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Abstract: Semantic fluency impairment has been attributed to a wide range of neurocognitive and
psychiatric conditions, especially in the older population. Moderate heritability estimates on semantic
fluency were obtained from both twin and family-based studies suggesting genetic contributions
to the observed variation across individuals. Currently, effort in identifying the genetic variants
underlying the heritability estimates for this complex trait remains scarce. Using the semantic fluency
scale and genome-wide SNP genotype data from the Long Life Family Study (LLFS), we performed
a genome-wide association study (GWAS) and epistasis network analysis on semantic fluency in
2289 individuals aged over 60 years from the American LLFS cohorts and replicated the findings
in 1129 individuals aged over 50 years from the Danish LLFS cohort. In the GWAS, two SNPs with
genome-wide significance (rs3749683, p = 2.52 × 10−8; rs880179, p = 4.83 × 10−8) mapped to the
CMYAS gene on chromosome 5 were detected. The epistasis network analysis identified five modules
as significant (4.16 × 10−5 < p < 7.35 × 10−3), of which two were replicated (p < 3.10 × 10−3). These
two modules revealed significant enrichment of tissue-specific gene expression in brain tissues and
high enrichment of GWAS catalog traits, e.g., obesity-related traits, blood pressure, chronotype,
sleep duration, and brain structure, that have been reported to associate with verbal performance
in epidemiological studies. Our results suggest high tissue specificity of genetic regulation of gene
expression in brain tissues with epistatic SNP networks functioning jointly in modifying individual
verbal ability and cognitive performance.

Keywords: semantic fluency; elderly; GWAS; epistasis; LLFS

1. Introduction

As a popular neuropsychological test, semantic fluency (also called category fluency or
free listing) measures the ability to name items from a given category, e.g., animals, during
a given time interval. Semantic fluency impairment may be attributed to a wide range of
neurocognitive and psychiatric conditions including, among others, Alzheimer’s disease,
depression, and schizophrenia. Epidemiological analyses showed that, although the effect
of sex on semantic fluency has been controversial [1–3] perhaps due to methodological
issues [4], consistent influences by age and education have been reported with a negative
effect of age, especially in late life, and a positive effect of education. To tease out the
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genetic and environmental components in the individual variation of semantic fluency, a
recent multi-cohort twin study estimated a moderate heritability (h2 < 0.5), which was not
modulated by age and education [2]. A moderate genetic contribution to semantic verbal
fluency (h2 = 0.32) was also reported in a family-based study [5].

Despite the significant genetic background, efforts to identify the underlying ge-
netic variants that contribute to semantic fluency have been very limited. As an early
effort, Krug et al. [6] tested two single-nucleotide polymorphisms (SNPs), rs3918342 and
rs1421292, in the D-amino acid oxidase activator gene (G72), a gene which has been found
to be associated with several psychiatric disorders, and found a significant correlation
between rs1421292 polymorphism and semantic verbal fluency. In another candidate gene
approach, Nicodemus et al. [7] analyzed 39 coding SNPs in candidate genes reported to
associate with language and speech. A significant association with verbal fluency was
observed for only one SNP, rs12133766 in the disrupted-in-schizophrenia-1 gene (DISC1).
Currently, only one genome-wide association study (GWAS) on semantic fluency has been
reported [8]. Despite a relatively large sample size, this family-based GWAS detected only
one significant SNP, rs72687454, in the regulating synaptic membrane exocytosis 1 gene
(RIMS1) (p = 4.7 × 10−8). The situation could imply that the genetic architecture of verbal
ability is highly polygenic with each causative SNP constituting only a small fraction of the
contributing factors, but that the epistatic interaction between SNPs may contribute to a
larger extent [9]. The detection of SNPs with minor effects requires large sample sizes to
obtain sufficient statistical power. One efficient approach to overcome the concern of statis-
tical power is by performing network-based analysis that takes epistasis, i.e., interaction
between SNPs, into account. The network-based analysis is also biologically important,
as functional dependencies between genes are a defining characteristic of gene networks
underlying quantitative traits [10].

