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Autonomous UAV Volcanic Plume Sampling Based on Machine
Vision and Path Planning

Edouard G. A. Rolland1 Kasper A. R. Grøntved1 Anders Lyhne Christensen1

Matthew Watson2 Tom Richardson3

Abstract—Drones currently serve as a valuable tool for in-situ sampling of volcanic plumes, but they still involve manual piloting. In this
paper, we enable autonomous dual plume sampling by using a machine vision model to detect eruptions. When an eruption is detected,
a sampling trajectory is automatically generated to intercept the plume twice to collect comparative samples. The machine vision model
is developed by training a YOLOv8 object detection model thanks to a database of 1505 images that feature labelled plumes. The
obtained average precision value of the model’s plume class, at 90.7%, is comparable to that of state-of-the-art models for wildfire
smoke monitoring. The performance of this method is assessed using a software-in-the-loop simulation of the drone and a simulated
plume model. Although the results confirm the efficacy of using a machine vision model for triggering an onboard path-planning
algorithm, it also suggests the potential for a hybrid strategy that integrates visual servoing with our proposed path-planning approach.

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
including reprinting/republishing this material for advertising or promotional purposes, collecting new collected works for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is the pre-print version of the paper. The final ver-
sion has been published in 2024 International Conference on
Unmanned Aircraft Systems (ICUAS) and can be accessed at
10.1109/ICUAS60882.2024.10556912.

1 INTRODUCTION

The emission of ash, gas, and aerosols into the atmosphere by volca-
noes can have severe consequences for people living nearby, including
decreased air quality, contamination of drinking water systems, and
impacts on air traffic [11]. Fine airborne ash of less than 63 microns, at
high altitudes, can compromise aircraft reliability and potentially lead
to engine failure [4, 10]. Precise anticipation of plume movements is
essential to alert of potential risks and enable decision-makers to imple-
ment measures that reduce the socioeconomic impact of eruptions.

Ash dispersion can be predicted using advection-diffusion models
based on meteorological and satellite data [38]. To use these models, it
is necessary to know how the particle size distribution (PSD) evolves
within a plume over time after the eruption. The PSD of the plume
changes with the distance it travels, influenced by the wind, resulting in
a faster descent of heavier ash particles to the ground [28,36]. However,
the responsiveness of remote sensing for PSD evaluation is limited due
to the timing of satellite overpasses and varying weather conditions,
which can delay or affect the realisation of these measurements [29,43].
An alternative method using drones for in-situ and timely measurement
of the PSD evolution can overcome the limitations of satellite-based
techniques and thus increase the frequency of updating the prediction
of the volcanic ash dispersion models [36]. Drones have emerged as a
promising tool, offering new possibilities for the collection of volcanic
ash samples, which are unbiased unlike manual collection of ash from
the ground [42].

In this paper, we present a method for conducting autonomous PSD
evolution assessment using fixed-wing drones. This method involves
comparative sampling to monitor the PSD evolution of a specific plume
over time, enabling the collection of multiple PSD measurements for
analysis. In this context, Schellenberg et al. [35] introduced a path-
planning strategy that enabled the sampling of the same volcanic plume
at two separate intervals. It allows the plume to travel a distance of 5 to
15 kilometres between interceptions, thereby facilitating the collection

1UAS Drone Center, MMMI, University of Southern Denmark (SDU),
Campusvej 55, DK-5230 Odense M, {edr, kang, andc}@mmmi.sdu.dk
2School of Earth Sciences, Wills Memorial Building, University of Bristol,
Queens Road, Clifton, Bristol BS81RJ, glimw@bristol.ac.uk
3Department of Aerospace Engineering, Queens Building, University of
Bristol, University Walk, Bristol BS81TR, aetsr@bristol.ac.uk

Fig. 1. At t0 in the inertial frame, the machine vision model detects a
plume. The drone autonomously generates a trajectory to intercept it at
t1 and t2. The inertial frame is defined at the summit of the volcano.

