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Importance: Advances in the treatment of childhood cancer have significantly improved survival rates, with more than 80% of
survivors reaching adulthood. However, gonadotoxic cancer treatments endanger future fertility, and prepubertal males have no option
to preserve fertility by sperm cryopreservation. In addition, boys with cryptorchidism are at risk of compromised fertility in adulthood.
Objective: To investigate current evidence for male fertility restoration strategies, explore barriers to clinical implementation, and
outline potential steps to overcome these barriers, a scoping review was conducted. This knowledge synthesis is particularly relevant
for prepubertal male cancer survivors and boys with cryptorchidism.
Evidence Review: The review was conducted after the Preferred Reporting Items for Systematic Reviews andMeta-Analyses extension
for Scoping Reviews criteria and previously published guidelines and examined studies using human testis tissue of prepubertal boys or
healthy male adults. A literature search in PubMedwas conducted, and 72 relevant studies were identified, including in vivo and in vitro
approaches.
Findings: In vivo strategies, such as testis tissue engraftment and spermatogonial stem cell transplantation, hold promise for promot-
ing cell survival and differentiation. Yet, complete spermatogenesis has not been achieved. In vitro approaches focus on the generation
of male germ cells from direct germ cell maturation in various culture systems, alongside human induced pluripotent stem cells and
embryonic stem cells. These approaches mark significant advancements in understanding and promoting spermatogenesis, but
achieving fully functional spermatozoa in vitro remains a challenge. Barriers to clinical implementation include the risk of reintroduc-
ing malignant cells and introduction of epigenetic changes.
Conclusion: Male fertility restoration is an area in rapid development. On the basis of the reviewed studies, the most promising and
advanced strategy for restoring male fertility using cryopreserved testis tissue is direct testis tissue transplantation.
Relevance: This review identifies persistent barriers to the clinical implementation of male fertility restoration. However, direct trans-
plantation of frozen-thawed testis tissue remains a promising strategy that is on the verge of clinical application. (Fertil Steril�
2024;122:828–43. �2024 by American Society for Reproductive Medicine.)
El resumen está disponible en Español al final del artículo.
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C hildhood cancer survival rates have increased substan-
tially in the past few decades, with over 80% of survi-
vors reaching adulthood thanks to modern treatment

regimens (1, 2). Many prepubertal patients with cancer are
facing gonadotoxic treatments such as chemotherapy or
gonadal radiation, which poses a significant threat to their
future fertility. Prepubertal males have no option to preserve
fertility by traditional sperm cryopreservation; for these pa-
tients, the only fertility preservation strategy is cryopreserva-
tion of immature testis tissue (ITT) (3). Fertility restoration is
increasingly becoming a concern, with the focus shifting to-
ward continuation of care after successful cancer treatment
and securing quality of life for childhood cancer survivors
who wish to become biologic parents in adulthood (4–8).
Some centers also offer testis tissue cryopreservation for
selected young boys with cryptorchidism who have a high
risk of infertility (9–11). A growing number of centers
worldwide now offer routine cryopreservation of ITT with
the aim of advancing spermatogonial stem cell (SSC)–based
treatments to a clinical stage to provide opportunities for
fertility restoration (12–14). According to the most recent
survey by the ORCHID-NET consortium, 3,118 boys aged
<18 years had ITT cryopreserved worldwide (at centers in Eu-
rope, the United States, and Australia) by November 2022
(15). Here, it is reported that the indications for fertility pres-
ervation are a malignant disease in approximately 60% of
cases and a benign condition including Klinefelter syndrome
in approximately 40%. Similar numbers had been reported
previously (16).

Fertility has a profound impact on our quality of life
(17, 18). Male fertility restoration is currently a dynami-
cally evolving field including a broad range of strategies
such as surgical and in vitro approaches to achieve resto-
ration of fertility from prepubertally cryopreserved testis
tissue. A recent study has mapped how 16 centers
currently handle fertility preservation of prepubertal
boys using cryopreservation of ITT in clinical practice
and has shown that multiple centers are close to clinical
trials of transplantation of frozen/thawed testis tissue
(15). Meanwhile, the current evidence for fertility restora-
tion strategies has not yet been systematically synthesized,
leading to a potential lack of structured research coopera-
tion across different disciplines. Thus, this topic lends it-
self to a scoping approach to map and assess the extent
of the evolving heterogeneous literature and identify
gaps in knowledge (19). This review aims to examine the
current evidence and clinical applicability of the different
strategies for fertility restoration using ITT as well as iden-
tify future research questions that will accelerate the ex-
pected implementation of therapy options in clinical
medicine. Furthermore, potential barriers in the develop-
ment of clinically relevant therapies are identified. This
scoping review was conducted to answer the questions
‘‘What is the evidence of in vivo and in vitro stem cell–
based strategies for male fertility restoration using prepu-
bertal human cryopreserved testis tissue, and what are the
barriers to clinical implementation?’’
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MATERIALS AND METHODS
The research objectives were assessed using the scoping re-
view framework as previously published by Arksey and
O’Malley (20) and the Joanna Briggs Institute (21).
Preregistration

The objective, methods, and eligibility criteria were prespeci-
fied and registered online with the Open Science Framework
Registry on November 29, 2023 (https://doi.org/10.17605/
OSF.IO/8DNRT). The individual criteria were developed using
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews (22). As a
scoping review, this study was exempt from applying for
institutional review board approval.
Search

An iterative 3-step approach was used to search for relevant
literature (21). First, a preliminary search of the National Li-
brary of Medicine (PubMed) was conducted to establish the
relevant search terms by screening titles and abstracts. Second,
the following search stringwas used to perform thefinal search
in PubMed on November 30, 2023: ((male fertility restoration)
OR (spermatogonial stem cell transplantation) OR (testis tissue
engraftment OR autotransplantation) OR (in vitro spermato-
genesis)) AND (human) AND ((testis tissue) OR (testicular tis-
sue)). Finally, additional records were included from the
references of the most recent included articles.
Selection of sources of evidence and eligibility
criteria

Original researcharticles in theEnglish languagepublishedbe-
tween January 1994 and November 2023 were included in the
review because SSC transplantation in mice was first reported
in1994establishing thepossibilityofSSC-based fertility resto-
ration (23). All available titles and abstracts were screened for
eligibility in the review independently by two reviewers
(E.v.R., C.F.S.J.) using Rayyan. Any discrepancies were
resolved by discussion and subsequent consensus. Selected
publications were full-text screened by one reviewer (E.v.R.)
and assessed for relevance and congruence with the objective
and research question of this review.All full-text articles could
be obtained through the institution’s library access.

