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The nature of dark matter is a problem with too many potential solutions. We investigate whether a
consistent embedding into quantum gravity can decimate the number of solutions to the dark-matter
problem. Concretely, we focus on a hidden sector composed of a gauge field and a charged scalar, with
gauge group Uð1ÞD or SUð2ÞD. The gauge field is the dark matter candidate, if the gauge symmetry is
broken spontaneously. Phenomenological constraints on the couplings in this model arise from requiring
that the correct dark matter relic density is produced via thermal freeze-out and that recent bounds from
direct-detection experiments are respected. We find that the consistent embedding into asymptotically safe
quantum gravity gives rise to additional constraints on the couplings at the Planck scale, from which we
calculate corresponding constraints at low energy scales. We discover that phenomenological constraints
cannot be satisfied simultaneously with theoretical constraints from asymptotically safe quantum gravity,
ruling out these dark matter models.

DOI: 10.1103/PhysRevD.109.055022

I. INTRODUCTION

A. Motivation for connecting quantum gravity
and dark matter

Fundamental physics faces several profound challenges.
One is to understand the quantum nature of gravity and
another is to understand the true nature of the dark matter
(DM). At a first glance, these challenges appear unrelated,
because they are associated to very different energy scales.
Quantum gravity is typically assumed to become dynami-
cally important at energies of E ≈MPlanck ¼ 1019 GeV.
DM candidates span a huge range in masses [1–12], but
most proposals focus on energy scales far below the Planck
scale, with the typical mass scales for weakly interacting

massive particles (WIMPs) in the GeV–TeV range [13].
In this paper, we advocate that much can be learned
about both quantum gravity and DM, if we consider both
challenges simultaneously. We support this claim by
providing a concrete example.
The key idea underlying our paper is that the interplay

of quantum gravity with dark (and visible) matter1

imprints structures on and constrains the couplings of
the matter sector at the Planck scale, see [14] for a review.
The renormalization group (RG) then acts as a lever arm
that translates these structures at tiny length scales (high
energies) to structures at large length scales (low ener-
gies). Thereby, two important goals are achieved; first,
by generating predictions for the interaction structure
of dark and visible matter, the quantum gravity theory
becomes testable by current observations. Second, by
predicting the interaction structure of the DM, the huge
space of DM models is reduced and, as we will show,
phenomenologically viable DM models are ruled out on
theoretical grounds. Both goals—making quantum gravity
testable and making DM models more predictive—are
critical in order to make progress in our understanding of
our Universe.
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1In this context, by matter we refer to all fields except the
metric; i.e., gauge fields are part of the matter sector.
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This paper supports the idea that such progress can be
made, if we overcome the division between quantum-
gravity research and DM research, and consider quantum
gravity and DM together in a multiscale setup. In such a
multiscale setup, theoretical constraints at the Planck scale
are combined with phenomenological and observational
constraints at lower scales and the resulting theory of DM
and quantum gravity is significantly more predictive than a
theory of DM on its own.
In the present paper, we explore this general idea in

the context of asymptotically safe quantum gravity and
weakly interacting massive particle (WIMP) dark matter.
We have compelling evidence from cosmological and
astrophysical observations ranging from the cosmic
microwave background to dwarf galaxies [15–17] that
the majority of the matter density in the Universe is
nonbaryonic DM with no particle candidates in the
Standard Model (SM) able to account for this DM content.
The most studied DM particle candidate has been the
WIMP. However, the WIMP paradigm has become highly
challenged by the absence of expected WIMP signals in
DM particle search experiments; both direct, indirect, and
collider experiment [1,18–22]. Therefore, there is now
high motivation to study the remaining parts of the WIMP
parameter space as well as alternatives to the WIMP
paradigm and in particular new ways to constrain the vast
parameter space of such alternative paradigms.
Asymptotically safe gravity is a quantum field theory of

the metric. The problem of perturbative nonrenormalizability
is solved by an ultraviolet (UV) fixed point in the renorm-
alization group (RG) evolution of the theory. Because of the
fixed point, quantum scale symmetry is realized at trans-
Planckian scales. At the Planck scale, the theory departs
from the scale-symmetric regime along one of the relevant
perturbations of the fixed point, and gravitational couplings,
such as the Newton coupling and cosmological constant,
evolve to their measured low-energy values [23,24]. This
scenario for quantum gravity is supported by numerous
studies [23,25–62], see [14,63–67] for recent reviews,
[68,69] for books, [70–72] for lecture notes, and [73,74]
for a critical discussion of the state of the field.
The asymptotic-safety paradigm has been extended to

include the SM matter fields, see [14,75,76] for reviews.
There is robust evidence that gravity remains asymptotically
safe with the inclusion of fluctuations of Standard Model
fields [77–84]. The interplay of gravity with matter provides
a mechanism that fixes couplings in the Standard Model
from first principles [85–95]. The interplay of asymptotic
safety with scalars [96–106], fermions [107–114] and gauge
fields [80,86,88,115–117] has also been investigated sepa-
rately. Extensions beyond the Standard Model have also
been explored [118–135]. Dark matter was studied for the
first time in [118], where it was discovered that the Higgs
portal to a single, uncharged dark scalar must vanish, ruling
out this simplest WIMP candidate. Extended WIMP models

have been considered in [120–123,125,131] and axionlike
dark matter has been considered as well [127]. In the present
paper, we start from a WIMP model that is phenomeno-
logically viable, as explored in depth in [136], and inves-
tigate whether or not it is compatible with asymptotic safety.
This paper is structured as follows: In Sec. II we define the

dark matter gravity models that we explore by introducing
field content, interactions and symmetries. In Sec. III we
provide an overview of the methodology to calculate beta
functions and list the beta functions of our model. In Sec. IV
we provide the results of our analysis and present con-
clusions and an outlook in Sec. V. In the Appendix, we
provide additional details regarding the choice of gauge of
our calculation in the gravitational and the matter sector.

