andG characterized by a A fatgraph, sometimes also called “ribbon graph” or “ma®), i
sequence endowed with a unique orientatigriq 3'). Each nucleo-  a graph equipped with a cyclic ordering of the incident lealfjes
tide can interact (base pair) with at most one other nualeoy  at each vertex. Thusg) refines its underlying grap® insofar as
means of specific hydrogen bonds. Only the Watson-Cricls @@ it encodes the ordering of the ribbons incident on its disksthe
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LB — YN mﬁf

Fig. 2. Inflation of edges and vertices to ribbons and disks. Here
we have four vertices, five edges and one boundary component

(a, B, E,cf,é,ﬁg, fz,?,g) The corresponding surface has Euler characte-

risic x = v —e+r = 0and genusg = 1, see egs (2.1) and Fjg 4. Reduction to fatgraphs with a single vertex. Contracting tiack-
2.2). bone of a diagram into a single vertex decreases the lengtredfoundary
components and preserves the genus. The contracted fatigraguivalent
to the labeled directed cycle. The backbone of the polymebearecovered
by re-inflating the disk into the backbone. The polygon $rfrepresents the
standard 2D-model of a surface as discussed in (Massey).1967

o

i kIl mnopagqgr

the removal of th€ N — 1) covalent bonds therefore preserves the
Euler characteristic and genus, see Fig. 4.
Fig. 3. Computing the number of boundary components. The diagram co  Using the collapsed fatgraphwe see that the relation between
tains5 + 9 edges and 0 vertices. We follow the alternating paths described the genus of the surface and the number of boundary compmizent

in the text and observe that there are exactly two boundarypements  determined by the number of arcs in the upper half-plane ghgm
(bold and thin). According to eq. (2.1), the genus of the diayis given

1 N ; .
by1— 5(10 — 14 + 2) = 2, see SM, Fig. S6 for details. 2% —r=1-n, (2.3)

wheren is number of base pairs amdhe number of boundary com-
ponents. The latter can be computed easily and therefoteot®the
genus of the molecules. Eq. (2.3) follows from eqns. (2.2)@nl),
which together yiel® — 2¢g — » = v — ¢, and the observation that
the contracted graph has= n arcs and a singlev(= 1) vertex.

following we will deal with orientable ribbon graphsEach rib-
bon has two boundaries. The first one in counterclockwiserord
is labeled by an arrowhead, see Fig. 2DAcycle orD-boundary
component is then constructed by following these directmtchda-
ries from disk to disk thereby alternating between baserniaions
and backbone, with the exception of the segment of the baynda
component that travels along the bottom of the backboneyusity 2.2 ~y-structures

backbone bonds, as shown in Figs. 2 and 3. We give a brief tutoT he shadowof a diagram (RNA structure) is obtained by removing
rial on how to compute boundary components in the SM, Fig. Séall noncrossing arcs, collapsing all isolated vertices eplacing
Topological invariants such as the number of boundary coraps  all remaining stacks (i.e., adjacent parallel arcs) byIsirgcs; see

of the fatgraphD can thus be computed directly from the underly- Fig. 5. Shadows can be seen as a generalization of shapacbstr
ing diagramD. Furthermore, fatgraphs can be succinctly stored andons (Giegericlet al, 2004) to pseudoknotted structures (Reidys and
conveniently manipulated on the computer as pairs of patints ~ Wang, 2010). Similar to the process of contracting the bankhnto

(Penneet al,, 2010). a single vertex, the projection into a shadow changes rrejiéreus
The fatgraphD gives rise to a unique surfac€p, and eactD- nor the number of boundary components (Anderseal, 2010).
cycle corresponds to a boundary componentXef, whose Euler  Allinformation on stack-lengths and on noncrossing congis of
characteristic and genus are given by the structure is lost in the process however. We shall seethiea
set of structures with shado® can nevertheless be reconstructed

Xx(Xp) = v—e+r (2.1) efficiently. To this end we will show that, for fixed genysthere
1 are onlyfinitely manydistinct shadows;, which will play a central

9(Xp) = 1-3x(Xo), (2.2)  role in constructing folding algorithms.