If data were reported in multiple publications, only the
publication with the most complete data set was included in
the review. The population-concept-context framework was
used to select studies for inclusion according to predefined
eligibility criteria.

All studieson fertility restorationusinghuman testis tissue
ofprepubertalboysorhealthymaleadults (population)withthe
intention to model male fertility restoration including in vitro
strategies, such as SSC culture, organotypic culture, or induced
pluripotent stem cell (iPSC)–based therapies, as well as in vivo
strategies, plus tissue engraftment and SSC transplantation
(concept), were considered for inclusion. Furthermore, strate-
gies to clinically implement transplantation of prepubertally
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cryopreserved testis tissue were included (context). Addition-
ally, original research studies that assessed or highlighted bar-
riers to clinical advancement were included.
Data charting process

A formwas developed by the reviewing investigators to assess
the relevance of the study according to the predefined popu-
lation, concept, and context and map study characteristics
such as year of publication, study center, field of research,
methods employed, outcomes reported, and barriers to clin-
ical implementation.

RESULTS
The study selection process is shown in the PreferredReporting
Items for Systematic Reviews and Meta-Analyses flowchart
(Fig. 1). After abstract and title screening and assessment for
eligibility, 72 studies were included in the review—20 and 42
studies investigated in vivo and in vitro approaches to fertility
restoration, respectively, and 10 assessed oncofertility pro-
grams and barriers to clinical implementation. Of the 20
included studies focusing on in vivo approaches, 14 investi-
gated autologous or xenogeneic engraftment of human testis
FIGURE 1

Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow
von Rohden. Restoring male fertility with stem cells. Fertil Steril 2024.

830
tissue, and six investigated the xenotransplantation of human
SSCs. In vitro strategies were divided into 15 studies research-
ing generation of male germ cells from human iPSCs and em-
bryonic stem cells (ESCs), and 27 studies explored various
approaches to direct in vitro maturation of male germ cells.
The 27 studies aiming at in vitro spermatogenesis included
2-dimensional, 3-dimensional (3D), and organoid culture
systems using SSC suspensions (15 studies) and organotypic
culturesonwholetissuepieces (12studies).Thereportedthemes
and distribution of included studies across the range of fertility
restoration strategies and methods applied are visualized in
Figure 2. Table 1 (4, 24–94) shows an overview of all included
studies sorted by fertility restoration strategy and method and
listed by year of publication. Additionally, the table has been
expanded with country, detailed study design, and results for
each included study, as shown in Supplemental Table 1
(available online).
In vivo strategies

Testis tissue engraftment. In the absence of malignant cells,
the direct ectopic or homotopic transplantation of frozen-
thawed ITT is an option to advance fertility and male germ
chart of the study selection process.

VOL. 122 NO. 5 / NOVEMBER 2024



FIGURE 2

Reported themes from scoping review and number of studies. Distribution of included in vivo and in vitro studies sorted by fertility restoration
strategy. ESC ¼ embryonic stem cell; iPSC ¼ induced pluripotent stem cell; SSC ¼ spermatogonial stem cell; 3D ¼ 3-dimensional; 2D ¼ 2-
dimensional.
von Rohden. Restoring male fertility with stem cells. Fertil Steril 2024.
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cell maturation. The SSCs remain in the supporting somatic
testis niche, which is presumably the most favorable environ-
ment for their proliferation and differentiation. Several prom-
ising studies have reported successful long-term xenografting
of human ITT into immunodeficient mice demonstrating sur-
vivalof spermatogoniaanddifferentiation into spermatocytes,
but no further advancement of spermatogenesis was observed
(24–28). Various graft sizes, locations, surgical techniques,
donor material, and observation periods were described.
Ntemou et al. (24) used 1.0–1.5-mm3 fresh human ITT pieces
from three prepubertal donors for engraftment, both under
the dorsal skin and under the tunica albuginea in the mouse
testis for 9 months. Improved spermatogonial survival and
seminiferous tubule integrity were demonstrated in tissue pre-
treatedwith vascular endothelial growth factor (VEGF) in vitro
(24). Sato et al. (26) engrafted 0.5–1.0-mm3 fresh ITT pieces
froma3-month-olddonorunder thedorsal skin for 12months,
at which point BOULE- and CDC25A-positive cells suggested
the presence of haploid spermatocytes in meiosis. Poels et al.
(25) transplanted 1.0-mm3 fresh and frozen-thawed prepuber-
tal tissue for 6 months into the scrotum of castrated mice. This
study revealed good tubule integrity and spermatogonial sur-
vival as well as spermatocytes up to the pachytene stage (25).
Similarly, Wyns et al. (27) engrafted 1–6-mm3 frozen-thawed
ITT pieces into the peritoneal bursa of the scrotum close to the
castrationwoundand removed the grafts after 6months. Sper-
matogonial survival and sustained tubule integrity were re-
ported. Ki67-positive proliferating germ cells and few
spermatocytes were observed (27). Van Saen et al. (28) used
1.5–3.0-mm3 fresh and frozen-thawed ITT pieces for
VOL. 122 NO. 5 / NOVEMBER 2024
engraftment intothetestesofthemicewithandwithoutsupple-
mented human recombinant follicle-stimulating hormone
(FSH) with removal after 12 months. In both fresh and
frozen-thawedtissuewithandwithoutFSHapplication, the tu-
bule integrity was reduced; however, spermatogonial survival
was shown, and meiotic germ cells were present (28). Two
studies investigated the effect of supplementation of VEGF in
tissue cultures before transplantation and demonstrated
improved revascularization, tubule integrity, and spermatogo-
nial survival but no influence on cell differentiation compared
with culture without VEGF (24, 95).