II. SM-GRAVITY DARK MATTER SYSTEMS:
DEFINITION OF THE MODELS

We consider two extensions of the SM coupled to
gravity; Uð1ÞD and SUð2ÞD hidden DM models with vector
DM candidates and a new SM singlet scalar S that is
charged under the dark gauge group. Schematically, the
classical gauge-fixed action for the gravity-matter dynam-
ics reads,

S ¼ Sgrav þ S0SM þ SDM: ð1Þ

For the SM subsystem, we consider the gauge interactions
of the SM gauge group Uð1ÞY × SUð2ÞL × SUð3ÞC coupled
to the quarks and leptons. In particular, for the Yukawa
sector, we consider an approximation where only the top
and bottom quarks have nonvanishing (real) Yukawa
couplings. We denote by S0SM the SM action without

the Higgs potential, and gY ¼
ffiffi
3
5

q
g1, g2 and g3 are the

respective SM gauge couplings, which are dimensionless in
four dimensions. Explicit forms and conventions for our
system are displayed in Appendix.
We first extend the Standard Model by a dark complex

scalar S charged under a Uð1ÞD gauge symmetry with gauge
boson Vμ. Explicitly, the gauge-fixed action reads [137]2

SUð1ÞDDM ¼
Z
x

�
1

4
VμνVμν þ ðDμSÞ�ðDμSÞ þ VðΦ; SÞ

�

þ 1

2ξD

Z
x̄
ð∂αVαÞ2; ð2Þ

where Vμν ¼ ∂μVν − ∂νVμ is the field-strength tensor for the
Uð1ÞD gauge field and

DμS ¼ ∂μS − igDVμS; ð3Þ

2Throughout the work we use the shorthand notations for
volume integrals of the full and background metrics, respectively,R
x ¼

R
d4x

ffiffiffi
g

p
and

R
x̄ ¼

R
d4x

ffiffiffī
g

p
.
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in which gD is the Uð1ÞD gauge coupling and Φ is the
SUð2ÞL Higgs doublet. For explicit computations, we adopt
the Landau-gauge limit, i.e., ξD → 0 and the corresponding
Faddeev-Popov ghosts only contribute to the flow of the
gravitational couplings. An additional unbroken Z2 sym-
metry is present, under which the dark vector boson trans-
forms as

Vμ ↦ −Vμ; ð4Þ

while all other fields are even. This symmetry ensures the
stability of the dark sector and prohibits a kinetic mixing
between the dark vector Vμ and the gauge field of the
hypercharge sector of the SM, i.e., a term of the form
VμνBμν, where Bμν ¼ ∂μBν − ∂νBμ.
The scalar potential supplemented by a portal interaction

with the Higgs doublet is given by [136]

VðΦ; SÞ ¼ m2
HΦ

†
iΦi þ

λH
6
ðΦ†

iΦiÞ2 þm2
SS

�S

þ λS
6
ðS�SÞ2 þ 2λpðΦ†

iΦiÞðS�SÞ; ð5Þ

where the quartic couplings λH, λS, and λp are dimension-
less in four dimensions.
The second model to be considered is the non-Abelian

SUð2ÞD extension. In this model, the DM candidate
comprises a SUð2ÞD vector triplet Va

μ with a ¼ 1, 2, 3,
alongside a complex SUð2ÞD doublet Si with i ¼ 1, 2.
Explicitly, the gauge-fixed action is given, in this case,
by [138]

SSUð2ÞDDM ¼
Z
x

�
1

4
Va
μνVa;μν þ ðDμSiÞ†ðDμSiÞ þ VðΦ; SÞ

�

þ SSUð2ÞDg:f: þ SSUð2ÞDghosts ; ð6Þ

where Va
μν ¼ ∂μVa

ν − ∂νVa
μ þ gDϵabcVb

μVc
ν is the field

strength of the SUð2ÞD gauge field and

DμSi ¼ ∂μSi − igDVa;μTa
ijSj; ð7Þ

where we use the same notation for the non-Abelian dark
gauge coupling as in the Abelian case; these couplings can
be distinguished by the context. The matrices Ta are the
generators of the SUð2ÞD dark gauge group. Gauge
symmetry forbids kinetic mixing of the DM vector triplet
Vi
μ with SM gauge fields. For this non-Abelian case,

Faddeev-Popov ghosts do not decouple in the matter sector.
In this way, the proper gauge-fixing action along with the
associated Faddeev-Popov ghost term are given by

SSUð2ÞDg:f: þ SSUð2ÞDghosts

¼ 1

2ξD

Z
x̄
ð∂μVa;μÞ2

þ
Z
x̄

�
c̄ðDÞa ∂μ∂

μcðDÞa − gDϵabcc̄
ðDÞ
a ∂αðVc

αcðDÞb Þ
�
: ð8Þ

The Landau-gauge limit is also chosen here. Similarly
to the Abelian case, the potential is chosen with the
normalization,

VðΦ; SÞ ¼ m2
HΦ

†
iΦi þ

λH
6
ðΦ†

iΦiÞ2 þm2
SS

†
i Si

þ λS
6
ðS†i SiÞ2 þ 2λpðΦ†

iΦiÞðS†i SiÞ: ð9Þ

III. BETA FUNCTIONS

A. Functional renormalization group

In the present paper, we use the functional renormaliza-
tion group (FRG) [139–141] as a tool to derive beta
functions in gravity matter systems. The key ingredient
of the FRG is the flowing action Γk, a functional that
describes the effective dynamics of Euclidean quantum
field theories after integrating out fluctuations characterized
by a momentum-scale p ¼ ðp · pÞ1=2 larger than the infra-
red cutoff k. One uses k to represent a renormalization
group scale that separates ultraviolet from infrared modes.
In practice, one introduces k by adding a regulator function
Rk to the microscopic action S, acting as a momentum-
dependent mass term that suppresses fluctuations with
momentum below k.
The flowing action Γk satisfies the flow equation,