A diagram isirreducible (or connected) (Kleitman, 1970) if for
wherew, e, r denotes the number of discs, ribbons and boundaryany two arcs there is a sequence of arcs so that consecutise ar
components inD (Massey, 1967). The grapP can readily be cross one other. A shadow is not necessarily irreduciblerayt be
obtained by continously contracting the ribbons and di$d3.o composed of multiple irreducible components or blocks,FKge6

We next make use of an additional feature of RNA structures,(1). Any shadow (and in general, any diagram) can be decoaapos
namely, that the backbone forms a unique oriented chairrrdete iteratively by removing irreducible components from battto top,
ned by the covalent bonds. Thus, the backbone can be callapae  i.e., so that that there is no component “inside” the onerprsibved.
single disk since the surface is orientable: in absenceisfad ribb- Note that the sdlis of irreducible components of the set of shadows,
ons, there is no particular information in the backbondfittedeed,  &(.S), equals the set of shadows of the irreducible components of
the procedure can be undone by re-inflating the disk and Icéhgi
the backbone. The contraction of thevertices to a single one and

2 in order to relate this to the standard 2D-models of surfaegived from
triangulations: from the collapsed fatgraph we can dertve golygonal

1 ribbons may also be allowed to twist giving rise to possily+orientable model of the surfaceXyp, i.e., a2n-gon in which edges are identified in
surfaces (Massey, 1967) pairs; see Fig. 4
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given by
A Amm o= RO szt @9

—J-JJ-J-J-)-J-JJ-JJJ-J-J-J-)JJJJ-)JJJJJJJJJJJ—_b—J—J—J—J—J—)—J—J— . . )
diagram shadow where P,(z) is an integral polynomial of degre@g — 1) such

that P,(1/4) # 0. The number of genus zero matchings are well-
known to be given by the Catalan numbers, and eq. (2.5) aliba/s

Fig. 5. The shadow of a diagram is obtained by removing all noncros-derivation of explicit formulas for higher genera, for iaste,
sing arcs and isolated vertices and collapsing all regukitacks into single

arcs. While taking shadows is a significant reduction, the tk@ological 2n—2(2n — ! 2n—4(5n —2)(2n — 1!
invariants of genus and number of boundary components reimaariant. Ci(n) = W: c2(n) = 90(n — 4)!
Furthermore, the number,(2¢g) of matchings of genug having
exactly 2¢g arcs i.e., matchings having exactly one boundary
7\ component, is the coefficient ef? in P,(z) and is given by
1) (2)
(49)!
2q) = . 2.6

Fig. 6. ~-structures: we display the shadow oflestructure (left) having .
topological genus two and the shadow of the HDV-structuigh(y (Ferré- Explicitly, we havec1(2) =1lc (4) = 21_ andcs(6) = 1485 for
D'Amaré et al, 1998), a2-structure having also genus two. Although both €xample. These particular matchings will serve as “seedisdiir
shadows have genus two, the HDV structure cannot be gedétetatively folding algorithm. More precisely, we shall use the follogi

via successive removals @f;-elements and stacked arcs. The structure

displayed on the left is derived via tw$) -substructures. THEOREM2.2. For arbitrary genusg, the setS, of shadows is

finite. Every shadow i, contains at leasg and at mos{6g — 2)

arcs.
the diagrams.. Furthermore, the genus @& (5) is the sum of the The special case = 1, on which we focus in the algorithmic
genera of its irreducible components, i.e., part of this contribution, is explicated in the Supplemeytdaterial
(SM).
S)=9g(6(9)) = S"). 2.4
9(5) = 9(8(5)) G,GZI:(S) 9(&) 24 PROOF. First note that if there is more than one boundary compo-
S

nent, then there must be an arc with different boundary corapts

on its two sides, and removing this arc decreasdsy exactly

one while preserving since the number of arcs is given ly =

2g + r — 1. Furthermore, if there are, boundary components of

length? in the polygonal model, thetn = 3", fv, since each side

of each arc is traversed once by the boundary. For a shadow,0

by definition, ands, < 1 as one sees directly. It therefore follows

that2n =3, fve > 3(r—1)+2,s02n = 4g+2r —2 > 3r — 1,

i.e.,4g — 1 > r. Thus we haver = 29 + (49 — 1) — 1 = 69 — 2,

i.e. any shadow can contain at mégt— 2 arcs. The lower bound
LEMMA 2.1. An RNA structure is &-structure if and only if it ~ 2g follows directly fromn = 2g + r — 1 by observingr = 1.

is a simple secondary structure. In particularpastructure always

has genug = 0.

It seems natural, therefore, to determine the complexity struc-
ture by the maximal genus of the components of its shadowse Mo
precisely, we say tha$ is ay-structure ifg(&’) < ~ holds for

all irreducible components of the shado@45). By definition, a
~-structure can thus be constructed from the $ebf shadows of
genus at mosy by inserting certain noncrossing arcs , see Fig. 6.
The simplest class of structures are of courssructures, obtained
by placing noncrossing arcs over the empty structure.