The first human proof-of-principle study for autologous
testis tissue engraftment was recently published. The study
cryopreserved testis tissue from a 31-year-old man with non-
obstructive azoospermia and later did an autologous engraft-
ment of 3 2 � 4 � 2–mm frozen-thawed testis tissue pieces
under the scrotal skin without surgical complications (59).
Meanwhile, after successful recovery of the grafted tissue af-
ter 6 months, no spermatozoa were found. Two of the grafted
tissue pieces with previously dilated tubules (visualized under
the operating microscope during a previous microdissection
testicular sperm extraction) showed intact tubules, normal
cell organization, and Sertoli cells and spermatocytes near
the basement membrane on histologic evaluation after
extraction. Spermatogonial stem cells expressing MAGEA
and VASA were detected in these seminiferous tubules, illus-
trating that the testis tissue can survive freezing, thawing, and
autotransplantation with an intact testis niche (59).

SSC transplantation. Another strategy for male fertility
restoration is the propagation and autologous
831



TABLE 1

Overview of the included studies listed by fertility restoration strategy and publication year.

First author, y Study description

Engraftment of human TT
Jensen (60), 2023 Autologous fixation of frozen-thawed TT under the scrotal skin, graft survival after 6mo, no

spermatozoa, n ¼ 1
Hutka (62), 2020 Xenotransplantation of frozen-thawed and fresh prepubertal and peripubertal TT to mice,

no progression of spermatogonia after 12 wk
Ntemou et al (24), 2019 Frozen-thawed ITT xenotransplanted to mice after tissue culture, increased vascularization

after 9 vs. 4 mo, spermatocytes present
Poels (84), 2014 Xenotransplantation of frozen-thawed ITT into the mouse scrotum without fixation, with

spermatogonial survival at day 5
Poels et al (25), 2013 Xenotransplantation of ITT into the mouse scrotum without fixation, integer seminiferous

tubules and pachytene spermatocytes after 6 mo
Van Saen et al (28), 2013 Fresh and frozen-thawed ITT xenotransplanted without fixation into the mouse testis,

meiotic germ cells at 12 mo, reduced tubule integrity
Van Saen (85), 2011 Prepubertal and postpubertal TT xenografted to mouse testis, SSC survival, secondary

spermatocytes at 9 mo in tissue from a 13-y-old
Sato et al (26), 2010 Fresh ITT xenografted under the dorsal skin of mice, pachytene spermatocytes and

maturation of Sertoli and Leydig cells at 1 y
Goossens (123), 2008 Fresh ITT xenografted under the dorsal skin of mice, intact tubules and spermatogonia

detected at 4 and 9 mo
Wyns et al (27), 2008 Xenotransplantation of frozen-thawed ITT into the mouse scrotum, spermatogonial

survival and increased proliferation at 21 d
Wyns (87), 2007 Frozen-thawed ITT xenotransplanted into the scrotum near castration wound,

spermatogonia and few pachytene spermatocytes at 6 mo
Geens (88), 2006 Adult healthy TT xenografted under the dorsal skin of mice, spermatogonia maintained

>195 d in 22% of grafts
Schlatt (63), 2006 Adult TT from different sources xenografted under the dorsal skin of mice, occasional

spermatogonial survival at 2–19 wk
Yu (64), 2006 Fetal ITT from fetuses wk 20 and 26 xenografted under the dorsal skin of mice, germ cells

present at BM at 116 and 135 d
SSC transplantation
Wang (60), 2022 Cell suspension from frozen-thawed ITT transplanted into the seminiferous tubules of mice,

prospermatogonia and SSCs present at 6–9 wk
Mohaqiq (65), 2019 2-wk culture of SSCs from men with OA and then transplanted into the mouse testis,

homing of SSC-derived cells to BM after 14 d
Mohaqiq (66), 2019 2-wk culture of SSCs from men with OA and then ex vivo transplanted into the testes of

mice, SSC-derived cells and round spermatids seen at 8 wk
Izadyar (67), 2011 Injection of SSCs from fresh adult testis (men with OA) into the mouse rete testis, SSEA-4þ

cells present at 4 wk
Sadri-Ardekani et al (29), 2009 Germline stem cells from frozen-thawed adult TT cultured for 28 wk and then

xenotransplanted to mice, SSC homing to BM
Nagano et al (30), 2002 Cell suspension from adult TT xenotransplanted into the mouse testes, spermatogonial

survival at BM after 6 mo
In vitro maturation of germ cells
Culture from cell suspension (2D/3D/organoid)
Galdon et al (31), 2022 Cell suspension from pubertal cryopreserved TT cultured as cell monolayer, putative SSCs

and spermatogonia present at 110 d
Robinson et al (34), 2022 Cell suspension from a man with NOA cultured for 12 d and 3D bioprinted into tubular

structure, improved SSC maintenance
Oliver (68), 2021 Cell suspension from first-trimester embryonic gonads cultured in 3-layer gradient Matrigel

system, whole testis organoids at 7 d
Ashouri Movassagh (69), 2020 SSC differentiation culture on DTM vs. 2D culture, using adult whole testes, spermatocytes

and spermatids increased at 10 wk on DTM
Dong (70), 2019 Xeno-free culture of cell suspension from ITT in uncoated plates, SSC-like cell clusters and

successful homing to BM of the mouse testes
Sakib et al (33), 2019 Cell suspension from frozen-thawed ITT cultured in microwell with centrifugal force

aggregation, organoid formed at day 5
Abofoul-Azab et al (37), 2018 Cell suspension from frozen-thawed ITT cultured in methylcellulose, positive postmeiotic

germ cell marker in two samples at 15 wk
Mincheva (71), 2018 Fresh TT with spermatogonial arrest from patients with gender dysphoria, cell culture in 24-

well plates, cord-like structure formation at 3 wk
Baert et al (38), 2017 Transwell cell culture from adult and pubertal fresh TT, with or without human DTM and

agarose gel, spheroid formation at 3 wk
Pendergraft et al (32), 2017 Cell suspension from frozen-thawed adult TT propagated and seeded into hanging drop

plates with ECM, 3D organoids at 23 d
Smith (72), 2014 SSCs and somatic cells from adult TT cultured in various model setups, colonies with SSC

characteristics up to 3 wk
von Rohden. Restoring male fertility with stem cells. Fertil Steril 2024.

832 VOL. 122 NO. 5 / NOVEMBER 2024

ORIGINAL ARTICLE: ANDROLOGY



TABLE 1

Continued.