of significant comparative data. The method, known as coordinated
plume interception (CPI), enables the drone to generate a trajectory
that takes into account anemometric conditions. The drone starts from
the first sampling point at time t1 and follows a trajectory to intercept
the plume again at time t2, as illustrated in Fig. 1. Nevertheless, the
capability of the path-planning method introduced by Schellenberg et
al. [35] to perform dual interceptions has not been confirmed through
a simulation-based approach or real-world trials. The approach fur-
thermore requires manually bringing the drone to the first sampling
point Plume(t1). Work thus needs to be done to enable the realization
of a fully autonomous dual plume sampling system. One step towards
achieving full autonomy is to enable the drone to detect and respond to
plumes in real time. Such a system would not only reduce the pilot’s
cognitive load but also enhance the robustness of comparative plume
measurements.

In this paper, we explore autonomous dual sampling of plumes using
a computer vision method. Our study makes three major contributions:
firstly, the creation of a database containing labelled images of plumes
and the summit of Volcano Fuego in Guatemala [33]. Secondly, this
database is used to train a YOLOv8 plume detection model [32], capa-
ble of identifying volcanic plumes and the volcano’s summit. Finally,
we propose applying this computer vision model to an algorithm for
autonomous path planning for the dual interception of volcanic ash
plumes. This model enables the detection of an eruption at a spe-
cific moment (denoted as t0 in Fig. 1) and then generates an ad-hoc
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dual-sampling trajectory. The performance of these methods is eval-
uated through simulations that combine the use of PX4 software in
the loop (SITL) [21] with a plume movement model. This study thus
demonstrates the possibility of combining the plume vision model
and the dual interception path-planning algorithm, offering innovative
possibilities for onboard planning and sample collection.

2 RELATED WORK

With the advent of drones, researchers now have access to a flexible and
easily deployable platform to conduct experiments in previously hard-
to-reach and unsafe locations [42]. The literature references the use of
drones as early as 2007 in the context of volcano surveillance [20]. Ex-
periments conducted with drones use both fixed-wing and multi-rotor
UAVs [5,18,44], which have been progressively integrated into volcano
monitoring protocols [39]. Scientific publications rarely, if ever, men-
tion the existence of a fully autonomous drone system from take-off
to landing that conducts in-situ sampling of volcanic plumes and has
been tested in the field. Ash sample collection is carried out using two
different strategies: the predominant method involves manual piloting
in first-person view (FPV) [9, 18, 36, 44]. Another approach also aims
to have the drone follow a fixed flight plan above the sampling area
and then hope that it enters the plume [22, 44]. Recent research com-
bines the above-mentioned approaches, with autonomous ascents and
descents, while sample collection is performed manually [35, 36, 44].
Without the ability to identify plumes, autonomous plume interception
by drone systems is simply not possible. Furthermore, to achieve au-
tonomous plume sampling, it is imperative to detect ash plumes with
high accuracy.

The visual detection of plumes is most commonly performed using
thermal infrared imagery [3, 27, 34]. In this study, however, we explore
volcanic plume detection using visible-wavelength cameras to avoid the
cost and complexity of an onboard thermal camera. Limited research
has delved into this approach, primarily utilizing images from volcano
ground monitoring stations [13, 37]. This machine vision task bears
a resemblance to the detection of smoke plumes from wildfires, an
extensively studied problem.

To detect plumes, researchers have explored methods based on the
analysis of images, relying on the examination of texture or colour
changes across image sequences to detect volcanic plumes or smoke
plumes in pictures [26,37,52]. However, these methods have limitations.
As pointed out respectively by Celik et al. [52] and Simionato et al. [37],
the colour of smoke, and its contrast with the background are not
parameters robust enough for broad application. Additionally, most of
these methods necessitate a fixed camera viewpoint incompatible with
fixed-wing drone flights.