Many S,-shadows are in faet structures for some < g, thatis,
they can be constructed from elementsSof One key result of this

PrROOF. We first observe that a diagram of genus zero containgcontribution is the following characterization dfstructures:
no crossing arcs. This follows from the fact that genus is a@ro
tone non-decreasing function of_the number_of_ arcs (see2e8))( its shadow can be decomposed by iteratively removing onkeof t
and that the genus of the matching (H) consisting of two nilytua

. four shadows

crossing arcs has only one boundary component and hence genu
one; see Fig. 2. Second, we observe by induction on the number
of arcs that each new noncrossing arc contributes a new loynd 70 /ﬂ“ m m
component an@ — 2g — (r + 1) = 1 — (n + 1) shows that the 0 w ) ™
genus remains zero. Structures consisting only of nonicrgsacs

THEOREM2.3. An RNA structure is a-structure if and only if

therefore have genus zero. In particular, 1-structures can have arbitrarily large topological
Next, we consider structures of arbitary genus. For theatyasis, genus.

diagrams without isolated points, i.e., matchings, plagrt@l role. PROOF. We only give a sketch here and refer to the SM for a

Let ¢, (n) be the set of matchings of genygswith n arcs, and let  full proof. First, we observe that taking the shadow pressiyenus.

cy(n) = |%,(n)| denote its cardinality. As shown by Andersen Since (H) is the unique matching with two arcs of gemgus= 1,

et al. (2010), the generating functio®y(z) = ano cg(n) 2" is it is contained in every matching of genys= 1. An arc crossing
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4-non-crossing
1-structure
L&P, D&P

|
A&U

R&E

Fig. 8. Fragment-pairs in RNA structures: the ruld —
TA1I1B11A2IB>S induces the fragment-pairgii,ri], [s1,71] and
[i2, 2], [s2,72]. Arcs connecting the two fragments of a pair are non-
crossing, while arcs with both endpoints within the samgrfrant may be
crossing such as those withli, ja].

Fig. 7. Venn diagram of important classes of structures with pskoois.

The mutual relationships of pseudoknot-free secondancsire (SS), the _ . . )
two H-shadow classes D&P and L&P, and the classes A&U and R&E,€presenting an arbitrary diagram over a segment and tareertal

resp., were already described by Condetnal. (2004). 1-structures and Symbols to represent isolated vertices (sympabpenings (symbol
4-noncrossing structures are added here. () and closings (symboj) of base pairs. We only need the three

production-rules

into (H) preserves the genus and leads to either (K) or (L)il&Vh S —: 8, S — (8)8, S e, 2.7)
every arc added to (K) increases the genus, there is onebpitgsi
to preserve the genus when adding an arc to (L), namely, dig@a

leading to (M). It remains to observe that no further arc caadded
to (M).

to generate the corresponding langu&ge

_ o _ _ . We shall use that (1) anj-structure can be inductively genera-

Before proceeding to algorithmic considerations we brietiy- o4 from genus one structures and (2) that every genus anetsie
pare the class ofi-structures with other classes of pseudoknots.nas shadow (H), (K), (L), or (M), to specify a multiple cortidsee
Condoret al.(2004) investigatgd the structure classes L&P (Lyngs’z'grammar (MCFG) (Seket al, 1991). In contrast to context-free
and Pedersen, 2000), D&P (Dirks and Pierce, 2003), A&U (8kut  grammars, the non-terminal symbols of MCFGs may consistudf m
2000), and R&E-class (Rivas and Eddy, 1999). The L&P-and D&P {jp|e components which must be expandigdparallel. In this way,
class are based on the H-type shadow depicted in Theorenm@.3 &t pecomes possible to couple separated parts of a derivatid
hence are proper subsets of the 1-structures. The A&U-d@ss  thys to generate crossings. In the case-sfructures, the language
not cover shadow M but on the other hand contains some configus is puilt upon sequences of intervafsagment-pair} [i, ], [s, 5],
rations that are n_ol-structures, and even thestructures do not where(i, j), (r, s) are nested arcs. Arcs having endpoints in the dif-
completely contain the A&U-class. Nevertheless, the A&IEISS  ferent fragments are assumed to be noncrossing; see Figr e
is small: there are more-structures than A&U-structures for any \ceg, the fragments of a pair are associated with two differe

given sequence length (Nebel and Weinberg, 2011). (coupled) components ofzdimensional non-terminal symbol.
The R&E class does notimpose a limit on the genus of the shadow accordingly, we (re)introduce the following symbols:

and hence contains-structure with arbitrarily largey. Conver-

sely, Fig. 3 shows &-structure that is not contained in the R&E 4 non-terminal S, representing secondary structure elements

class. This example is minimal, i.e., all 1-structures evetai- (i.e., diagrams without crossing arcs) according to thesul
ned in R&E. Similarly, the set ok-noncrossing structures (Jin given above

et al, 2008; Huanget al,, 2009) has infinitely many shadows for

any fixedk > 3 (Reidys and Wang, 2010), and hence, like R&E e non-terminald/ andT, representing an arbitradystructure,

containsy-structure with arbitrarily largey. We note that every- e non-terminalsX = [X1, X2] with two components used
structure is4-noncrossing; more precisely, shadows (H) and (K)  to represent a fragment-pair with nested arcX’ €
are3-noncrossing, while shadow (L) and (M) consistiamutually {H,K,L,M},

crossing arcs. See Fig. 7. e terminals(x,)x denoting the opening and closing of a base

pair, resp., wheréX is one of the type$/, K, L or M.
2.3 Minimum free energy folding of ~-structures

We have shown in the previous section thadtructures are sim-
ple RNA secondary structures. Their minimum free energy BYIF
configuration can be obtained by DP recursions (Watermarg;19
Zuker and Stiegler, 1981) derived from a decomposition Bud
table substructures. This decomposition can be expresstaims
of a context-free grammar (Dowell and Eddy, 2004; Steffed an 3 Thjs coupling is only required for components that were gateel by the
Giegerich, 2005). In the simplest case, which correspoads/a-  same production step. Components, even if of the same kiexdved in
luating base pairs only, we consider a single non-termiyral®l S different steps are independent of each other.

[Ziﬁerent brackets as well as the different non-termindlpattern
X are used to distinguish nestings of the various kinds of @vad
Finally, we specify the production-rules of our unambigsidCFG
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<%1 :

S|T
(8)S |
I(T)S
TALIB1TA2IB>S
TAIB1TA2ICIB21C5S
TAIB{ICKTA2IB2ICS
TAIByIC1IA2IDIB2IC21D2S
[(xIX1, XoI)x] | [(x,)x],

0S| e

N N HH N »n ~

whereX € {H, K, L, M} distinguishes the four types of pseudo-
knots.

THEOREM2.4. Any RNAL-structure can bainiquely decompo-
sed viaZ1, and any diagram generated vid, is a 1-structure, see
Fig. 9.

Fig. 9. lllustration of the gramma#; .

PrROOF. We proceed by induction on the number of shadows.

Induction basisin a1-structure that contains no genusshadow

there are no crossings and hence the structure can be decompo

sed uniquely via the context-free grammar of secondarycstras.
Induction stepSuppose we are givenlastructure containing > 1

shadows of genus one. We decompose from right to left. Elvenyt
is clear until we encounter a substructure containing a géraha-
dow. For an arex = (4, j), we distinguish two cases: (8 is not

crossed, or (I« is crossed by another arc. In case of (I), there

exists al-structure nested in. In case of (Il), we consider the par-
tial order <, where(i, j) < (r,s) ifand only if r < ¢ andj < s.

Since crossing arcs inkstructure are contained in one of the four

base types, we distinguish the following scenarios

(H): then there exist maximal base paits= (r, s), wherer < i <
s <7,

(K): then there exist maximal base pafis= (r, s) andf = (u,v),
whereu <r <ov<i<s<j,

(L): then there exist maximal base paits= (r, s) andd = (u,v),
whereu <r<i<v<s<j,

(M): then there exist maximal base paits= (7, s), 0 = (u,
0= (p,q),wherep<u<r<g<i<v<s<j.

v) and

3 dSan

Lesil L b Lbtskl
B, A, B, ¢, B. G,

0 (1) (2)
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a %%@% o
/A
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Fig. 10. Fragmentation: the four cases corresponding to the foulmhs
(H), (K), (L) and (M). In (1), there are two maximal arcs: = (i, j) and

B = (r,s), wherer < i < s < j, whence the diagram has shadow (H).
Here,a. = (ix, j«) is the minimal arc crossing'(«) and B« = (7, s«)

is the minimal arc crossing’(3). We haveB1 = [i,ix], B2 = [, ],
Ay = [r,ry], A2 = [s, s«]. Cases (2), (3) and (4) are analyzed similarly.