First author, y Study description

Yang et al (36), 2014 Cell suspension from fresh adult TT, cultured with RA, haploid spermatids after 7–10 d,
fertilized murine oocyte

Piravar (73), 2013 Cell suspension from fresh adult TT, floating germ cells transferred to culture in laminin-
coated dishes, germ cells maintained for 2 mo

Chen (89), 2009 Cell suspension from fetal ITT cultured xeno-free on hESC-derived fibroblast-like cells,
maintained germ cells for 2 mo

Lee et al (57), 2006 Cell suspension cultured from fresh adult TT, encapsulated in calcium alginate, some
haploid cells with oocyte cleaving ability at 6 wk

Organotypic tissue culture
Aden (74), 2023 2–4-mm3 ITT pieces cultured on agarose gel, gas-liquid interface, germ cell survival for 3

wk, spermatogonia most advanced cell type
Younis et al (43), 2023 1-mm-diameter prepubertal and peripubertal ITT cultured at gas-liquid interface,

maintained for 32 d, spermatocytes detected
Wang (61), 2022 1–1.5-mm3 frozen-thawed ITT cultured in xeno-free medium with or without added RA,

spermatocytes at 60 d
Kurek (75), 2021 A third of first-trimester gonads and 1-mm3 tissue pieces cultured on agarose gel in an air-

liquid interface, germ cells present at 14 d
Yuan et al (42), 2020 3-mm tissue fragment fetal male gonads cultured, fertilization-competent spermatids at

days 30 and 50, blastocyst formation
Portela (76), 2019 1–2-mm3 fresh or frozen-thawed TT pieces cultured at gas-liquid interphase,

spermatogonial survival for 5 wk
de Michele et al (41), 2018 1-mm3 frozen-thawed ITT pieces cultured in wells inside Millicell inserts, spermatogonia at

139 d, individual round spermatids from day 16
Medrano (91), 2018 1–2-mm3 frozen-thawed ITT cultured on agarose gel under different conditions, individual

spermatogonia at day 70
de Michele et al (39), 2017 1-mm3 frozen-thawed ITT pieces cultured in wells inside Millicell inserts, preserved tubules

at 139 d, loss but presence of spermatogonia
Perrard et al (35), 2016 20–50-mm3 seminiferous tubule pieces, adult TT, cultured in a chitosan hydrogel cylinder,

haploid spermatozoa with flagella at 34 d
Jørgensen et al (40), 2015 Hanging drop tissue culture of first-trimester whole fetal gonads with and without RA,

reduced gonocytes at 2 wk with RA
S�a (77), 2012 1-mm3 seminiferous tubule segments from fresh adult TT cultured for 28 d,maintenance of

tubule structure, round spermatids present
Germ cells from iPSCs and ESCs
Hwang et al (58), 2020 Inducing of hiPSCs into hPGC-like cells, xenogeneic mouse testis culture, primary

transitional prospermatogonia-like cells present
Xu et al (47), 2020 3-step protocol to differentiate an hESC line and hiPSC into SSC-like cells, homing ability in

mice, spermatocytes and haploid cells
Chen et al (46), 2015 HUMSCs cultured and sorted by pluripotent stem cell markers, survival at 120 d, homing in

mouse testes and differentiation
Irie (78), 2015 hESC and iPSC lines were grown on irradiated mouse embryonic fibroblasts and cultured,

resulted in hPGC-like cells
Ramathal (90), 2015 iPSC cell lines transplanted into the seminiferous tubules of mice, formation of GCLCs 8 wk

after transplantation
Sasaki (92), 2015 iPSCs from men with azoospermia and fertile men cultured and differentiated on laminin-

coated plates, hPGC-like cells formed from aggregates
Durruthy (93), 2014 mRNA-reprogrammed iPSCs transplanted into the seminiferous tubules of mice, GCLCs

generated in vivo after 8 wk, tumor formation in the testes
Ramathal (94), 2014 iPSC cell lines derived from the human skin transplanted into mice, differentiation into

GCLCs, tumor formation in the testes
Easley et al (45), 2012 hESCs and hiPSCs cultured in mouse SSC culture conditions, few acrosin-positive haploid

spermatid-like cells at 10 d
Eguizabal et al (44), 2011 hiPSC lines from keratinocytes and cord blood, cultured on human foreskin fibroblasts,

haploid germ cell-like cells of both genetic sexes
Panula (79), 2011 hiPSCs from adult and fetal somatic cells and hESCs, cultured onMatrigel-based feeder cell-

free system, postmeiotic haploid cells produced
Aflatoonian (80), 2009 Induction of spontaneous differentiation of human ESCs in culture medium, postmeiotic

spermatids at 14 d
Hua (81), 2009 Human mesenchymal stem cells from the fetal bone marrow induced for 10–15 d,

differentiation into male GCLCs
Kee (119), 2009 hESCs cultured on Matrigel with conditioned medium, haploid PGC-like cells produced

after 7 and 14 d
Park (83), 2009 hESCs and hiPSCs from human blastocysts and skin fibroblasts codifferentiated with

human fetal placenta into PGC-like cells
Barriers to clinical implementation
El Alaoui-Lasmaili et al (51), 2023 Surveys and qualitative data from patients, parents, and healthcare professionals

identifying factors affecting oncofertility discussions
von Rohden. Restoring male fertility with stem cells. Fertil Steril 2024.
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TABLE 1

Continued.

First author, y Study description

Duffin et al (50), 2023 20 centers collected data on pediatric oncofertility cases, fertility preservation was offered
to 20.5% of patients, 67.9% of those accepted

Salama et al (49), 2023 Oncofertility care in 39 centers in limited vs. optimum resource settings, presents
oncofertility best practice model to optimize care

Salama et al (48), 2021 25 leading oncofertility centers surveyed, reintroduction of malignant cells because of
contamination identified as the main safety concern

Hildorf et al (4), 2020 Assessment of parental approval rate for ITT cryopreservation in prepubertal boys, 90%
acceptance rate found

Shabani et al (52), 2018 Effect of cisplatin loaded nanoparticles vs. free drug on cocultures of SSCs and a mouse
leukemia cell line as a safety assessment

Sadri-Ardrekani et al (55), 2014 Coculture of SSCs and leukemia cells to test for malignant cell survival, leukemia cells
undetectable in the cell cultures after 26 d

Dovey et al (56), 2013 Feasibility of isolation of germ cells from leukemia cell line by FACS, SSC-like homing ability
and no tumors after xenotransplantation