Deep learning, particularly convolutional neural network (CNN),
offers an alternative to image analysis methods for plume detection.
The efficacy of CNNs in object classification is well-documented [14]
with studies like Frizzi et al. [8] achieving 97.9% accuracy in detect-
ing fire-related elements using a database of flame and smoke images.
Similarly, Guerrero et al. [13] trained two different CNN segmentation
architectures (U-Net and SegNet) and achieved respective accuracies
of 98.3% and 95.56% using a database containing pictures captured
by ground-based cameras around Mount Etna in Italy. CNNs are typ-
ically composed of two main blocks: the first extracts features from
images by applying multiple convolution operations, and the second
performs the classification task. It can autonomously select discrimi-
nating features for object detection, offering versatility and adaptability
to specific tasks [14,24]. The layer arrangement in a CNN is crucial for
optimal performance, necessitating architecture selection tailored to the
problem discussed in this paper. Zheng et al. [49] compared architec-
tures like EfficientDet, Faster R-CNN, YOLOv3, SSD, and advanced
CNN models for wildfire smoke detection, considering speed and ac-
curacy. EfficientDet excelled in accuracy (95.7%), while YOLOv3
offered the best speed-accuracy balance. YOLO’s accuracy in smoke
detection is also supported by other studies [47, 48]. Mukhiddinov et
al. [23] improved prediction speed and small smoke detection using
transfer learning and modified architecture based on a 6,000-image
aerial footage database.

At the beginning of 2023, Ultralytics released version 8 of YOLO,
which quickly found application in research related to wildfire and
smoke detection through surveillance cameras [40, 46]. Yandouzi et
al. [46] found YOLOv8 to offer the best accuracy-speed balance among
new machine learning models. Given its proven accuracy and low detec-
tion speed in similar applications, we have decided to use the YOLOv8
architecture for volcanic plume detection, especially considering the
computational limitations of drones where fast models are essential to
minimize latency. Though YOLO models may confuse smoke plumes
with meteorological phenomena like fog, haze, or clouds [2, 48]. To
enhance accuracy, al-Omari et al. [1] and Mukhiddinov et al. [23] sug-
gest incorporating cloud shape and size as key features. Despite these
challenges, significant results have been achieved, with Mukhiddinov
et al. [23] reporting an average precision of 73.6% for smoke plume
detection.

3 MACHINE VISION FOR PLUME & SUMMIT DETECTION

Transfer learning of a CNN requires a labelled dataset of training and
validation images. Since databases on volcanic plumes are currently
not widely available, we created a new database of annotated volcanic
plumes for this study. This database contains images of the Fuego
volcano, enabling the trained model to be fine-tuned to the environment
of Guatemala and the plumes from stratovolcanoes.

3.1 Data collection

We use data from the University of Bristol Flight Lab field study to
Guatemala, which took place from March 22 to April 3, 2019. The
drone used for these missions was a Skywalker X8, equipped with a
Pixhawk onboard computer running ArduPlane 3.7.1 and a Raspberry
Pi 3B+, for mission management and communication with the ground
station. The drone was equipped with two high-resolution cameras: a
GoPro Hero 9 for recording a ground view and another for capturing
the front view [36]. In total, 832 minutes of footage were collected
from each camera over 14 flights, averaging 59.4 minutes per flight.
We converted the raw data into pictures with a sampling rate of 1 image
every 10 seconds for the labelling.

3.2 Training and Validation Sets

In this study, we use the images from twelve flights to create the
training and validation sets. However, it is necessary to remove the
pictures that do not feature the volcano’s summit or plumes. This is
because the front-facing camera does not capture these elements during
the drone’s ascent and descent phases. The 1505 images extracted
provide a diverse representation of the plumes and summit in varying
environmental conditions, e.g. lighting, and weather. Fig. 2 presents
examples of images from these two sets.