Using a large collection of genome SNP genotype data from individuals enrolled in
the Long Life Family Study (LLFS) [11], we performed a GWAS on semantic fluency in
elderly individuals aged over 60 years to identify and assess SNPs of potential significance
using a conventional GWAS pipeline. Next, we conducted a network-based analysis of
the GWAS SNPs to construct and test SNP clusters or modules associated with semantic
fluency using the weighted interaction SNP hub (WISH) network method [12]. The large
collection of samples allowed partitioning the samples into a discovery and a replication
set for replication and validation of our findings.

2. Results
2.1. GWAS on Discovery Sample

As the first step, we performed GWAS based on the genotyped SNPs from the Ameri-
can LLFS participants. After preprocessing and quality control, a total of 1,422,288 SNPs
were available for testing. In the GWAS, we detected 2 SNPs that reached genome-wide
significance (rs3749683, p = 2.52 × 10−8; rs880179, p = 4.83 × 10−8) and 16 SNPs with
suggestive significance (5.21 × 10−7 < p < 9.65 × 10−6) (Table 1). Detailed statistics for the
74,270 SNPs with p < 0.05 can be found in Supplementary Table S1. Figure 1 displays the
Manhattan plot (Figure 1a) and QQ plot (Figure 1b) for the GWAS results. The QQ plot
shows no sign of inflation of statistical significance, indicating that GMMAT efficiently
controlled for relatedness in the pedigree structure in making statistical inference. Three
SNPs deviate from the random distribution of the diagonal line in Figure 1b; the two
genome-wide significant SNPs mentioned above (intronic SNPs) and an additional SNP
rs16877206, which are all located on chromosome 5 (Figure 1a). Moreover, most of the top
SNPs have a low maf, with a median of 0.083 for SNPs with p < 1 × 10−5 (Supplementary
Table S1).
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Table 1. GWAS result for top SNPs with p < 1 × 10−5.

SNP SCORE p Value Chromosome Position MAF Gene

rs3749683 −114.004 2.52 × 10−8 5 79095145 0.071977 CMYA5
rs880179 −110.539 4.83 × 10−8 5 79096053 0.071383 CMYA5

rs16877206 −108.272 5.21 × 10−7 5 79091514 0.080384 CMYA5
rs16902350 −104.304 2.03 × 10−6 5 35625482 0.061807 SPEF2
rs76918654 −48.855 2.58 × 10−6 6 46970372 0.01662 ADGRF1
rs57516403 −101.665 3.47 × 10−6 5 35625299 0.061793 SPEF2
rs55668426 163.768 3.78 × 10−6 1 54952406 0.227273
rs12539925 −146.186 4.39 × 10−6 7 153561830 0.17605 DPP6
rs72881480 −103.693 7.16 × 10−6 6 68202554 0.08081

rs113296667 −103.77 7.60 × 10−6 6 68232235 0.08312
rs3916441 190.202 7.71 × 10−6 5 131369241 0.484112
rs3763115 189.981 7.83 × 10−6 5 131364181 0.48029
rs6596051 189.981 7.83 × 10−6 5 131363937 0.48029
rs75336718 −81.2759 7.96 × 10−6 6 121095574 0.057109
rs62131031 132.735 7.99 × 10−6 19 48705354 0.158641 CARD8
rs4705841 189.733 8.21 × 10−6 5 131364510 0.482208
rs10811051 −183.463 8.65 × 10−6 9 18861021 0.457587 SAXO1, ADAMTSL1
rs6869247 −146.101 9.65 × 10−6 5 37986588 0.197251
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2.2. Analysis of Epistatic Networks