Geens et al (53), 2011 In vitro cell culture of artificially contaminated SSCs, B cell presence tested by FACS, MACS,
and PCR, malignant cells were detected

Fujita et al (54), 2006 Isolation of germ cells from malignant cells by FACS; apart from one malignant cell line, no
malignant cells found in isolated germ cell fraction

Note: BM¼ basal membrane; DTM¼ decellularized testicular matrix; ECM¼ extracellular matrix; FACS¼ fluorescence-activated cell sorting; GCLC¼ germ cell-like cell; hESC¼ human embryonic
stem cell; hiPSC¼ human induced pluripotent stem cell; hPGC¼ human primordial germ cell; HUMSC¼ human umbilical mesenchymal stem cell; ITT¼ immature testis tissue; MACS¼magnetic-
activated cell sorting; mRNA¼messenger ribonucleic acid; NOA¼ nonobstructive azoospermia; OA¼ obstructive azoospermia; PCR¼ polymerase chain reaction; PGC¼ primordial germ cell; RA
¼ retinoic acid; SSC ¼ spermatogonial stem cell; 3D ¼ 3-dimensional; TT ¼ testis tissue; 2D ¼ 2-dimensional.
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transplantation of SSCs into the testes of the patient with
subsequent regeneration of spermatogenesis in situ. In the
case of former patients with cancer, there is a risk that cryo-
stored tissue may contain malignant cells, which can be re-
introduced into the patient on transplantation. To avoid this,
it is hypothesized that the SSC suspension could be cleared
of malignant cells by cell sorting or continued culturing be-
forehand. There are no trials involving human autologous
transplantation but the homing and long-term survival of
human SSCs in mouse seminiferous tubules have been suc-
cessfully demonstrated (29, 30, 60, 96). Nagano et al. (30)
demonstrated successful homing and survival of adult
testis-derived SSCs in busulfan-treated mouse testis 6
months after grafting. No differentiation of spermatogonia
occurred, and no difference between the uses of fresh and
frozen-thawed cell suspensions was observed (30). Sadri-
Ardekani et al. (29) maintained germline stem cell clusters
from an adult testis cell suspension in a long-term culture
for up to 28 weeks and showed their migration and homing
capabilities into the seminiferous tubules of busulfan-
treated immunodeficient mice. Most recently, Wang et al.
(60) explored the direct xenotransplantation of a single
cell suspension from fresh infant human testis tissue from
boys with cryptorchidism into busulfan-treated immunode-
ficient mouse testes without previous cell proliferation
in vitro. Six to 9 weeks after transplantation, no
donor-derived somatic cells were detected in the seminifer-
ous tubules, but human SSC clusters were found at the basal
membrane, demonstrating that xenotransplantation and
correct homing of SSCs are feasible from ITT (60).
In vitro strategies

Culture from cell suspension (2-dimensional/3D/organo-

id). For patients with malignant diseases, a fertility
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restoration option that avoids reintroduction of malignant
cells is full in vitro spermatogenesis for later use of
spermatozoa in connection with intracytoplasmic sperm
injection (ICSI). Furthermore, effective SSC culture systems
are the basis for successful propagation of human SSCs for
autotransplantation.

Human SSCs have been successfully cultured and
maintained in monolayer cell cultures (31) and 3D scaffold
cultures (32), via a testicular organoid formation (33), and
with the use of novel bioprinting techniques (34). Elon-
gated spermatids are, to date, the most advanced germ
cell differentiation detected in in vitro cultures but with
one report of spermatozoa formed in a patented bioreactor
culture technology (35). In 2016, Perrard et al. (35) cultured
seminiferous tubule segments from adult human testis tis-
sue in a chitosan-based cylindric hydrogel reactor for 60
days and detected morphologically mature spermatozoa af-
ter 34 days. The fresh and frozen-thawed adult testis tissue
was obtained from patients undergoing gender confirma-
tion surgery and was in an induced state of spermatogenic
arrest because of the treatment with antiandrogens (35). In
another study, functional haploid spermatids were differen-
tiated from adult patients with cryptorchidism with a mean
age of 29 years in a monolayer cell culture sustained for
up to 10 days with added retinoic acid and stem cell factor
(36). In 2017, Pendergraft et al. (32) equally generated
elongated spermatids from an SSC suspension from human
adult testis tissue, cultured on hanging drop plates with
human decellularized testicular matrix. Abofoul-Azab
et al. (37) detected postmeiotic germ cells after culturing
a cell suspension from prepubertal frozen-thawed ITT in
a 42% methylcellulose scaffold for 15 weeks.

To advance spermatogenesis in vitro, various studies have
explored the formation of testicular organoids as a scaffold
for an in vitro niche germ cell maturation. Using a cell
VOL. 122 NO. 5 / NOVEMBER 2024
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suspension from frozen-thawed prepubertal ITT, Sakib et al.
(33) demonstrated organoid formation after 5 days. The orga-
noids were generated by centrifugal force aggregation and
culture in microwell plates and showed an inside-out
arrangement of somatic and germ cells (33). By culturing
cell suspensions from adult and pubertal fresh testis tissue
with or without human decellularized testicular matrix in a
permeable cell culture insert, Baert et al. (38) demonstrated
the spheroid formation of a testicular organoid after 3 weeks
of culture. Normal seminiferous epithelial cell architecture
and function and spermatogonial survival were shown. A
recent feasibility study by Robinson et al. (34) explored the
possibility of bioprinting a testis cell suspension using a bio-
ink containing collagen, alginate, and testis cell fractions into
tubular structures mimicking the testis environment. There
were viable Sertoli, Leydig, peritubular myoid, and meiotic
germ cells present after 12 days in culture, and an up-
regulation of spermatogenic genes was shown (34).