Fig. 2. Example of images from the training and validation sets

We separate the pictures between the training and validation sets using
the common 80%–20% ratio.
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3.2.1 End-to-End Test Flight Set
The data from the two remaining flights is used to create a set that
shows two complete flights, called test flight 1 and test flight 2, from
takeoff to landing, with different weather conditions. This is done to
fully evaluate the model’s performance and prepare it for real-world
use. Test flight 1’s 214 images show clear weather conditions with
no clouds, representing optimal conditions where plumes are easily
distinguishable. Test flight 2’s 242 images feature approximately 60%
cloud cover, representing more challenging conditions for plume de-
tection. This dataset allows assessment of the model’s effectiveness
in both ideal and adverse weather scenarios, akin to real-world flight
conditions.

3.2.2 Labelling
We use Roboflow, a software for building object detection training
databases, to label the images [7]. We manually label plumes in the
images. However, it is sometimes difficult to distinguish a plume from
a cloud. In cases where doubt remains about the nature of the cloud, it
is left unlabelled.

As an additional class in the dataset, we also label the summit of
the Fuego volcano. This enables the training of the detection model to
identify this specific summit. This feature could be beneficial during
flight operations, allowing operators to quickly distinguish Fuego from
nearby peaks in an FPV video feed. To label an object, each side of the
bounding box must be tangent to the object’s contour. However, defin-
ing a closed contour for the summit of the volcano is not feasible. Thus,
to ensure consistent labelling in the database, we establish reference
points on the volcano summit that the bounding box should intersect
with, as illustrated in Fig. 3.

Fig. 3. Labelling of the volcano summit considering reference points

3.2.3 Pre-Processing
To reduce the training time, we follow the training recommendations
provided by the YOLO developers [41]: the size of each image is
reduced to the dimensions of 640×640 pixels.

Additionally, to increase the amount of training data [16, 45], we
generate new images from the existing ones by modifying their hue
variation, saturation, brightness, exposure, and introducing noise. As
a result, the training set grows from 1211 images to 3633 images. We
provide access to the database of the 1211 images through Hugging
Face [33].

3.3 Model Evaluation
To evaluate the performance of the trained model, we use intersection
over union (IOU), which is a common metric within object detection
and localisation. The IOU quantifies how well a predicted bounding
box matches the ground-truth box. A threshold value is then used to
classify the predictions as correct or incorrect. It is now possible to

quantify the number of false negatives (FN), false positives (FP), and
true positives (TP). In the context of object detection, the number of
true negatives is infinite, as any background element can be considered
a true negative [25].

The precision and recall metrics are defined as follows:

Precision =
T P

T P+FP
Recall =

T P
T P+FN

(1)

Recall is thus the true positive rate, denoting the ability of our model
to detect all plumes or the summit. Precision is the proportion of true
positives among all the instances classified as positive, thus denoting
the ability of the model to correctly detect the plumes and the summit
of the volcano [51].

The precision-recall curve, which is generated by evaluating pre-
cision and recall at various confidence thresholds, assesses average
precision (AP), and is defined as the area under the precision-recall
curve. The AP evaluates a model’s overall performance regarding
detecting a single object class. Additionally, this curve aids in select-
ing a confidence threshold regarding the user expectations in terms of
precision and recall [25].

The mean average precision (mAP) provides a comprehensive mea-
sure of a detection model’s average accuracy in detecting various kinds
of objects. In the context of this study, mAP corresponds to the mean
AP value for both the ’plume’ and ’summit’ objects [25].

3.4 Training Setup

YOLOv8 provides with various pre-trained models, allowing us to ben-
efit from transfer learning [23]. We use the YOLO-v8s model because
it strikes the best balance between detection speed and mAP [15]. The
default hyperparameters provided with YOLO-v8s are used to train the
model. Furthermore, we train the model for a maximum of 300 epochs,
with early stopping to avoid overfitting and stopping patience of 50
epochs.