Before construction and testing of the epistatic networks, we first filtered SNPs accord-
ing to their GWAS p value by selecting 13,587 SNPs with p < 0.01 in accordance with the
number of SNPs suggested by the authors of WISH (10,000 to 20,000 SNPs). Following
the protocol steps suggested by the authors (see Section 4), we calculated the epistatic
interactions based on semantic fluency and display the chromosomal hotspots of epistatic
interaction in Figure 2. The figure shows that the pairwise SNP interaction is most evident
in chromosomes 21 and 22, followed by 20 and 21, 21 and 15, etc. The LD pruning identified
and removed 3317 SNPs in LD with tagging SNPs, leaving 10,270 SNPs for genome-wide
epistatic analysis. Figure 3 displays a pseudo-Manhattan plot exhibiting the sum of effect
sizes, which is the sum over the -log likelihoods of all interactions for each SNP across the
genome, plotted for the 10,270 SNPs arranged by chromosome (differentially colored for
chromosomes 1 to 22). It can be seen from the figure that many of the SNPs are highly
interactive in modulating an individual’s measurement of semantic fluency.
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Figure 3. Pseudo Manhattan plot displaying the sum of effect size (sum over the −log likelihoods) of
all interactions for each SNP across the genome for each of the 10,270 SNPs arranged by chromosome
from chromosomes 1 to 22 using different colors.

Based on SNP–SNP interaction patterns, the SNPs were clustered into 25 modules
labelled using color names (Supplementary Table S2). In consideration of multiple testing,
Table 2 presents only the top 5 modules with a p value below 0.01. Module Yellow (con-
sisting of 951 SNPs) is most significantly associated with semantic fluency with a p value
of 4.16 × 10−5, followed by module Turquoise (2085 SNPs) with p = 8.88 × 10−4, module
Black (710 SNPs) with p = 2.24 × 10−3, module Blue (1115 SNPs) with p = 6.54 × 10−3, and
a small module, Dark Gray (90 SNPs) with p = 7.35 × 10−3.

Table 2. Top 5 significant modules or networks detected with p < 0.01.

Module Names Module Size
(Number of SNPs)

Module-Trait Association
(Coefficient) p Value

Yellow 951 −4.604 4.16 × 10−5

Turquoise 2085 −3.384 8.88 × 10−4

Black 710 −3.216 2.24 × 10−3

Blue 1115 −2.445 6.54 × 10−3

Dark Gray 90 −2.256 7.35 × 10−3
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2.3. Replication

For replication purposes, we first conducted a GWAS on the Danish LLFS cohort,
which identified no genome-wide significant SNPs but 20 SNPs with suggestive significance.
Based on the distribution of the GWAS statistics, we were able to test the enrichment of
all the SNPs in each module in Table 2 for their association with semantic fluency. The
enrichment analysis was performed using the gene-set test. Two modules were successfully
replicated with p = 9.99 × 10−5 for module Turquoise, p = 3.10 × 10−3 for module Blue.
One module, module Yellow was replicated with p = 0.067. The two smallest modules
(Black and Dark Gray) were not significantly replicated.

2.4. Functional Interpretations

For the two significantly replicated modules, we moved on with functional annotations
using relevant functions provided by VEGAS2 and FUMA. SNPs in each module were
first mapped to genes and the statistical significance of each mapped gene was tested to
find a list of genes with p < 0.01. The 2085 SNPs in the Turquoise module were mapped
to 473 genes (Supplementary Table S3) among which 7 genes (CSF2, IL3, DPP6, FRMD4A,
SORCS2, ACSL6, and P4HA2-AS1) were mapped with p < 1 × 10−5. The 1115 SNPs in
the Blue module were mapped to 258 genes (Supplementary Table S4) and among them,
3 genes (ARHGEF10, TRPM3, and LRP1B) were detected with p < 1 × 10−5. Interestingly,
for most of the top significant genes, their p values were lower than the p values of the most
significant SNPs they carried, implying the enriched power by gene-based testing.