Organotypic tissue culture. In organotypic tissue culture sys-
tems, whole testis tissue fragments are cultured to maintain
the cell-cell interaction and paracrine communication be-
tween somatic cells and germ cells within the 3D architecture
of the seminiferous epithelium (61). It is hypothesized that
SSCs remaining in their natural niche have a better ability to
self-renew and differentiate (39). Organotypic cultures can
maintain SSC populations successfully using either hanging
drop (40), transwell (41), or agarose gel (42) culture setups.
Yuan et al. (42) cultured human fresh fetal male gonads
aged 12–19 weeks after conception on agarose gel for 50
days, which remarkably showed differentiation into
fertilization-competent spermatids. The embryo formed after
round spermatid injection developed to the blastocyst stage
with correct chromosome content and proven genetic paternal
contribution (42). deMichele et al. (41) previously achieved the
differentiation into round spermatids and showed an increase
in haploid germ cells from frozen-thawed prepubertal ITT
(boys aged 2–12 years). The tissue was cultured in a permeable
cell culture insert for 139 days (41). Younis et al. (43) cultured
frozen-thawed ITT from prepubertal boys aged 1–3 years for
32 days in a transwell air-liquid interface system, which re-
sulted in primary spermatocytes but no complete spermato-
genesis. Wang et al. (61) maintained frozen-thawed ITT
(derived from boys with cryptorchidism aged 6 months to
1.5 years) in a xeno-free culturing system on agarose gel for
60 days, and spermatocytes could be detected in the tissue
pieces cultured in medium enriched with retinoic acid.

Germ cells from iPSCs and ESCs. The generation of male
germ cells from iPSCs and ESCs would both avoid the
challenge of malignant cell contamination and provide an
option of fertility restoration to men who faced gonadotoxic
therapies because children but did not have ITT cryopre-
served. Despite a growing number of studies on this subject,
it is still a challenge to advance the iPSCs or ESCs further
than primordial germ cell-like cells. Eguizabal et al. (44)
and Easley et al. (45) both succeeded at generating postmei-
otic haploid germ cells from human ESCs and iPSCs in 2011
and 2012, respectively. Eguizabal et al. (44) cultured iPSCs
and ESCs from keratocytes and umbilical cord blood on hu-
VOL. 122 NO. 5 / NOVEMBER 2024
man foreskin fibroblasts and used a timed supplementation
of retinoic acid, human recombinant leukemia inhibitory
factor, and basic fibroblast growth factor. Easley et al. (45)
cultured human ESCs and human foreskin fibroblast-
derived iPSCs directly in standardized mouse SSC conditions
and produced postmeiotic spermatid-like cells expressing
unique spermatid/sperm proteins. Chen et al. (46) investi-
gated the capacity of human umbilical cord mesenchymal
stem cells to survive and differentiate in busulfan-treated
mouse testes. These cells exhibited migration patterns of
differentiating germ cells in the seminiferous tubules and
expressed germ cell markers. The germ cell-like cells survived
for 120 days, and the histologic architecture showed signs of
recovery from busulfan treatment in human umbilical cord
mesenchymal stem cell–transplanted tubules (46). Most
recently, Xu et al. (47) followed a 3-step protocol to differen-
tiate human ESCs and iPSCs into SSC-like cells. Spermatogo-
nial stem cell-like cells could be propagated in vitro for 4
months and showed a similar gene expression pattern as hu-
man GPR125þ spermatogonia from testis tissue. A small
amount of SSC-like cells could be differentiated into
acrosinþ haploid germ cells and showed homing capability
to the basal membrane when transplanted into seminiferous
tubules of busulfan-treated immunodeficient mice (47).
Barriers to clinical implementation

In 10 original studies, barriers to clinical implementation of
male fertility restoration strategies from ITT were evaluated.
The Repro-Can-OPEN II study reports on oncofertility pro-
grams in optimal healthcare settings globally with a focus
on rating the implementation of fertility-protective measures
and the use of cryopreservation of testis tissue (48). The
Repro-Can-OPEN I and II study recently surveyed 39 oncofer-
tility centers in limited and optimal resource settings and
found a frequent use of fertility-protective measures during
treatment but an insufficient use of ITT cryopreservation
(49). An ongoing national audit by the Children’s Cancer
and Leukaemia Group found that across six centers with
273 male patients with childhood cancer across the United
Kingdom, oncofertility care was discussed only in 66% of
cases and fertility preservation was offered to 21% of the
patients (50). The acceptance rate for ITT cryopreservation,
however, was 68% (50). Another study among Danish boys
with cryptorchidism and a high risk of infertility showed a
90% parental acceptance rate of ITT cryopreservation offered
before the planned orchidopexy procedure (4). The lack of
robust clinical systems for oncofertility discussions and ITT
cryopreservation appears to be an additional barrier to
clinical implementation despite evidence for a high parental
acceptance rate when offered. With lack of time due to
severity of disease or religious beliefs identified as inflexible
barriers, both the implementation of professional training
for healthcare providers and the systematic psychological
support of the families have been identified as potential stra-
tegies to better facilitate oncofertility care discussions (51).