The training is carried out on the Google Colab platform, which
provides access to powerful CPUs and GPUs. Specifically, the setup
used consists of an NVIDIA Tesla T4 GPU with, 4 CPUs and 25.5 GB
of RAM. After the training, the model is assessed on the validation set
to gain an overview of its general performance, thanks to the metrics
detailed above. Additionally, as a complementary assessment, the
model’s performance is also evaluated on the end-to-end test flight
dataset.

3.5 Results

The model converged after 2.7 hours of training and finished at epoch
133 though the YOLO model did not achieve significant performance
improvements after epoch 83 as shown in Fig. 4 and 5. Figure 4 presents
the bounding box regression loss, which describes how well predicted
bounding boxes capture objects [50]. We provide access to the model
weights via Hugging Face [32].

Fig. 4. Bounding box regression
loss

Fig. 5. mAP (IOU threshold – 50%)
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3.5.1 Validation Set
The results obtained are summarized in Fig. 6 and 7. We obtained an
AP value of 90.7% (at an IOU threshold of 50%) for the plume class.
These performance metrics match the work in similar domains, such as
smoke detection [23, 47].

Fig. 6. Precision-recall curve Fig. 7. Recall and precision for
plume class by confidence thresh-
old

3.5.2 End-to-End Test Flight Set
To carry on the evaluation of the performances of the model on the
test flight datasets, we need to define the confidence threshold. The
confidence threshold should be chosen based on user preference: either
to maximize recall or precision. Based on the results in Fig. 7, we chose
a confidence threshold of 41%, which yields a balance between recall
and precision. Thus, the resulting model allows for predictions on this
set, yielding the metric values presented in Table 1.

Table 1. Performance of the model on the two test flights

Test flight 1 Test flight 2
Object Summit Plume Plume
Precision 100.0% 99.1% 76.8%
Recall 92.2% 94.1% 80.3%

The summit class is not considered for test flight 2 as clouds covered
the summit in that flight. Fig. 8 and 9 show snapshots of the predictions
for the two flights.

When the sky is cloud-free, plume detection is nearly perfect (preci-
sion = 99.1% and recall = 94.1%). The values of recall and precision
decline as the weather conditions change, and it is observed that the
model considers clouds located at the periphery of the field of view
of the camera as plumes. In test flight 1, it is worth noting that the
model can detect the summit at a distance of 8 km. The video footage is
available on YouTube [30,31]. With the chosen confidence threshold, it
shows 88.0% precision and 83.6% recall, effectively detecting plumes
and summits in most instances. Despite the challenge of distinguish-
ing clouds from plumes with a standard camera, the machine learning
model’s performance is satisfactory. Even in the challenging scenario
(test flight 2), it achieves 76.8% precision and 80.3% recall. Addi-
tionally, for real-world applications, ground-station scientists could
manually validate detections, thereby reducing the impact of false posi-
tives on the mission. Our data was collected in the dry season. Thus,
we cannot assess the model’s performance under the more challenging
conditions of the wet season (fog, heavy clouds). Conducting a ded-
icated field trip to validate the model and gather additional data will
enhance dataset diversity, leading to improved model generalization
and robustness.

4 PATH PLANNING FOR AUTONOMOUS DUAL PLUME INTER-
CEPTION

Schellenberg et al.’s [35] path-planning method requires manual inter-
vention to guide the drone to the initial sampling point. Leveraging
the machine vision model, we assume that the system is now capable

Fig. 8. Plume and summit detection model output on test flight 1

Fig. 9. Plume detection model output on test flight 2

of detecting the emergence of a plume in the atmosphere. To enhance
the autonomy of the system, the model can be employed as a means of
detection to trigger the generation of an ad-hoc trajectory, as depicted in
Fig. 1. The trajectory is divided into two parts: the approach trajectory,
which enables the drone to reach the first sampling point after detec-
tion, and the CPI trajectory based on Schellenberg’s approach [35].
This CPI trajectory allows the drone to sample the plume again after a
few minutes, allowing the plume to travel several kilometres between
intercepts.