k∂kΓk ¼
1

2
STr½ðΓð2Þ

k þRkÞ−1k∂kRk�; ð10Þ

where Γð2Þ
k is the 2-point function obtained by taking

functional derivatives of Γk with respect to fields. STr is
the supertrace, which is a trace over all indices and space-
time coordinates with appropriate signs/multiplicities in
the case of complex/fermionic fields. For more details
on the FRG and its applications in quantum gravity,
see, e.g., [142] for a recent review and [64,65,67,71] for
introductions.
One important difference between beta functions com-

puted with the FRG in comparison with perturbative
renormalization group schemes (e.g., MS-scheme) is that

the structure ðΓð2Þ
k þRkÞ−1 in the flow Eq. (10) generically

produces threshold contributions of the form ð1þmass2Þ−#
when one integrates over massive fields. Such threshold
effects automatically account for the decoupling of massive
fields at RG scales below their mass scale. This is a
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significant contrast with perturbative schemes where the
decoupling needs to be implemented by hand.
Despite being formally exact, the practical use of the

flow Eq. (10) requires some form of approximation
method. One typically uses truncation methods, where
one starts from an ansatz Γk and then projects the flow
Eq. (10) into a functional space that contains only the
operators that were already included in the original ansatz.
In this paper, we work with a truncation for both Abelian
and non-Abelian DM models, where Γk has the same
functional form as the classical actions (2) and (6),
respectively, but promoting the couplings to be dependent
on the renormalization group scale k. This truncation is
motivated by previous results that asymptotically safe
gravity can induce a near-perturbative UV completion
for matter models, see, e.g., [14] and references therein.
In such a near-perturbative setting, the above truncation is
likely to capture all relevant terms and is thus sufficient for
a first study.
For practical calculations with the FRG we need to

specify the regulator function Rk. In this paper, we choose

Rkðp2Þ ¼ ðΓð2ÞðpÞ − Γð2Þð0ÞÞrðp2=k2Þ; ð11Þ

where rðyÞ is the Litim shape function [143],

rðyÞ ¼
�
1

yα
− 1

�
θð1 − yÞ; ð12Þ

with α ¼ 1, except for spinor fields where we use α ¼ 1=2.

B. Beta functions

Using the FRG, we computed the beta functions of SM
and DM couplings including contributions due to gravita-
tional fluctuations. In this section, we present explicit
expressions for the beta function used in our analysis.
For compactness, we define the effective Newton

coupling,

Gn
ðm1;m2Þ ¼

Gn

ð1 − 2ΛÞm1ð1 − 4Λ=3Þm2
; ð13Þ

where G and Λ are the dimensionless versions of the scale-
dependent Newton coupling and cosmological constant,
respectively. For n ¼ 1, we use the notation Gðm1;m2Þ ¼
G1

ðm1;m2Þ. Some of the beta functions also depend on a

parameter ζ, which allows us to unify the results obtained
with Uð1ÞD (ζ ¼ 0) and SUð2ÞD (ζ ¼ 1) vector DM
models.
For the SM (non-)Abelian gauge couplings, we find

βgY ¼ −fggY þ 5g3Y
12π2

þ g3Y
96π2ð1þm2

HÞ4
; ð14Þ

βg2 ¼ −fgg2 −
5g32
24π2

þ g32
96π2ð1þm2

HÞ4
; ð15Þ

βg3 ¼ −fgg3 −
7g33
16π2

; ð16Þ

where fg is the gravitational contribution to the flow of
gauge couplings, see [80,86,88,90,92,94,115–117,144,145]

fg ¼
5Gð1;0Þ
9π

−
5Gð2;0Þ
18π

: ð17Þ

We note that fg is the same for all gauge couplings, which
is a consequence of gravity being “blind” to internal
symmetries.
For the gauge coupling in the dark sector, we find

βgD ¼ −fggD þ ð1 − ζ=2Þg3D
48π2ð1þm2

SÞ4
−
11ζg3D
24π2

: ð18Þ

In the Yukawa sector of the SM, we focus on the top
and bottom Yukawa couplings. The other flavors have
subleading effects in our analysis. The resulting beta
functions are

βyt ¼−fyytþ
3y3t
16π2

þ 3y3t
32π2ð1þm2

HÞ2

þ 3y2byt
16π2

−
y2byt

16π2ð1þm2
HÞ

−
y2byt

32π2ð1þm2
HÞ2

−
g2Yyt
24π2

−
3g2Yyt

128π2ð1þm2
HÞ

−
3g2Yyt

128π2ð1þm2
HÞ2

−
9g22yt

128π2ð1þm2
HÞ

−
9g22yt

128π2ð1þm2
HÞ2

−
g23yt
2π2

; ð19Þ

and

βyb ¼−fyybþ
3y3b
16π2

þ 3y3b
32π2ð1þm2

HÞ2

þ 3y2t yb
16π2

−
y2t yb

16π2ð1þm2
HÞ

−
y2t yb

32π2ð1þm2
HÞ2

þ g2Yyb
48π2

−
3g2Yyb

128π2ð1þm2
HÞ

−
3g2Yyb

128π2ð1þm2
HÞ2

−
9g22yb

128π2ð1þm2
HÞ

−
9g22yb

128π2ð1þm2
HÞ2

−
g23yb
2π2

; ð20Þ

with the flavor-independent gravitational contribution, see
[87,92,94,97,121,146]
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fy ¼ −
15Gð2;0Þ
16π