The Repro-Can-OPEN studies characterized the reintro-
duction of malignant cells from the cryopreserved ITT as the
main barrier to clinical implementation. Six original articles
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were identified investigating this challenge (51–56). The
studies were mostly using different cell markers and matrix
adhesion in combination with advanced fluorescence-
activated cell sorting or magnetic-activated cell sorting tech-
niques. However, these techniques are not successful at
removing malignant cells entirely. An SSC culturing protocol
has been piloted that could potentially produce a cancer-free
SSC suspension with viable SSCs, sorting leukemia cells from
healthy testis cells within 20–26 days (55). The use of nano-
particles to deliver targeted chemotherapy to leukemia cells
may be a promising approach for decontamination of cell sus-
pensions; however, the study failed at fully removing malig-
nant cells from an SSC culture (52).
DISCUSSION
In this scoping review, 62 studies investigating stem cell–
based strategies for male fertility restoration and 10 studies
evaluating barriers to clinical implementation were identified.
From animal models, we have learned that fertility can be
restored after autologous engraftment of testis tissue, with
successful engraftment of cryopreserved and thawed ITT re-
sulting in live-born offspring in mice (97) Also in nonhuman
primates, Fayomi et al. (98) provided the proof-of-principle
for complete spermatogenesis after autologous engraftment
of cryopreserved ITT resulting in healthy offspring after
ICSI. A first-in-human feasibility study showed successful
graft survival (59); however, it remains to be shown whether
autologous engraftment supporting full spermatogenesis is
translatable to a clinical setting (49). Studies investigating
xenografting of adult human testis tissue and ITT into mice
have shown heterogeneous surgical techniques and different
methods of reporting on both spermatogonial survival and tu-
bule integrity, which makes it difficult to compare results. The
optimal graft size, graft location, surgical technique, hormon-
al environment, and grafting time remain unknown and are
continuously being discussed (16). We found from studies
in primates that grafting ITT subcutaneously under the back
skin or the skin of the shoulder or forearm, as well as under
the scrotal skin, can support successful graft survival (99–
101). The surgical fixation of the testis tissue pieces may
trigger local angiogenesis (59, 98). However, this has been
difficult to test in mice because of size but could be shown
in one human case (59) and a study performed in rhesus
macaques (98) resulting in mature spermatozoa and healthy
offspring. Foresta et al. (102) demonstrated the
improvement of Sertoli cell function by suppression of high
endogenous FSH levels in men with azoospermia; therefore,
it could be hypothesized that the mimicking of a pubertal
hormonal environment leading to maturation of Sertoli
cells may support spermatogenesis after engraftment (16).
Lastly, the time needed for maturation of germ cells after
engraftment of ITT cryopreserved in different stages of
immaturity is unknown, with studies in primates explanting
tissue between 6 and 17 months after engraftment with
promising results (98–101). There may only be a narrow
window for extraction of spermatozoa successfully formed
in engrafted tissue pieces before reabsorption because of a
lack of connection to the natural ejaculatory system.
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The autologous transplantation of propagated SSCs into
the rete testis is the only strategy that may permanently
restore fertility and facilitate natural conception (103). How-
ever, the possibility for reintroduction of malignant cells (16,
104) and the lack of knowledge about potential genetic and
epigenetic changes because of the cell culturing process
pose a challenge that still needs to be addressed (105–107).
Because of the small numbers of SSCs present in ITT, this
strategy relies on the development of safe and effective SSC
propagation systems (96). Meanwhile, because of the large
regenerative potential of SSCs from ITT, it has been
suggested that a relatively low number of SSCs are
sufficient to repopulate the niche in the seminiferous
tubules when using this tissue (108).

Culture of SSCs with full in vitro maturation of human
SSCs could provide functional spermatozoa for ICSI and
would have the benefit of avoiding potential reintroduction
of malignant cells (104). It would also avoid additional surgi-
cal procedures and, thereby, potential surgical complications.
Spermatogonial stem cell cultures may also provide an effec-
tive way to increase SSC numbers from small ITT biopsies for
potential autotransplantation (96).

In 2011, Sato et al. (109) succeeded with the first complete
in vitro spermatogenesis from prepubertal mouse testis tissue
leading to healthy offspring, providing proof-of-concept of
this approach. Meanwhile, in vitro strategies still face a num-
ber of challenges—including the lack of knowledge about ge-
netic and epigenetic changes and how to successfully recreate
the testicular microenvironment and keep tissue viable in or-
ganotypic culture (110)—that need to be addressed before the
clinical advancement to human trials is safe and feasible. In
2016, Perrard et al. (35) reported the full differentiation of hu-
man male germ cells. These results could not be reproduced to
date; thus, despite singular evidence of full in vitro spermato-
genesis, we are still lacking robust and reproducible condi-
tions for successful full germ cell differentiation to mature,
functional spermatozoa in vitro. Few studies have been able
to advance in vitro spermatogenesis to postmeiotic sperma-
tids (32, 36, 42, 57); however, because of a lack of proven
genomic and epigenetic stability and fertilization trials in a
xeno-free setup, it is difficult to translate the current methods
into a clinical setting. In addition, despite recent efforts to
characterize human SSCs more effectively (111, 112), to
date, neither molecular markers on protein level nor specific
genetic profiles are identified that can specifically determine
all human SSCs (103). New technologies are emerging using
microfluidic tissue culture systems, mimicking the physiolog-
ical conditions with a continuous flow of culture medium and
applying them to various setups, such as the testis-on-chip
platform (113, 114). Studies using this technology have
been able to support SSCs and spermatogenesis up to an elon-
gated spermatid stage from mouse testis tissue (113, 114).
Ethical considerations and barriers to clinical
implementation

Despite continuous dissemination and discussion of research
and publication of clinical guidelines, the clinical practice
within male fertility preservation and restoration is
VOL. 122 NO. 5 / NOVEMBER 2024
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heterogeneous even among centers that provide cryopreser-
vation of ITT, and this poses a barrier to a consistent and ubiq-
uitous implementation of the available strategies for fertility
preservation and restoration (49, 115, 116). Although ITT
cryopreservation is being increasingly implemented, a recent
review highlighted the heterogeneity of freezing protocols
used, size of tissue fragments frozen, cryoprotectant used,
freezing rate, and tissue assessment (117), emphasizing that
fertility preservation in males is still experimental and there
are not yet sufficient data to establish consensus (107).
Another step forward is the wide-ranging agreement on and
dissemination of guidelines across pediatric oncology depart-
ments and collaborating reproductive laboratories. A multi-
disciplinary team approach to ensure both continuity of
care and access to testis tissue for vital research has been pre-
viously suggested (118). The collaboration within groups such
as the PanCareLIFE Consortium (5), International Late Effects
of Childhood Cancer Guideline Harmonization Group (119),
and ORCHID-NET (https://www.orchid-net.com/, accessed
November 23, 2023) is essential for reaching a scientific
consensus and for publishing, implementing, and evaluating
robust clinical guidelines for male fertility preservation and
restoration.

The main safety concern in patients with cancer and,
thereby, the barrier to advancing autologous engraftment of
cryopreserved ITT to clinical trials is the risk of reintroducing
malignant cells because of contaminated tissue leading to
recurrence of cancer (103, 120–122). Hematologic cancers
such as leukemia and lymphomas as well as testis cancer
appear to be posing the highest risk (123–127), whereas
solid tumors are rarely suspected to cause testicular
malignant cell infiltration in a pediatric population.
FIGURE 3

Overview of the current challenges of male fertility restoration and sug
spermatogonial stem cell.
von Rohden. Restoring male fertility with stem cells. Fertil Steril 2024.
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However, there were several reported cases of testicular
involvement of pediatric neuroblastoma (127),
rhabdomyosarcoma (128), and Wilm tumors
(nephroblastoma) (129, 130). Kourta et al. (120) reported a
high variability in testicular malignant cell infiltration in
pediatric patients with leukemia and lymphoma (21%–

100% and 15%–50%, respectively), which can be attributed
to the extremely heterogeneous populations and detection
methods of the 15 included studies. Here, the use of
decontaminated human SSC suspensions may be a
promising approach but is still showing an insufficiently
robust safety profile (53, 54, 56). All identified studies on
removing malignant cells from SSC cultures were performed
on artificially contaminated cell lines; thus, the clinical
applicability remains to be shown, especially due to vastly
different cell-cell interactions with malignant cells in vivo
(120). No strategy for decontaminating cryopreserved ITT
for autotransplantation has been suggested yet. Figure 3
shows an overview of the current challenges of male fertility
restoration and suggested focus in future studies.