Consider the sef’(«) of arcs that are crossed layand the mini-
mal arca. that crosses any element 6f(«). Here minimality is
considered with respect to the partial orgerwhere(i, j) < (r, s)

if and only if r < ¢ andj < s. It follows thatae = (4,7) and
as = (i«, j«) induce the fragment pali, i.] and|j., j]. We simi-
larly obtain the corresponding ar¢k, 6. or d., which induce at
most four fragment-pairs and correspond to a unique shadoype
(H), (K), (L) or (M). See Fig. 10. By construction, the nummr
genusl shadows of any substructure contained in such a fragment-
pair is reduced at least by one and can by induction hypathbsi
uniquely decomposes vi@:. Finally, any structure generated via
2, is constructed from top-to-bottom by iteratively buildiegn-
figurations of arcs having shadow (H), (K), (L) or (M). Thusyan
structure obtained viaZ: is indeed al-structure completing the
proof of the theorem.

2-structures.A folding algorithm for 2-structures requires an ana-
logous enumeration of all (irreducible) shadows of gepufrom
eg. (2.6), itis straightforward to explicitly derive ti2¢ shadows of

pgenus 2 witht arcs, see SM FigL0. As in the case of genus arc-

insertions into these1 configurations leads to the complete set of
3472 shadows of genus two. This large number makes it infeasible
to build a practically useful folding algorithms fail 2-structures.

It may be useful, however, to deal with a (small) subset of sha
dows. The complexity of such an algorithm is determined by th
complexity of decomposing the individual shadows by means o
MCFG-production rules reminiscent of those f@ . For instance,
the shadow of the HDV structure displayed in Fig.6, (2), is-co
tained in the R&E class and can therefore be computed (iv®)
time andO(N*) space. However, when resorting to our approach
its time complexity is at leasD(N?®): the shadow presented in
Fig. 11 requires a DP algorithm wit®(N?®) time- and O(N°®)
space-complexity. It is ongoing work to devise a sensibldirig
algorithm for2-structures.

MFE folding of 1-structures.lf we make use of a naive table-
based parsing scheme, checking for each subwoodl the input
and for each rulef whether f can produces, a rule like f =
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de‘ﬂfe S i r s i r s i r s )
G(i,j;r,s) Gu(i,j;r,s) Gv(i,j;r,s) Gw(i,j;r,s)
SN N
i r .@
Fig. 11. Folding of2-structures: The shadow shown hered contained in G(i.jir.s) G+10-0) G(P,GIS)  lar11)
the R&E class of structures and cannot be generated by gajeesalt can _ G(p+1.jir.q+1)
pe de_composed, hqwever, using thénd_exesi,j,k,l7m,n7p_and_q, thu_s //:_y‘ A _ ﬁ
implying a O(N®) time-complexity. This makes use of a six-dimensional (¢~ “\ ) — 10 210
gap MatrixG x.1,m,n,p, Which impliesO (N ®) space-complexity. L Gulijre) | W Cisar
P ATBUYCU(aps)
N { = \
I — IA{IB2IC1TAsIDy I B2 1Co1 DS introduces a complexity (/7 ) = B :‘—3“,1,‘
O(N'®): First, we must proces®(N?) different subwords; indu- ' Gyijre) Qg coeinen
ced by an input of size. Second, each non-terminal but the first on ==
the right-hand side of the production introduces an adutticplit TG Culanp ) T BN Gv(ianetT)
point which specifies the part efto be generated by the correspon- Gy« V' N V' N\
ding non-terminal. Since its location may freely be choséiiw ,’_,’"\‘_‘l =0 . )‘ﬂ_‘lqﬂ J oy . :H_\|a+« J
s, each split point gives rise to another loop variable, andcke " {0’ . WV b . W
contributes a facto®(N) to the runtime. ~Gu - ~Gu s
Even if there are much more sophisticated parsing algosthin Gu(s.jip.a+1) Gu(s.jip.a+1)

is useful to consider this simple scheme since it direci@ynsia-

tes into a recursion for a DP algorithm typically used to catap
structures of minimum free energy. Furthermore, it is passio

introduce intermediate steps in the derivation of our laggu by
making use of additional non-terminals and productiomsusuch
that the time complexity can be reduced26N°®). For that purpose
let the non-terminal’ representl -structures in which no structures [s,4], and letGu(i, j;, s) be the fragment-pair (associated with)
with shadow (H), (K), (L) or (M) are nested and the last veiiex [U;, Us], Gu(i, j; 7, s) be the fragment-paifi1, Va], Gw (i, 5; 7, s)

Fig. 12. The decomposition fo#-dimensional matrice§s, Gu, Gv, and
Gw.