þ Gð0;1Þ
8π

−
Gð0;2Þ
48π

þ 2Gð0;2Þm4
H

3πð1þm2
HÞ2

−
2Gð0;1Þm2

H

5πð1þm2
HÞ

þ 8Gð0;1Þm2
H

15πð1þm2
HÞ2

−
2Gð0;2Þm2

H

15πð1þm2
HÞ

−
Gð0;1Þ

36πð1þm2
HÞ2

−
Gð0;2Þ

36πð1þm2
HÞ

: ð21Þ

For the Higgs and dark quartic scalar couplings, we find

βλH ¼ −fλHλH þ λ2H
4π2ð1þm2

HÞ3
−

9g22λH
32π2ð1þm2

HÞ
−

9g22λH
32π2ð1þm2

HÞ2
−

3g2YλH
32π2ð1þm2

HÞ
−

3g2YλH
32π2ð1þm2

HÞ2

þ 3ð1þ ζÞλ2p
2π2ð1þm2

SÞ3
þ 3λHy2b

4π2
þ 3λHy2t

4π2
þ 9g22g

2
Y

32π2
þ 27g42
64π2

þ 9g4Y
64π2

−
9y4b
4π2

−
9y4t
4π2

ð22Þ

and

βλS ¼ −fλSλS þ
5ð1þ ζ=5Þλ2S
24π2ð1þm2

SÞ3
þ 3λ2p
π2ð1þm2

HÞ3
−
3ð1 − ζ=4Þg2DλS
8π2ð1þm2

SÞ2
−
3ð1 − ζ=4Þg2DλS
8π2ð1þm2

SÞ
þ 9ð1 − 13ζ=16Þg4D

4π2
: ð23Þ

The gravitational contributions to the quartic scalar couplings are, see, e.g., [96,118,121,147,148]

fλH=S ¼ −
5Gð2;0Þ
2π

−
Gð0;2Þ
3π

þ FλH=Sðm2
H=SÞ; ð24Þ

with

Fλðm2Þ ¼ −
16Gð0;1Þm4

πð1þm2Þ3 −
16Gð0;2Þm4

3πð1þm2Þ2 þ
16Gð0;1Þm2

3πð1þm2Þ2 þ
8Gð0;2Þm2

3πð1þm2Þ −
Gð0;1Þ

9πð1þm2Þ2 −
Gð0;2Þ

9πð1þm2Þ

þ λ−1
�
64m4

3
G2

ð0;3Þ þ 240m4G2
ð3;0Þ −

256m6G2
ð0;2Þ

3ð1þm2Þ2 þ
1024m8G2

ð0;2Þ
3ð1þm2Þ3 þ

1024m8G2
ð0;3Þ

3ð1þm2Þ2 −
512m6G2

ð0;3Þ
3ð1þm2Þ

�
: ð25Þ

As in the gravitational contribution to the flow of the SM gauge couplings, we note that these contributions are the same for
both quartic couplings, i.e., the gravitational contribution is “blind” to internal symmetries. For the scalar portal coupling,
we find

βλp ¼ −fλpλp þ
λ2p

4π2ð1þm2
HÞ2ð1þm2

SÞ
þ λ2p
4π2ð1þm2

HÞð1þm2
SÞ2

−
9g22λp

64π2ð1þm2
HÞ

−
9g22λp

64π2ð1þm2
HÞ2

−
3ð1 − ζ=4Þg2Dλp
16π2ð1þm2

SÞ

−
3ð1 − ζ=4Þg2Dλp
16π2ð1þm2

SÞ2
−

3g2Yλp
64π2ð1þm2

HÞ
−

3g2Yλp
64π2ð1þm2

HÞ2
þ λHλp
8π2ð1þm2

HÞ3
þ ð1þ ζ=2ÞλpλS
12π2ð1þm2

SÞ3
þ 3λpy2b

8π2
þ 3λpy2t

8π2
; ð26Þ

with gravitational contribution (see [118,121])

fλp ¼ −
5Gð2;0Þ
2π

−
Gð0;2Þ
3π

−
8Gð0;1Þm4

H

3πð1þm2
HÞ3

−
16Gð0;1Þm2

Hm
2
S

3πð1þm2
HÞ2ð1þm2

SÞ
−

16Gð0;1Þm2
Hm

2
S

3πð1þm2
HÞð1þm2

SÞ2
þ 4Gð0;2Þm2

H

3πð1þm2
HÞ

−
Gð0;1Þ

18πð1þm2
HÞ2

−
Gð0;2Þ

18πð1þm2
HÞ

−
8Gð0;1Þm4

S

3πð1þm2
SÞ3

þ 8Gð0;1Þm2
S

3πð1þm2
SÞ2

−
Gð0;1Þ

18πð1þm2
SÞ2

−
16Gð0;2Þm2

Hm
2
S

3πð1þm2
HÞð1þm2

SÞ
þ 8Gð0;1Þm2

H

3πð1þm2
HÞ2

þ 4Gð0;2Þm2
S

3πð1þm2
SÞ

−
Gð0;2Þ

18πð1þm2
SÞ
þ λ−1p

�
þ
32G2

ð0;3Þm
2
Hm

2
S

9
þ 40G2

ð3;0Þm
2
Hm

2
S −

128G2
ð0;3Þm

4
Hm

2
S

9ð1þm2
HÞ

−
64G2

ð0;2Þm
4
Hm

2
S

9ð1þm2
HÞ2

þ
512G2

ð0;3Þm
4
Hm

4
S

9ð1þm2
HÞð1þm2

SÞ

þ
256G2

ð0;2Þm
4
Hm

4
S

9ð1þm2
HÞ2ð1þm2

SÞ
þ

256G2
ð0;2Þm

4
Hm

4
S

9ð1þm2
HÞð1þm2

SÞ2
−
128G2

ð0;3Þm
2
Hm

4
S

9ð1þm2
SÞ

−
64G2

ð0;2Þm
2
Hm

4
S

9ð1þm2
SÞ2

�
: ð27Þ
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There is again the same universality, i.e., those terms that
are independent of the scalar masses are exactly the same as
the first two terms in fλH=S .
Finally, by defining dimensionless versions of the Higgs