Functional interpretation of the 473 Turquoise module genes revealed significant en-
richment in up- and downregulated gene expression patterns in multiple tissues (Figure 4a).
Of the 54 tissue types included in the GTEx v8 data, 36 were found to be differentially
expressed (PBonferroni < 0.05) by genotypes of the Turquoise module genes. Interestingly,
the top significant differentially expressed tissues (mainly upregulated gene expression
patterns) were dominated by brain tissues (e.g., cortex, amygdala, basal ganglia, hypotha-
lamus, and hippocampus) that are highly relevant to cognition. Further, the Turquoise
module genes were significantly enriched in 36 of the 50 GWAS catalog traits (adjusted
p-value < 0.05) (Figure 4b, Supplementary Table S5) topped by obesity-related traits
(p = 2.57 × 10−11), systolic blood pressure (p = 3.95 × 10−9), chronotype (p = 1.57 × 10−8),
cognitive decline rate in late mild cognitive impairment (2.10 × 10−7), and adult body
size (p = 8.42 × 10−7). Likewise, functional interpretation of the 258 Blue module genes
also identified significant enrichment (PBonferroni < 0.05) in up- and downregulated gene
expression patterns by tissue types (Figure 5a). Similar to the Turquoise module, the top
significant tissues were again dominated by brain tissues. Analysis of traits in the GWAS
catalog identified 26 traits over-represented by the genes of the Blue module (Figure 5b,
Supplementary Table S6) topped by sleep duration (short sleep) (p = 7.49 × 10−12), brain
morphology (min-p) (p = 3.88 × 10−6), toenail selenium levels (p = 4.17 × 10−6), and cortical
surface area (multivariate omnibus statistic test, MOSTest) (p = 4.70 × 10−6).
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Figure 4. Significant enrichment (red colored) of tissue-specific gene expression (a) and GWAS catalog
traits (b) by genes mapped to the Turquoise module.
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3. Discussion

Using the high-resolution genome-wide SNP data available for participants in the
Long Life Family Study, we performed a GWAS- and a network-based epistatic association
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study to identify muti-locus SNP–SNP interaction effects that contribute to the observed
individual variation in semantic fluency. As shown in Figure 3, SNPs are frequently highly
interactive across the genome in making their contributions to verbal fluency, an important
phenomenon that has rarely been considered in conventional GWASs. Results from our
network analysis indicate that the epistasis approach not only improves the statistical power
of genome-wide association analysis, but also helps to discover biologically meaningful
findings to enrich our understanding of the genetics of verbal fluency performance.

In the GWAS performed using the discovery sample, two SNPs, rs3749683 and
rs880179, were detected as having genome-wide significance. Both SNPs are positioned
in or near CMYA5 (rs3749683 is an intron variant, and rs880179 a 500B downstream vari-
ant) on chromosome 5, a gene that confers risk for schizophrenia and major depressive
disorder [13,14] and cardiomyopathy [15,16]. Although our major interest is in genome-
wide epistasis analysis, the limited number of significant findings on a single SNP (gene)
level already indicates potential genetic overlap between verbal fluency and other com-
plex neuropathogenic mechanisms. Of course, this point is more clearly illustrated by
the functional interpretations of the significant modules or networks identified in the
network-based analysis.

The top two significant genes of the Turquoise module, CSF2 and IL3, are both cytokine
genes that mediate cell–cell communication in the immune system. A recent study reported
that CSF2 activity is significantly associated with memory and processing speed [17].
The study also found that plasma immune markers have an independent association
with cognition beyond what is due to traditional risk factors for cognition. Multiple
studies have consistently shown the involvement of IL3 signaling in the pathophysiology of
schizophrenia, among which Xiu et al. [18] found that IL3 may be involved in the immediate
memory deficits in the chronic phase of schizophrenia. Another top significant gene, DPP6,
is expressed in multiple regions of the brain and has been found to be multifunctional with
an additional, independent role in synapse formation and maintenance [19]. Among the
top significant genes of the Blue module, TRPM3 and LRP1B are receptor genes involved
in multiple functions such as cell activation, and cell adhesion and signaling pathways.
TRPM3 has been related to neurodevelopmental disorders [20] concerning speech/language
skills and mild-to-severe intellectual disability, while the LRP1B gene was found to be a
major risk factor in the progression to Parkinson’s disease dementia [21]. These observations
on the top genes could imply different functional profiles of the two modules in modulating
semantic verbal fluency through diverse pathways.