4.1 Hypothesis and Path Planning Methodology
To generate the complete dual-plume interception trajectory, we base
our method on Schellenberg’s approach and assumptions [35]. The
plume is considered as a point, and its movement is assumed to be
rectilinear and uniform, with its characteristics defined by the wind
vector. In order to generate the CPI trajectory, Schellenberg first calcu-
lates the trajectory in the wind frame: this consideration simplifies the
calculations as, in this frame of reference, the plume is stationary. To
derive the trajectory in the inertial frame, the trajectory is discretized
into waypoints. The conversion is facilitated using equation 2, con-
sidering the time it takes for the drone to reach each waypoint. The
time required to reach each waypoint, denoted as twp, is determined
by considering the distance to the waypoint in the wind frame and
the drone’s speed in this frame (Va, drone’s airspeed), assumed to be
constant. [

Xwp
Ywp

]
=

[
X
Y

]
− twpWspeed

[
sinθwind
cosθwind

]
(2)

Where (Xwp,Ywp) is the waypoint coordinates within the reference
frame in meters, and corresponds to (X ,Y ) in the wind frame.

4.2 Approach Trajectory
To maximize the chance of a successful initial interception, a smooth
transition between the trajectory phases, approach, and CPI trajectory
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is essential. The challenge here is to find a method of generating a
trajectory that connects the drone’s position at the moment the plume
appears to the first sampling point P1,2 depicted in Fig. 10. This can
be achieved by aligning the drone’s heading vector (θdrone) with the
wind vector as the drone reaches the point P1,2. With this condition, the
trajectory is realized using ’Dubins Paths’ which enables the creation
of a tailored trajectory between two points in a two-dimensional space
while also considering the initial and final orientation of the tangent [6].

4.3 CPI Trajectory
Schellenberg et al. [35] proposed five different types of CPI trajectories
and ranked their relevance according to several parameters: energy
consumption, flight zone, and resistance of the trajectory to wind varia-
tions [35]. Their simulations conducted using ArduPilot SITL revealed
that a downwind circular trajectory in the wind frame yielded the best
results. When converted into the inertial frame, it results in a loop, as
shown in Fig. 1. The radius describing the circular trajectory in the
wind frame, which allows sampling the plume at t1 and t2 for comput-
ing the drone’s trajectory between Plume(t1) and Plume(t2), is detailed
in equation 3. dP1P2 denotes the distance between the two sampling
points and is a user-defined parameter.

Rwind =
dP1P2Va

2πWspeed
(3)

Figure 10 illustrates a complete dual-interception trajectory in
the wind frame, incorporating the aforementioned considerations re-
garding the approach path. The parameters employed to generate
this example include θdrone(t0) = 10◦, dP1,P2 = 5 km, θwind = 20◦,
Wspeed = 10 ms−1, and Va = 22 ms−1.

Fig. 10. Example of a dual interception trajectory in the wind frame,
triggered by the machine vision model

It is now possible to generate a complete interception trajectory
regardless of the drone’s initial position, as illustrated in Fig. 11. The
red trajectory represents a real ascent path based on Schellenberg’s
data [36] collected in Guatemala. The figure depicts the simulation of
the appearance of a plume (blue trajectory) during this ascent, detected
by the machine vision model, leading to the generation of a dual plume
trajectory (in yellow).

4.4 Simulation and Experiments
To validate the efficacy of the path-planning method, it is necessary to
assess the drone’s position in conjunction with the plume’s position
using a simulated model of each element.