and dark mass parameters by the rescalings m2
H → k2m2

H
and m2

S → k2m2
S, their beta functions read,

βm2
H
¼ −2m2

H − fm2
H
m2

H −
9g22m

2
H

64π2ð1þm2
HÞ

−
9g22m

2
H

64π2ð1þm2
HÞ2

−
3g2Ym

2
H

64π2ð1þm2
HÞ

−
3g2Ym

2
H

64π2ð1þm2
HÞ2

þ 3m2
Hy

2
b

8π2
þ 3m2

Hy
2
t

8π2

−
9g22
64π2

−
3g2Y
64π2

−
λH

16π2ð1þm2
HÞ2

−
ð1þ ζÞλp

8π2ð1þm2
SÞ2

þ 3y2b
8π2

þ 3y2t
8π2

ð28Þ

and

βm2
S
¼ −2m2

S − fm2
S
m2

S −
ð1þ ζ=2ÞλS

24π2ð1þm2
SÞ2

−
3ð1 − ζ=4Þg2Dm2

S

16π2ð1þm2
SÞ2

−
3ð1 − ζ=4Þg2Dm2

S

16π2ð1þm2
SÞ

−
3ð1 − ζ=4Þg2D

16π2
−

λp
4π2ð1þm2

HÞ2
; ð29Þ

with gravitational contribution

fm2 ¼ −
5Gð2;0Þ
2π

−
Gð0;2Þ
3π

þ 4Gð0;2Þm4

3πð1þm2Þ2

þ 4Gð0;1Þm2

3πð1þm2Þ2 −
Gð0;1Þ

18πð1þm2Þ2

−
Gð0;2Þ

18πð1þm2Þ ð30Þ

for m2 ¼ m2
H and m2 ¼ m2

S.
Besides the gravitational contributions, the results

presented here differ from standard one-loop beta func-
tions in two ways: (i) they automatically contain threshold
effects due to a masslike regulator function; (ii) the beta
functions for the mass parameters contain terms propor-
tional to λH, λS, and λp that are nonvanishing in the limit
m2

H; m
2
S → 0.

In our analysis of this system of beta functions, we have
considered the following approximations:

(i) We setm2
H andm2

S to zero in the beta functions of the
gauge and Yukawa couplings. This approximation
allows us to integrate the flow of the gauge and

Yukawa couplings independently of the quartic
couplings and mass parameters.

(ii) We parametrize the flow of the gravitational
couplings G and Λ with a Heaviside function
according to

GðkÞ¼G�θðk−MPlÞ and ΛðkÞ¼Λ�θðk−MPlÞ;
ð31Þ

where G� and Λ� denote their fixed-point values, corre-
sponding to the zero of the gravitational beta functions
in [89]. This parametrization is a good approximation of the
flow resulting from the integration of the beta functions
in [89]. In particular, it implements the decoupling of the
gravitational contributions below the Planck scale. We note
that this decoupling is not due to true massive threshold
effects, but due to the fact that the (dimensionful) Newton
coupling is approximately constant below the Planck scale,
i.e., it is due to gravity transitioning into the classical-
gravity regime.

IV. RESULTS

A. Constraints from direct detection experiments

There are several ways of constraining DMmodels in the
IR including via direct and indirect detection, hidden
decays and from requiring the correct relic density. We
assume that the presented models account for all of dark
matter. We, thus, require a density of Ωch2 ¼ 0.120�
0.001 [15]. This requirement is satisfied on a single line in
the coupling-mass parameter space.
An overview of the constraints of the Uð1ÞD model

can be found in [136], which focuses on DM masses
MV < Oð10Þ TeV. Then, the DM mass is constrained to
around 1 TeV with a coupling 0.66 ≤ gD ≤ 0.7.
In the following section we will investigate three points

in parameter space to illustrate the general situation.
Besides one point in the phenomenologically viable
area, we also investigate two points at lower values of
the coupling, gD ¼ 0.1 and gD ¼ 0.25. Despite being
excluded due to an overproduction of the DM relic density
from thermal freeze-out according to [136], we include
them in our study to illustrate the exclusion mechanism
from asymptotic safety. Furthermore, assuming a mass of
MV ¼ 911 GeV, these parameter points are also excluded
by direct detection experiments such as XENON1T and
LZ [149,150].
For the SUð2ÞD model, there is a small unconstrained

region similar to the Uð1ÞD model for 0.7 ≤ gD ≤ 0.8.
Alternatively, one can consider the case where the coupling
is gD ≥ 2, where the model generally escapes constraints
from direct detection. Arguably this comes at the price of
departing from the perturbative regime; depending on how
heavy a DM mass one considers, the larger the mass, the
larger the coupling [136].
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B. Constraints from asymptotic safety
on Uð1ÞD dark matter

In this section, we explore asymptotically safe RG
trajectories emanating from UV fixed points obtained from
the beta functions presented in the previous section. Here,
we focus on the Uð1ÞD DM model to discover whether
asymptotically safe constraints are compatible with the
phenomenological constraints reviewed above.
We focus on fixed-point solutions with vanishing non-

Abelian gauge and bottom Yukawa couplings, i.e.,

g2;� ¼ 0; g3;� ¼ 0; and yb;� ¼ 0: ð32Þ

This choice is motivated by the following: (i) the fact that g2
and g3 are asymptotically free even without gravity;
(ii) previous studies in asymptotically safe quantum gravity
indicating that one can accommodate the IR-measured
value of yb on an RG trajectory starting from yb;� ¼0 [89],
whereas a nonzero fixed-point value of yb results in a
prediction of the ratio of the top and bottom mass [91] that
is not our focus here.
Using the beta functions reported in [89] to compute the

fixed-point values of the gravitational couplings, we find

G� ¼ 2.78 and Λ� ¼ −3.58; ð33Þ

which are obtained by setting the matter content to that of
the SM plus the Uð1ÞD DM model.
In total, there are eight fixed-point (FP) candidates

compatible with Eq. (32) and Eq. (33). In Table I, we
classify the different fixed points in terms of the signs and
(ir)relevance of gauge and Yukawa couplings.
First, we note that the fixed points with nonvanishing

gauge coupling gD [FP’s (v)–(viii), cf. Table I] lead to a
negative (unstable) scalar potential in the fixed-point
regime, i.e., at least the dark quartic scalar coupling λS
is negative at the fixed point. This is a consequence of
the signs of the g4D and g2D contributions to βλS and βm2