paired. We introduce the non-terminal symbbis= [U1, U5], V = be the fragment-paifi¥s, Wa], andG(i, j;, s) be the fragment-
[Vi,V2] and W = [Wy, W>] assumed to represent intermediate pair [X;, X2]. The recursions for these matrices, summarized in
fragment-pairs and the production-rules graphical form in Fig. 12, are determined directly by thergraar.
. We can conclude from the rewriting rules that the computatio
U — [IX1,1X5] of the 2-dimensional matrices requires at most three loop varible
Vo~ UL UsUL and there are(N?) many of them. AccordinglyQ(N®) operati-
. , , ons are required to fill the associatealimensional matrices. For
W — U, UiU2Us] | [Vi, UrVaUs] the 4-dimensional matrices, two loop variables are needed fon ea

Lo . . of the corresponding rewriting rules (those with a left-tiaside
where (U1, U3) is @ marked copy ofUs,Uz) used to identify ot gimension2) for there are in each case two split points intro-
the components which must Ia_ter _be expanded in a coupled wayj,ced by the right-hand sides of the corresponding prodosti
Accordingly, we replace the derivations 5fin %1 as follows: Since we need to comput@(N'*) matrix entries, the total run time
, is in O(N°®). Obviously, O(N*) space is required to store these

T — IDS|IS tables. Accordingly, the algorithm can generatelafitructures in
I' - ViV | hWUsxVa | Uy WU Wa O(N°®) time andO(N*) space , i.e., with the same complexity
aspknot sRE (Rivas and Eddy, 1999) (for the larger R&E class).
Note that syntactically, i.e., considered as dot-brackgrresen- The advantage aof-structures is that structurally different shadows
tations, thel-structures can be generated by a MCFG, parsable ircan be parametrized in different ways, and that the searabtesis
time O(N®). However, in that case, corresponding brackets are notestricted to moderately complex shadows. In contrasiahguage
generated in a coupled way making the grammar inappropioate of R&E-structures is based on crossings and can neithetifgen
algorithmic purposes. blocks of arcs not restrict the genus of the shadows. For istoue-
As typical for DP and in analogy to our parsing scheme, we useure classes restricted #@-structures, NUPACK (Dirks and Pierce,
2-dimensional matrices to store the optimal structure ovéag- 2003) require(N?) time andO(N*) space.
ment. The matrix is indexed by the sequence coordinateseof th This is substantially more demanding, of course, tharQha'™*)
endpoints. It can be a simple secondary strucSunea substructure  time andO(N?) memory complexity ofpknot SRG Reeder and
of higher genus. For the fragment-pairs, i.e., for the remmtnals  Giegerich (2004), which, however, deals with a very resdcsub-
of dimension two, 4-dimensional matrices indexed by the end- set of H-shadow structures, demanding that helices aremadlyi
points of both linked fragments are required to store thénwgdt  extended and perfect in the sense that they are not intedupt
structure over them. Suppose the pair of fragment§,is] and bulge- or interior-loopspknot sRGthus is not guaranteed to find
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the minimum energy structure within the class H-shadowcstines.
A related fast heuristic treats the (K)-shadow as a supéipoof
the two H-shadows Theit al. (2010).

2.4 Partition function and sampling

We have shown that the MCF@?; uniquely generates all-
structures, i.e., it is unambiguous. Consequentl§; can be
employed to countl-structures over a given sequengeand to
compute the corresponding partition function

Q= Z e—G(s)/RT7

s€EG

where R is the universal gas constari, is the temperaturei7(s)

is energy of structure over sequence;, and S, is the set ofl-
structures in which all base paifs ;) satisfy the base pairing rules
for RNA, i.e., z;z; € {AU,UA,GC,CG,GU,UG}. Let N, ;
denote the substructure represented by the nonterminddaykin
%, over the fragmenti, j], and letX; ..., denote the fragment-pair
X = [X1, X»], whereX; = [i,7] andX» = [s, j] in the recursions
for energy minimization. For each of these symbols, we thiae
corresponding partial partition functiodgy, andQX . Since
the MCFG is unambigous, the recursions for the partlal auti
functions are derived by replacing minima by sums and auoidliti
of energy contribution by multiplication of partial paitih functi-
ons, see e.g., (Voét al, 2006). For instance, the recursion for the
partition functions corresponding to the nonterminal sgphibreads

i ZQI/'i,}L X Q5h+1,.7‘
h

_E[h,0]/RT
+ E Qli,h—l X QT;‘+1,271 X Qse+1,j xe )

h,t

generates a Boltzmann sample Ietructures, see (Tacket al,
1996; Ding and Lawrence, 2003; Huaegal., 2010) for analogous
constructions.