4.4.1 Plume Simulation
To obtain a numerical plume model, we use the hypotheses mentioned
in Section 4.1 again. We implement the plume model using the equa-

Fig. 11. Simulation of the generation of a complete interception trajectory
- Wspeed = 10 ms−1 - θwind = 20◦ - dP1 ,P2 = 5 km and Va = 22 ms−1

tion 4, derived from Newton’s third law, to describe the plume’s move-
ment after the instant of an eruption (te).[

xplume(t)
yplume(t)

]
= (te − t) ·Wspeed

[
sin(θwind)
cos(θwind)

]
(4)

4.4.2 Drone Simulation
The execution of the generated flight path is simulated using PX4
SITL [21], the ROS2 humble robotic middleware [19], and a simulation
environment in Gazebo Ignition [17]. The PX4 model of a generic Ver-
tical Take-Off and Landing (VTOL) drone is used for the experiments,
with unlimited energy and a defined airspeed of 15 ms−1. The mission
plans’ waypoints are generated using our Python-based software and
then pushed to PX4 via QGround Control. To streamline the devel-
opment process, we created a development environment based on a
Docker container tailored for PX4, ROS2, and Gazebo development,
which has been released on GitHub [12].

4.4.3 Experimental Design
To evaluate the effectiveness of the proposed path-planning method, it is
imperative to employ a pertinent metric for identifying interceptions. In
this context, we utilize the Euclidean distance, denoted as d(t), which
measures the distance between the drone and the plume over time. This
means that for the dual interception path, d(t) will have two minima
where the drone is supposed to intercept the plume as shown in Fig. 12.
Perfect interceptions would imply d1 = d2 = 0. The tolerance for d1
and d2 is determined based on the actual diameter of plumes emitted
by the volcano.

We assess the resilience of our path-planning method under various
wind speeds (1 ms−1, 2 ms−1, 3 ms−1, 4 ms−1) and a fixed wind direc-
tion of 20◦. The initial drone position is fixed for all experiments, with
xdrone = ydrone =−2500 m, and the drone’s initial yaw points toward
the summit. The distance between points P1 and P2 is dP1,P2 = 5 km.

4.5 Results
Figure 13 presents the results for the conducted simulations, and it
is evident that none of the tested wind speeds allows for achieving a
perfect interception of the plume. The values of d1 and d2 increase as
the wind speed becomes higher. Consequently, with higher wind speeds,
the size of the intercepted plumes should also be larger. Nevertheless,
the proposed method is sensitive to the wind but provides performance
levels compatible with achieving a dual interception. We hypothesize
that this error is introduced by not considering the impact of drag in
equation 2.
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Fig. 12. d(t) for a 4 ms−1 wind speed

Fig. 13. Path planning resilience to wind variation

The simulation results thus show that the proposed path-planning
method based on machine vision triggering has the potential to enable
autonomous dual sampling of the plume. However, before deploying
our system in the field, it is essential to enhance its robustness. The
developed path-planning method relies on several strong hypotheses:
the characteristics of plume movement, the assumption of constant
wind conditions, and the capability of the machine vision model to
detect the plume right after its emergence in the atmosphere. Thus,
these assumptions might not hold in a real-world scenario, potentially
increasing the values of d1 and d2. To bridge the gap between simula-
tions and reality, and utilizing the methods developed in this paper, a
mixed approach combining path planning and visual servoing could be
pursued. In this way, the machine vision model could be used in the
pre-sampling phases as an input for a closed control loop for guiding
the drone to the plume. After sampling, the drone can follow the dual
interception trajectory and then switch back to visual servoing mode
several hundred meters ahead of the next interception.

5 CONCLUSION AND FUTURE WORK

Drones are increasingly being incorporated into volcanic monitoring
protocols and are expected to be used more frequently for in-situ sam-
pling. In this paper, we presented a novel approach for autonomous
dual-plume sampling based on machine vision triggering, enabling
the generation of an ad-hoc trajectory. We created a database of 1505
labelled images, consisting of plumes and the summit of the Fuego
Volcano in Guatemala [33]. A YOLOv8-type object detection model
was trained to detect these elements [32]. The model’s performance is

promising enough to be later embedded in a real drone system. The
obtained AP value for plume detection competes with state-of-the-art
object-detection models for fire plume detection [23, 47]. Addition-
ally, two test flights were conducted to assess the model’s performance
in real-world conditions, demonstrating its reliability. To potentially
reduce false positive detections caused by clouds, labelling and in-
corporating them into the training process could enable the model to
differentiate between clouds and plumes more effectively.