The GWAS catalog traits significantly enriched by genes of the Turquoise module
are topped by obesity and systolic blood pressure. Metabolic risk factors, hypertension,
and diabetes, among others, have been hypothesized to play an important role in the
pathogenesis of Alzheimer’s disease and the development of vascular dementia. Specifi-
cally, a recent study found a significant difference in performance between patients with
metabolic syndrome and controls, both in the phonetic (p < 0.01) and semantic fluency trials
(p < 0.001) [22]. For the third enriched GWAS catalog trait, chronotype, a recent study found
that in later adulthood, those who habitually get up early have better verbal skills [23].
Similar observations have been reported by Hidalgo et al. [24] and Heimola et al. [25].
As sleeping patterns have been related to obesity [26], the role of chronotype in verbal
processing can be complex or perhaps indirect. What is important here is that the reported
correlations between these traits and verbal performance are genetically modulated.

Sleep duration (short sleep) is the trait most significantly enriched by the Blue module
genes. In a large-scale twin study, Vo et al. [27] recently reported a large genetic influence on
semantic fluency and episodic memory at shorter sleep durations. Interestingly, the SNPs
and their mapped genes of the Blue module provide a molecular genetic architecture to the
estimated genetic contribution from the twin study. Among the other top GWAS catalog
traits significantly enriched by the Blue module, brain morphology, cortical surface area,
and subcortical volume are all structural features of the brain, which have been associated
with verbal fluency in developing children [28,29]. Another brain-related significant trait
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is the proportion of activated microglia (inferior temporal cortex) (Figure 5b). It has
been shown that microglial activation is already present before the onset of dementia in
populations at genetic risk of Alzheimer’s disease [30], and brains resilient to Alzheimer’s
disease display decreased microglia and astroglia activation [31]. Overall, the top GWAS
catalog traits enriched by the Blue module suggest that the module represents interactive
genetic variations that influence both structural and functional changes of the human brain
in relation to verbal processing and cognition. Other interesting traits include toenail
selenium levels and gut microbiota relative abundance, which are also reported to associate
with verbal fluency [32] and cognitive impairment [33], again suggesting a high functional
relevance of the Blue module to verbal ability.

Finally, the top significantly enriched tissue types by both the Turquoise and the Blue
modules are all dominated by genes expressed in brain tissues, e.g., cortex, amygdala,
hippocampus, and basal ganglia (Figures 4a and 5a). While these results imply involvement
of gene activity in these tissue types with verbal ability, more importantly, the results
suggest tissue specificity of genetic regulation of gene expression [34] where SNPs in the
significant modules could serve as expression quantitative trait loci (eQTLs; cis-eQTLs or
trans-eQTLs) that regulate jointly the expression pattern of multiple genes in modifying
individual verbal ability and cognitive performance. Identifying and characterizing the
complex eQTL networks call for more efforts in computational bioinformatics and multi-
omics analysis.

4. Materials and Methods
4.1. The Long Life Family Study

The LLFS is a multicenter family-based study of healthy aging and longevity with
families recruited by four study centers in New York, Boston, and Pittsburgh in the United
States, and in Denmark. Detailed description of eligibility criteria can be found else-
where [35]. A total of 539 pedigrees consisting of 4953 individuals were recruited. This
study included 2289 individuals with an age over 60 years (median age 81; 1086 males, 1203
females; 463 families) from the three American centers as the discovery sample and 1129
individuals aged >50 years (median age 65; 524 males, 605 females; 76 families) from Den-
mark for replication analysis (Table 3). The division of discovery and replication samples
took into account geographical location of participants to ensure complete independence
and reasonable sample sizes. The study approvals were obtained from the institutional
review boards at each participating institution with informed consent obtained from all
participants.