The basic data structure for this sampling is a staekhich stores
blocks of the form(i, j, N) (or (i, j; r, s, X )), presenting substruc-
tures of nonterminal symbol&/ over [i, 5] (or X over [X1, X2]
whereX; = [i,r] and X2 = [s,j]). L is a set of base pairs sto-
ring those removed by the decomposition step in the gramviiar.
initialize with the block(1,n,I) in A, andL = &. In each step,
we pick up one element il and decompose it via the grammar
with probability @™ /Q™, whereQ™ is the partition function of the
block which is picked up fromd, andQ* is the partition function
of the target block which is decomposed by the rewriting .riilee
base pairs which are removed in the decomposition step avedno
to L. For instance, according to the rewriting rdle— I1(7)S, the
block (4, j, T') is decomposed into the three block$;h — 1, 1),
(h+1,6—-1,T), (£ +1,4,5) and one base paiih, ¢) which is
to be removed. For fixed indicgs ¢, wherei < h < ¢ < j, the
probability of decomposingi, j, T') reads

—E[h,0]/RT

Qli.h—l X QTj+1,é—1 X Qse+1.j xXe

Py =
QTi,j

The sampling step is iterated untd is empty. The resulting
1-structure is the given by the lidt of base pairs.

2.5 Software

Implementation MFE folding, partition function including a com-
putation of base pairing probabilities, and stochastidktracing are
implemented irgf ol d. The program is written in C.

whereE[h, ¢] denotes the energy of the loop closed by the base pair

(h, £).
The probabilitiesPy, ; of partial structures of typeV over the
fragment[i, j] and the’ probabllltleﬁﬂ’ Cijors of partial structures

of type X over the fragment paii, j], [r s] are readily calculated
from the partial partition functions. These “backward nestons”
are analogous to those derived by McCaskill (1990) for énusee
structures: Lef\y, ; be the set ofl-structures containingV;, ; and
let A Zijms be the set ofl -structures containing the fragment-pair

X, s It follows that we have

Pn,; = Z Ps,

s€EAN; j

Py P,.

©,J5T, 8
sEA ¢
Xi,jir,s

SupposeN; ; or Xi,j;r,s are obtained by decomposiry. The
conditional probablitiesP, .| ,95 and]P% oslo, 2T then given

by Qo.(Ni;)/Qe. and Qo (X ,],TS)/QQS respectively. Here
Qo, represents the partition function dofs, and Qo (N; ;)
and Qo, (X ;.-+) represent the partition functions for thoe-
configurations that contaity; ; and X, ;... respectively. Taking
the sum over all possiblig;, we obtain

Qo, (Nij)
Qo,

From this backward recursion, one immediately derives ehststic
backtracing recursion from the probabilities of partialstures that

PNi,j =Py,

Energy Model Although the presentation above uses a simplified
grammar that does not explicitly distinguish the usual logpes,

gf ol d implements the Mathews-Turner energy model without
dangles (Mathewst al, 1999, 2004) for secondary structure ele-
ments. For pseudoknots, we use here an extended versior of th
Dirks-Pierce (DP) model (Dirks and Pierce, 2003) that aalif-
ferent penaltiesix for the four topologically distinct pseudoknot
typesX = H,K,L, M. We have observed that the valuesf
have a substantial influence on the accuracy of the predattad-
tures. In bothNUPACK and pknot sRE, a common pseudoknot
penalty3; is assigned whenever two gap matrices cross. Since the
number of such crossings depends on the type of the pseutlokno
this algorithmic design would implyga = 51, B8 = Bc = 201,
and8p = 361. In gf ol d, these parameters are independent and
can be adjusted to improve the performance. Since mostiexger
tally known pseudoknots are of types (H) and (K), we focused i
particular on the ratio o4 andS3p and found that both sensitivity
(the ratio of correctly predicted base pairs to the total hamof
base pairs in the reference structure) and positive piedioalue
reach a maximum fos = 1.384. The pseudoknot penalty of type
(H) coincides with that of the DP model, i.e34 = (1 = 9.6
[kcal/mol]. The other penalties are setfig = 12.6, Sc = 14.6,
andf@p = 17.6; see SM for details. An alternative set of pseudo-
knot parameters described by Andronestial. (2010) can easily

be incorporated but would require a re-adjustment of these f
topological penalties.
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Performance The current implementation aff ol d is applicable
to sequences with a length up = 150 nucleotides on current