S
,

respectively, cf. Eq. (23) and Eq. (29). That these terms can

trigger negative quartic couplings is a generic result and
holds whenever the gravitational contribution is not too
large, see Table 1 in [151].
Similarly, the fixed point with gY;� > 0 and yt;� ¼ 0 [FP

(iv), cf. Table I] leads to negative fixed-point values for λH
and m2

H through a similar type of terms in the respective
beta functions.
In our study, we stay within a near-perturbative regime

and therefore assume that the quadratic and quartic terms
in the potential are sufficient. We further assume that the
fixed-point potential should be stable in order to yield a
well-defined path integral. Thus, we will not investigate RG
trajectories emanating from fixed-point candidates with
negative values of quartic couplings.
Second, we also disregard the fixed point (ii) in Table I.

This is motivated by previous studies in asymptotically
safe quantum gravity indicating that a fixed point with
gY;� > 0 leads to a prediction of the IR value of the
hypercharge gauge coupling that is approximately 35%
larger than the measured value [90]. The fixed-point value
here is different than in [90], because it is affected by the
dark degrees of freedom which change the gravitational
fixed-point values and therefore the fixed-point values of
matter couplings. Nevertheless, the change is not suffi-
cient to produce the correct value of the gauge coupling in
the IR. The fixed-point value of the hypercharge gauge
coupling with DM degrees of freedom is gY;� ¼ 1.143,
whereas its Planck-scale value in the Standard Model is
significantly smaller.
The remaining viable fixed points are the candidates (i)

and (iii) in Table I. We focus on the fixed point (iii), which
is the most predictive among the viable options. In
particular, we note that the Yukawa coupling corresponds
to an irrelevant direction at the fixed point (iii), which
means that one can predict its IR value as a function of
the relevant couplings. At the same time, this prediction
corresponds to an upper bound on values of the Yukawa
coupling achievable from fixed point (i). Due to this
property, we will see that by ruling out fixed point (iii) we
simultaneously rule out fixed point (i).

TABLE I. Classification of fixed-point solutions for the gauge-Higgs-top-bottom system with Uð1ÞD DM sector
with gravity. Herein, “rel” stands for relevant directions and “irrel” denotes irrelevant directions. V�ðΦ; SÞ stands for
the scalar potential evaluated at the fixed-point values of the mass parameters and quartic couplings. We note that the
fixed point (i) has a flat scalar potential, i.e., V�ðΦ; SÞ ¼ 0.

FP gD;� gY;� g2;� g3;� yt;� yb;� Stable V�ðΦ; SÞ?
i 0, rel 0, rel 0, rel 0, rel 0, rel 0, rel Yes (Flat)
ii 0, rel > 0, irrel 0, rel 0, rel > 0, irrel 0, rel Yes
iii 0, rel 0, rel 0, rel 0, rel > 0, irrel 0, rel Yes
iv 0, rel > 0, irrel 0, rel 0, rel 0, rel 0, rel No
v > 0, irrel 0, rel 0, rel 0, rel 0, rel 0, rel No
vi > 0, irrel > 0, irrel 0, rel 0, rel 0, rel 0, rel No
vii > 0, irrel 0, rel 0, rel 0, rel > 0, irrel 0, rel No
viii > 0, irrel > 0, irrel 0, rel 0, rel > 0, irrel 0, rel No
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The quartic couplings λH, λS and λp are also irrelevant at
this fixed point. Thus, their IR values are predictions of
the RG trajectories emanating from such a fixed point.
Explicitly, the fixed point (iii) is located at

gY;� ¼ 0; g2;� ¼ 0; g3;� ¼ 0; gD;� ¼ 0;

yt;� ¼ 0.20; yb;� ¼ 0;

λH;� ¼ 5.56 × 10−3; λS;� ¼ 0; λp;� ¼ 0;

ðm2
HÞ� ¼ 7.59 × 10−4; ðm2

SÞ� ¼ 0: ð34Þ

Note that the scalar potential at this fixed point is flat in the
dark scalar direction.
We obtain RG trajectories by integrating the system

of beta functions reported in the previous section with
boundary conditions corresponding to the fixed point
in (34). In the integration process, we select the RG
trajectories to match the appropriate IR values for relevant
couplings gY, g2, g3, and yb. In particular, we use their
reference one-loop values at kIR ¼ 173 GeV [152]. We
decouple the bottom Yukawa coupling by approximating
yb ≈ 0. In Table II, we summarize the IR values of the
various couplings at 173 GeV.
We investigate the three benchmark values for the Uð1ÞD

dark gauge coupling,

gDðMV ¼ 911 GeVÞ ¼ 0.10; 0.25; 0.66; ð35Þ

fixed at a phenomenologically relevant mass scale. The latter
matches the phenomenologically viable point explored
in [136].
In Fig. 1, we plot the RG trajectories for various

couplings in our model. In the first row, we show the
gauge and Yukawa couplings, which show a SM-like
behavior for the SM gauge couplings. The dark gauge

coupling is asymptotically free (which is a crucial
difference to the setting without gravity) and decreases
very slowly in the IR. The top Yukawa coupling increases
towards the IR from its fixed-point value. Its predicted
value in the IR is too low compared to measurements
[153,154]. This is different from the result in [89], where
the predicted value was compatible with experiment. The
difference between the two settings are the dark sector
degrees of freedom. These impact the top Yukawa coupling
indirectly: they change the gravitational fixed-point values,
which in turn changes the top Yukawa fixed-point value.
In the second row of Fig. 1, we show RG trajectories