Table 3. Descriptive statistics of samples.

Discovery Sample Replication Sample

Sample size 2289 1129
Age

Median 81 65
Range 61–110 51–104

Sex
Male 1086 524

Female 1203 605
Semantic fluency

Median 17 21
Range 0–45 1–43

4.2. Semantic Fluency Measurement

The semantic or category fluency was measured by the number of animals named
in 60 s as the total score. The median score for the discovery sample was 17 (range: 0–45)
and for the replication sample 21 (range: 1–43). No significant difference in the total score
was observed between the discovery and replication samples (t-test statistic 0.024, p value
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0.98). Before statistical analysis, we applied the rank-based inverse normal transformation
(INT) to the fluency measurements to counteract departures from normality [36]. INT first
maps the sample measurements onto a probability scale using the empirical cumulative
distribution function where the observed values are replaced with fractional ranks, then
transforms the observations into Z-scores using the probit function. Currently INT is one of
the most popular approaches to achieve normally distributed traits (or normally distributed
residuals) in genetic association studies [37–39].

4.3. Genome-Wide SNP Genotyping, Preprocessing, and Quality Control

Genome-wide SNP genotype data were generated using the Illumina Omni2.5 SNP
array, a high-density array covering 2.5 million SNPs in the human genome. Quality
control was performed at the data coordinating center (Washington University, St. Louis)
and standard procedures were applied. A total of 1,901,928 SNPs were genotyped in the
discovery sample. Among them, 476,614 SNPs had minor allele frequency (maf < 0.01)
and were removed from subsequent analyses. The remaining SNPs were tested for Hardy–
Weinberg equilibrium (HWE) and we further dropped 3026 SNPs with p < 1 × 10−6

in the HWE testing. In the network analysis, SNPs were also filtered based on linkage
disequilibrium (LD) measures between a pair of SNPs within a block of SNPs sorted by
chromosomal coordinates and showing high LD (D’ or r2 ≥ 0.9), the LD blocks.

4.4. GWAS Statistical Analysis

Considering the pedigree structure in the LLFS SNP data, association with the INT-
transformed fluency levels by individual SNPs was tested using the generalized linear
mixed model (GLMM) association tests implemented in the R package GMMAT. GMMAT
fits GLMMs with covariate adjustments (here age and sex) and random effects to account
for population structure and family relatedness and performs score tests for each genetic
variant [40,41]. The R package GEMMA [42] was used to compute a genetic relationship
matrix (GRM, an empirical kinship matrix) to account for the covariance structure of
genetic relatedness in the LLFS samples, which is included in the fitting of GLMMs by
GMMAT. Genome-wide significance of SNPs was defined as p < 5 × 10−8, with p < 1 × 10−5

indicating suggestive significance.

4.5. Epistatic Network Analysis

The genome-wide epistatic network analysis was performed by applying the WISH-
R package (version 1.0) [12] using the weighted interaction SNP hub (WISH) network
method [43]. The main idea behind network analysis is to avoid the stringent thresholds
for genome-wide significance at a single SNP level in conventional GWAS, which lead to
loss of biologically relevant but statistically insignificant SNPs [44]. WISH is developed to
capture SNPs of marginally significant small effects but manifest biologically meaningful
and significant interactions with other SNPs.