PC hardware. Fig. 13 summarizes the resource requirements.
105 E T I rTTTT g 104 E 1 T T 7T T g
4 ; o ; - 0° 1
'_10 E o 3 '§103? 0%.° _;
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10075, 64 128 10073, 64 128

length N length N

Fig. 13. Run time (left) and peak memory (right) @f ol d. Timing
information is given for MFE-only (triangles) and parititi function with
sampling 10,000 structures from the Boltzmann ensembleofigpute error
bars, we folded folded betwed® (N > 100) and100 (INV < 70) randomly
generated sequences on a Xeon E5410, 2.33Ghz, 48Gb mememyoriy!
allocation is independent of the sequence. No2> 100, double precision
floats are necessary to avoid overflows. This leads to the junmpemory
consumption by a factor ¢f. Dotted lines indicate the theoretical behavior
of O(N9) (time) andO(N*) (space). The slope for CPU time is slightly
steeper than the theory since constraints among the 6 &dfiteduced by
the minimum size of the complex pseudoknot elements lead &lditional
speedup for smalN.

We have observed thaf ol d provides a substantial increase
in both sensitivity and a positive predictive value (PP\tjaaf
correctly predicted base pairs to the total number of bags pa
the predicted structure) compared to the alternative DPoaghes
pknot sRE (Rivas and Eddy, 1999NUPACK (Dirks and Pierce,
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Fig. 14. Performance off ol d. Comparison of the average sensitivity (A)
and PPV (B) of different prediction algorithms on a sampl@&®ftructures
from Pseudobase. All details of this sample are given in the SM (Tab.S-
2). (C) The PPV increases signficantly if only base pairs Veitber pairing
probabilities as predicted by the partition function versiof gf ol d are
included in the predicted structure.

be constructed only for certain types of structures. On ttiero
hand, the larger the structure sets are, the more base g@ian
terns are contained in them that cannot be realized in ndugeo
steric constraints. Algorithm design so far has been matilen

by the desire to reduce computational complexity. The idsaral

gf ol d, in contrast, is to define a more suitable class of structures
that can be generated by nesting and concatenating a smatlemu
of elementary building blocks. This recursive structureaptured
by a fairly simple unambiguous multiple context-free graanrthat
translates in a canonical way to DP algorithms for computhrey
minimum energy structure and the partition functiolv®) time
andO(N*) space. In addition to MFE folding, we have implemen-
ted the computation of base pairing probabilities and ahststic
backtracing recursion, thus providing the major functidies of
RNA secondary structure prediction software for a very ratclass

2003), andpknot sRG nf e (Reeder and Giegerich, 2004), and of pseudoknotted structures.
thatgf ol d provides a substantial increase in accuracy, cf. Fig. 14. The 1-structures considered here strike a balance between the

In an evaluation on the entiRseudobase (van Batenburgt al.,
2001), gf ol d achieves a sensitivity di.762 and PPV 0f0.761.
As detailed in SM (Tab.S-3), the performance varies sultisign
between different classes of sequences however. Integgstithe
more complex pseudoknots of type (K) are predicted with dign
her accuracy (sensitivit§.889, PPV0.899) than the simpler, much
more frequent type H.
The PPV ofgf ol d predictions can be increased by filtering

the base pairs of the MFE structure by their probabilitpf for-
mation, which is computed by the partition function versioh

generality necessary to cover almost all known pseudo&ddiiruc-
tures, and the restriction to topologically elementaryatures that
have a good chance to actually correspond to a feasibleatpati
structure. From a mathematical point of view, the charaaéon
of structures in terms of irreducible components with givepo-
logical genus appears particularly natural and promisefiect
closely the ease with which a structure can be embedded ée thr
dimensions. In addition, the grammar underlyigigol d naturally
distinguishes different types of pseudoknots and admitsrdit
energy parameters for them. We observe that this additfoeediom

gf ol d. Accepting only base pairs with a predicted base pairingof the parametrization leads to a substantial increase rnithéty

probability p > 0.95 increases the PPV fro.76 to more than

of type (K) pseudoknots(63 — 0.889) and PPV (.73 — 0.899)

0.9, see Fig. 14C. In order to evaluate the false positive ratecompared to the usage of a common penalty for each crossing of
we folded 100 tRNA sequences from Sprinzl's tRNA database gap matrices. In terms of prediction accuragy,ol d thus com-

(Juhlinget al, 2009).gf ol d correctly identifies94% of them as
pseudoknot-free. In comparisoNUPACK correctly identifies86%
andpknot sRG- nf e 89% of this sample set.

3 DISCUSSION
Combinatorial models of pseudoknotted RNA structures ing |

pares favorably also with the leading alternative DP apghiea to
pseudoknotted structures.
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