corresponding to the quartic couplings λH, λS, and λp. All
quartic couplings become negative in the IR. This is caused
by gauge field fluctuations, encoded in the g4D-term in the
beta function βλS . Since the term proportional to g4D has a
positive coefficient, it drives the quartic coupling towards
negative values in the IR. In the beta functions for λH
and λp, there is a competition between positive and negative
terms. In the UV, the negative terms dominate, such that λH
and λp flow towards positive values. Further in the IR,
the positive terms in λH and λp start to dominate over the
negative ones, thus pushing λH and λp towards negative
values. The transition from positive to negative values of λH
and λp happens around k ¼ 1021 GeV. All quartic cou-
plings remain negative below this scale.
Furthermore, we have verified that the Higgs and

dark quartic couplings flow towards negative IR values
evenwhen themass parameters are excluded from the system
of RG equations. The main difference is that, in this case,
the portal coupling vanishes along the entire RG trajectory.
In the third row of Fig. 1, we plot the RG trajectories

for the dimensionless mass parametersm2
H andm2

S (see also
Fig. 2 for RG trajectories of the dimensionful mass
parameters (

ffiffiffiffiffiffiffiffiffiffi
m2

i k
2

p
with i ¼ H; S) in the IR region).

For the Higgs mass parameter, we obtain the same behavior
for all the benchmark values of the dark gauge coupling gD.
As we see, the running of m2

H oscillates between positive
and negative values. We select its IR value according to
Table II as an attempt to obtain spontaneous symmetry-
breaking in the IR. The dark mass parameter departs from
its fixed point value ðm2

SÞ� ¼ 0 towards negative values.
It remains negative all the way to the deep IR for the
benchmark values gDðk ¼ 911 GeVÞ ¼ 0.10 and gDðk ¼
911 GeVÞ ¼ 0.25. For gDðk ¼ 911 GeVÞ ¼ 0.66, m2

S
becomes positive in the IR.
The overall picture we obtain is that starting from an

asymptotically safe trans-Planckian regime one can connect
the gauge couplings to phenomenologically viable values
in the IR. There are, however, two problems with other
couplings. First, the top-quark Yukawa coupling is pre-
dicted to be significantly smaller than the measured value.
Because this prediction also serves as an upper bound for
top-Yukawa values of fixed point (i), it also puts fixed point

TABLE II. We show IR values of various couplings in the
Uð1ÞD DM model evaluated at k ¼ 173 GeV for different IR
values of gD. The label “free par.” indicates that the RG flow
allows us to choose the IR value of the corresponding coupling,
since it is a free parameter. In contrast, the label “pred.” indicates
that the IR value is a prediction of an RG trajectory with
asymptotically safe boundary condition.

IR values at k ¼ 173 GeV

Coupling gD ¼ 0.10 gD ¼ 0.25 gD ¼ 0.66

gY (free par.) 0.35 0.35 0.35
g2 (free par.) 0.65 0.65 0.65
g3 (free par.) 1.17 1.17 1.17
yt (pred.) 0.665 0.664 0.665
λH (pred.) −3.88 × 10−2 −4.15 × 10−2 −3.87 × 10−2

λS (pred.) −9.77 × 10−4 −4.27 × 10−2 −4.63 × 107

λp (pred.) −3.13 × 10−7 −2.16 × 10−6 −1.86
m2

H (free par.) −0.005 −0.005 −0.005
m2

S (free par.) −0.5 −0.5 −0.5
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(i) in tension with experiment. Second, the quartic scalar
couplings run towards negative IR values, which results in a
perturbatively unstable scalar potential.3 This is a strong

indication that the Uð1ÞD DM model explored in [136] is
incompatible with asymptotically safe quantum gravity. We
emphasize that this conclusion is not just a consequence of
the specific benchmark values used in our analysis. The
instability of the scalar potential is a general consequence
of the positive contribution involving gauge couplings to
the 4th power in the beta functions for the quartic

FIG. 1. RG trajectories of various couplings in the Uð1ÞD DM model for different IR values of the dark gauge coupling, gDðMV ¼
911 GeVÞ ¼ 0.10 (left), 0.25 (middle), and 0.66 (right panels). The top panels depict top-Yukawa and gauge couplings, where the
RG flow of the bottom-Yukawa coupling is omitted and we employ the normalization g1 ¼

ffiffiffiffiffiffiffiffi
5=3

p
gY. The middle panels illustrate

scalar couplings, with negative values (dashed lines) indicating unstable potential in both the Higgs and dark scalar directions,
posing a challenge to asymptotic safety. Finally, the bottom panels display the dimensionless mass parameters of the Higgs and the
dark scalar.

FIG. 2. RG trajectories of the dimensionful mass parameters (
ffiffiffiffiffiffiffiffiffiffi
m2

i k
2

p
with i ¼ H; S) for various IR values of the dark gauge coupling,

gDðMV ¼ 911 GeVÞ ¼ 0.10 (left), 0.25 (middle), and 0.66 (right panel).

3In our setting, we cannot exlude that a nonperturbative IR
setting may be phenomenologically viable and feature a stable
potential in the presence of higher-order terms.
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couplings. Therefore, different benchmark values of
gDðk ¼ 911 GeVÞ can change quantitative details, but
without changing our qualitative results.

C. Constraints from asymptotic safety
on SUð2ÞD dark matter

The RG flow obtained with the SUð2ÞD DM model
shares many of the features with the Uð1ÞD model dis-
cussed in the previous section. Nevertheless, there are
important differences:

(i) First, the non-Abelian dark gauge coupling gD is
asymptotically free even in the absence of gravity.
This reduces the number of fixed-point candidates,
as gD;� ¼ 0 is the only possibility of UV completion
for the non-Abelian dark gauge coupling. In this
case, the possible fixed-point candidates share the
same feature as the candidates (i)–(iv) in Table I.