Analysis of SNP-SNP interaction: The method first reduces dimensionality of the
interactive SNPs by filtering SNPs based on their GWAS p values using a desired but loose
cutoff (here p < 0.01). The selected SNPs are pruned for linkage disequilibrium (LD) by
creating blocks of input SNP genotypes based on LD (sorted by genomic coordinates and
chromosome) and selecting tagging variants in each block, with a maximum block size of
1000, and threshold of D’ ≥ 0.9. Then, a matrix of epistatic correlation between all pairs of
remaining SNPs is established.

The following linear model is used for estimating interaction between two SNPs:

y = µ + βiSNPi + β jSNPj + βij
(
SNPi × SNPj

)
+ ε

where y is the phenotype of interest (here transformed fluency level), µ is the intercept,
βi and βi are the main effects of SNPs i and j, and βij represents the epistasis of the two
loci. ε is the random residual effect. The genotypes of SNPi and SNPj are coded as 2
(homozygote minor allele), 1 (heterozygote) or 0 (homozygote major allele). The estimated
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epistatic interactions (βij) can be visualized by the quantile values of the significance of
the interaction between chromosomes with a quantile size of 0.9. Visualization of the
chromosome pairwise relative strength of epistatic interaction ranges from 1 (strongest)
to 0 (weakest). It indicates the chromosomal hotspots for the interaction for measured
fluency levels.

Epistatic network construction and association analysis: The construction of genomic
interaction networks or modules is based on the WGCNA framework [45] using the matrix
of epistatic interactions between all pairs of filtered SNPs. This step performs hierarchical
clustering, SNP selection, and parameter selection for module construction. Thereafter,
association of each constructed module with semantic fluency is assessed by calculating
SNP module eigengene (ME) and fitting GLMMs adjusting for age, sex, and genetic related-
ness using GMMAT. Similar to the GWAS statistics, the fitting of GLMMs includes a GRM
estimated by GEMMA to account for genetic correlation in the sample. The SNPs from the
significant modules were termed as hub-SNPs and selected for further analysis.

4.6. Replication Strategy

The identified significant modules or SNP networks were replicated for their as-
sociation with semantic fluency in the independent replication sample of Danish LLFS
participants (1129 individuals). We first performed a GWAS on the Danish sample using
the same procedure and setup as for the discovery GWAS on the American LLFS partici-
pants. Then, for each module (including all SNPs in the module), we assessed its overall
association with fluency measurement using the geneSetTest() of the R package limma [46].
The function tests whether a set of SNPs is highly ranked relative to other SNPs in terms
of a given statistic (here, the score statistic from GMMAT) from the GWAS on Danish
LLFS participants. The function allows specifying the alternative hypothesis as one-sided
(positive or negative association), two-sided (either positive or negative associations), and
mixed (regardless of direction of association). Considering multiple testing, we used a
stringent threshold of p < 0.01 for the enrichment of the module SNPs in association with
semantic fluency in the replication sample to define a successful replication.

4.7. Functional Annotation of Modules

Functional annotation of SNPs in a significantly replicated module was achieved using
VEGAS2 [47] for gene-based testing and FUMA (functional mapping and annotation of
GWAS results, https://fuma.ctglab.nl, accessed on 1 February 2024), a platform developed
to annotate, prioritize, visualize, and interpret GWAS results [48]. VEGAS2 maps SNPs
of a module to genes if SNPs are within 50 kb of the 5′ and 3′ UTR of a gene (build
hg19/GRCh37). The mapped genes are then tested for statistical significance by first
converting the n SNPs’ p-values to upper tail χ2 statistics with one degree of freedom
(df) and then summing up to calculate a gene-based test statistic that would have a χ2
distribution with n degrees of freedom under the null hypothesis [47]. Significant genes
(p < 0.01) are forwarded to FUMA to obtain insight into putative biological mechanisms of
input genes using the GENE2FUNC function. Here, a competitive approach is used to test
whether the genes of a functional category (traits based on the GWAS catalog and tissue
types based on GTEx v8 RNA-seq data) are more strongly associated with semantic fluency
level than other genes using the hypergeometric test.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms25105257/s1.
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