Advancing in vitro spermatogenesis from iPSCs or ESCs
could be another safe option for fertility restoration in men
with a previous cancer disease with a high risk of malignant
cell contamination of the ITT as soon as the technology has
advanced further and proven safe regarding genetic and
epigenetic aberration risks (46, 47, 58).

Autotransplantation of testis tissue or testis cell suspen-
sions from patients with cancer should be considered care-
fully because of the risk of reintroducing malignant cells.
Meanwhile, the first human male has, with no previous his-
tory of malignant disease, recently been successfully auto-
transplanted with frozen-thawed testis tissue (59). This is a
gested focus in future studies. ITT ¼ immature testis tissue; SSC ¼
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milestone that has been reached, proving that adult testis tis-
sue can survive freezing, thawing, and autotransplantation,
suggesting a great potential for transplantation of ITT. From
the different approaches reviewed here, autotransplantation
of ITT is the most promising next step in male fertility resto-
ration. The global male fertility preservation network,
ORCHID-NET, has published that 11 centers worldwide are
planning to transplant ITT, four of these already have the
ethical approvals in place, and several others plan to request
ethical approval (15), suggesting that we will soon see the first
cases of human ITT transplantations (59).

The lack of additional databases and sources for evi-
dence in the search strategy poses a potential limitation
to this study. Because of the wide scope of sources of evi-
dence, we decided to limit the included studies to publica-
tion in English. Additionally, the full-text screening and
assessment for relevance were not conducted by two inves-
tigators independently, which would strengthen this study
when reproduced.
CONCLUSION
Male fertility restoration is a rapidly transforming field with
new evolving technologies and a recent substantial advance-
ment with the first proof-of-principle study of testis tissue
engraftment in a human male. A broad range of studies on
in vitro and in vivo stem cell–based strategies for male
fertility restoration demonstrated significant advancements.
However, lack of standardized outcomes and reporting tools,
heterogeneous source tissue material, risk of reintroduction of
malignant cells, and unresolved challenge of definite identi-
fication of SSCs in vitro are still challenging clinical imple-
mentation. After assessment of the currently available
reports, autologous engraftment of cryopreserved and thawed
testis tissue appears to be the most promising strategy for
male fertility restoration and is likely close to the first human
experimental clinical trials. Testis tissue has been cryopre-
served from >3,000 boys aged <18 years worldwide (15),
and it is now a collective task to team up, improve interdisci-
plinary efforts, and share knowledge across countries for es-
tablishing evidence-based robust guidelines for clinical male
fertility preservation and restoration.
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Restauraci�on de la fertilidad masculina: estrategias in vivo e in vitro basadas en c�elulas madre usando tejido testicular criopreservado:
una revisi�on exploratoria

Importancia: Los avances en el tratamiento del c�ancer infantil hanmejorado significativamente las tasas de supervivencia, conm�as del
80% de los supervivientes alcanzando la edad adulta. Sin embargo, los tratamientos oncol�ogicos gonadot�oxicos ponen en peligro la
fertilidad posterior y los varones prep�uberes no tienen la opci�on de preservar su fertilidad mediante criopreservaci�on de semen. Adem�as,
los ni~nos con criptorquidismo corren el riesgo de ver comprometida su fertilidad en la edad adulta.

Objetivo: Se realiz�o una revisi�on exploratoria para investigar la evidencia actual sobre estrategias de restauraci�on de fertilidad
masculina, explorar barreras para su implementaci�on clínica y detallar los posibles pasos para superar dichas barreras. Esta síntesis
del conocimiento es particularmente relevante para varones prep�uberes supervivientes de c�ancer y para ni~nos con criptorquidismo.

Revisi�on de la evidencia: La revisi�on se llev�o a cabo seg�un los criterios de la Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extensi�on for Scoping Reviews y directrices publicadas anteriormente y evalu�o estudios que usaron tejido testicular
humano de ni~nos prep�uberes o de varones adultos sanos. Se realiz�o una b�usqueda de literatura en PubMed y fueron identificados
72 estudios relevantes, incluyendo enfoques in vivo e in vitro.

Hallazgos: Las estrategias in vivo, tales como el injerto de tejido testicular y el trasplante de c�elulas madre espermatogoniales, son
prometedoras como promotoras de la supervivencia y diferenciaci�on celular. Sin embargo, la espermatog�enesis completa no ha sido
lograda hasta ahora. Las estrategias in vitro est�an enfocadas en la generaci�on de c�elulas germinales masculinas a partir de una
maduraci�on directa de c�elulas madre en diversos sistemas de cultivo, acompa~nadas de c�elulas madre pluripotenciales inducidas
humanas y c�elulas madre embrionarias. Estos enfoques representan avances significativos en el entendimiento y la promoci�on de la
espermatog�enesis, pero lograr espermatozoides plenamente funcionales in vitro contin�ua siendo un desafío. Las barreras a la
implementaci�on clínica incluyen el riesgo de reintroducci�on de c�elulas malignas y al introducci�on de cambios epigen�eticos.

Conclusi�on: La restauraci�on de la fertilidad masculina es un �area en r�apido desarrollo. Sobre la base de los estudios revisados, la
estrategia m�as prometedora para restaurar la fertilidad masculina empleando tejido testicular criopreservado es el trasplante directo
de tejido testicular.

Relevancia: Esta revisi�on identifica barreras persistentes a la implementaci�on clínica de la restauraci�on de la fertilidad masculina. Sin
embargo, el trasplante directo de tejido testicular crioconservado contin�ua representando una estrategia prometedora al borde de su
aplicaci�on clínica.
VOL. 122 NO. 5 / NOVEMBER 2024 843
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