As a use case of this model, we implemented a path-planning method
for dual plume interception triggered by machine vision. The method
consistently demonstrated effective dual interception of the same plume.
Nevertheless, to enhance the system’s resilience to wind, additional
efforts should be directed towards implementing a visual servoing algo-
rithm based on our machine vision model. Moreover, from a broader
perspective, the challenge of dual interception of a linearly moving
object by a fixed-wing drone collecting comparative measurements
can be extended to domains beyond volcanology. This approach could
also be applied to track the evolution of other elements, such as oil
spills, wildfires, floods, or wildlife. Combining a dedicated machine
vision model with a predictive model of movement and a path-planning
method would allow the acquisition of comparative data.

Our immediate objectives involve evaluating the effectiveness of
the plume detection model in real flights above Fuego in Guatemala.
Conducting additional experiments in different weather conditions will
allow us to gather more diverse data, which will help improve the
dataset’s quality and subsequently train a better model. Our next objec-
tive is to develop the mixed approach in a simulated 3D environment,
enabling the implementation of visual servoing, and followed by an
end-to-end real-world experiment.

ACKNOWLEDGMENTS

This work is supported by the WildDrone MSCA Doctoral Network
funded by EU Horizon Europe under grant agreement no. 101071224,
the Innovation Fund Denmark for the project DIREC (9142-00001B),
and by the Engineering & Physical Sciences Research Council (UK)
through the CASCADE (Complex Autonomous aircraft Systems
Configuration, Analysis and Design Exploratory) programme grant
(EP/R009953/1).

REFERENCES

[1] Y. Al-Smadi, M. Alauthman, A. Al-Qerem, A. Aldweesh, R. Quaddoura,
F. Aburub, K. Mansour, and T. Alhmiedat. Early wildfire smoke detection
using different YOLO models. Machines, 11(2):246, 2023.

[2] C. Bahhar, A. Ksibi, M. Ayadi, M. M. Jamjoom, Z. Ullah, B. O. Soufiene,
and H. Sakli. Wildfire and smoke detection using staged YOLO model
and ensemble CNN. Electronics, 12(1):228, 2023.

[3] M. Bombrun, D. Jessop, A. Harris, and V. Barra. An algorithm for the
detection and characterisation of volcanic plumes using thermal camera
imagery. Journal of Volcanology and Geothermal Research, 352:26–37,
2018.

[4] W. Chen and L. Zhao. Review–volcanic ash and its influence on aircraft
engine components. Procedia Engineering, 99:795–803, 2015.

[5] G. Di Stefano, G. Romeo, A. Mazzini, A. Iarocci, S. Hadi, and S. Pelphrey.
The Lusi drone: A multidisciplinary tool to access extreme environments.
Marine and Petroleum Geology, 90:26–37, 2018. doi: 10.1016/j.marpet-
geo.2017.07.006

[6] L. E. Dubins. On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents.
American Journal of Mathematics, 79(3):497–516, 1957.

[7] B. Dwyer, J. Nelson, J. Solawetz, and et al. Roboflow, 2022. Computer
vision software.

[8] S. Frizzi, R. Kaabi, M. Bouchouicha, J.-M. Ginoux, E. Moreau, and
F. Fnaiech. Convolutional neural network for video fire and smoke de-
tection. In IECON 2016-42nd Annual Conference of the IEEE Industrial
Electronics Society, pp. 877–882. IEEE, 2016.

[9] B. Galle, S. Arellano, N. Bobrowski, V. Conde, T. P. Fischer, G. Gerdes,
A. Gutmann, T. Hoffmann, I. Itikarai, T. Krejci, E. J. Liu, K. Mulina,
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