(ii) Second, using the matter content of SUð2ÞD DM
model, one obtains the fixed-point valuesG� ¼ 1.88
and Λ� ¼ −2.19. At this fixed point, the value for
the cosmological constant lies outside the viable
region for UV completion of Yukawa couplings
(Λ≲ −3.3 [89]), i.e., the Yukawa couplings vanish
at the Planck scale.

In principle, one can argue that the last point already
indicates the incompatibility between the SUð2ÞD DM
model with asymptotically safe quantum gravity. However,
the fixed-point values of the gravitational couplings are
subject to large systematic uncertainties, and it is interest-
ing to explore the qualitative features of the RG flow
independently of specific values of G� and Λ�.
We thus explored RG trajectories obtained by integrating

the flow with benchmark values for G� and Λ� lying inside
the viable region for UV completion in the Yukawa sector.
We focused on trajectories with boundary conditions
corresponding to a UV fixed point with similar features
as the fixed-point candidate (iii) in Table I. The resulting
trajectories are similar to the ones obtained in the previous
section.
In particular, the RG flow drives the quartic scalar

couplings to negative values in the IR, resulting in a
perturbatively unstable scalar potential. Again, this is a
consequence of positive contributions to the beta functions
of the quartic scalar couplings that are proportional to the
gauge couplings. This result constitutes a strong indication
of the incompatibility between the SUð2ÞD DM model and
asymptotically safe quantum gravity.

V. CONCLUSION

This paper demonstrates the predictive power of asymp-
totic safety in testing concrete DM models, in this case
vector DM, which are phenomenologically not excluded.
There are a priori several ways in which asymptotic safety
can be incompatible with a given phenomenological model.

First, there might not be any asympotically safe fixed
point in the model together with quantum gravity. This is
not the case here, where, in fact, there are several fixed
points at which different subsets of the couplings are
nonzero.
Second, a fixed point can have irrelevant directions.

Each irrelevant direction generates a prediction for a
coupling (or combination of couplings) in the infrared.
These predictions may disagree with phenomenologically
allowed or experimentally measured values. This is the
case here, where the top-quark Yukawa coupling is
predicted for some fixed points (and bounded from above
by others) and comes out smaller than the value inferred
from experiment. There is, however, a caveat to ruling out
a model in this way and that caveat is due to systematic
uncertainties. These arise from the use of a truncation (and
thus the neglecting of higher-order interactions which are
generically present at an asymptotically safe fixed point
and impact the beta functions within the truncation),
but also from the use of Euclidean signature in the RG
calculations. Although attempts can be made [89,95],
these systematic uncertainties are difficult to estimate. If
we are very conservative about the size of systematic
uncertainties, ruling out the model robustly based on the
too-low value of the top-quark mass may not be possible.
If we are somewhat more optimistic about the size of
systematic uncertainties, the present paper provides an
explicit example of the idea put forward in [89]; dark
degrees of freedom change gravitational fixed-point val-
ues and thus result in changes of all predicted SM
couplings, even if the corresponding degree of freedom
(here, the top quark) is not coupled to the dark sector.
Furthermore, we emphasize that the DM models
considered in this paper are only ruled out in the near-
perturbative regime and it is in principle not excluded that
a very different strongly coupled UV completion exists
once we go beyond the approximations adopted.
Third, a model may rely on a dynamical mechanism,

with spontaneous symmetry breaking as one important
example. Whereas spontaneous symmetry breaking in
phenomenological models is usually built in by fiat by
making assumptions about the scalar potential, this is no
longer an option in an asymptotically safe setting. There,
the scalar potential at low energies arises as a combination
of the UV initial conditions from asymptotic safety with
the effect of quantum fluctuations at all scales down to
the IR. The UV initial conditions are subject to the free-
parameter count from asymptotic safety and typically only
the mass parameters remain as free parameters. At all
scales below, the contribution that arises from quantum
fluctuations is completely fixed in terms of the other
couplings in the model. In our case, these restrictions are
sufficient to rule the model out, because most fixed points
result in either perturbatively unstable or symmetry-
broken potentials in the UV. At the remaining fixed
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points, gauge fluctuations in the dark sector drive the
quartic coupling towards negative values. Because there
are no free parameters in the scalar potential that could
offset this effect, the resulting potential is not bounded
from below within the perturbative regime.
We stress that this last criterion, in contrast to the second

one, is a qualitative, not a quantitative one. Thus, it is less
sensitive to the systematic uncertainties of our study,
because it only relies on well-established, universal signs
of terms in beta functions.
Because of the qualitative and general nature of the

criterion that rules out these particular DM models, we
conjecture that vector DM models with only vectors and
scalars in the dark sector are generally not viable in
asymptotic safety in a near-perturbative regime. If fermions
are added with a large enough Yukawa coupling, they may
stabilize the scalar potential, see [120] in the context of
DM and [135] for work in the context of cosmic strings. We
highlight that exploring vector dark models beyond the
perturbative regime, where additional, canonically irrel-
evant, interactions may be relevant, is an interesting subject
for further studies.
This result adds further to the evidence that models

with a Higgs portal to the dark sector are either strongly
constrained [121,123] or fully ruled out [118] in asymptotic
safety, depending on the matter and interaction content of
the dark sector. This motivates to look elsewhere for viable
DM models. It is already known that axionlike particles
are also constrained [127], putting another popular DM
candidate under (theoretical) pressure.
We thus propose that a way towards finding viable

models of DM in asymptotic safety is to follow up on
results which show which interaction structures are generi-
cally viable in asymptotic safety. A promising candidate
could be strongly coupled fermionic sectors in which
symmetry breaking triggers the formation of massive
bound states. Such composite models with dark sectors
may fit into the asymptotic safety paradigm [155], because
it is known that (i) gravity does not trigger bound-state
formation, so that bound states less massive than the
Planck scale may be viable [87,107,109,156], (ii) gravity
generates nonvanishing four-fermion interactions which
may then be driven to criticality by a non-Abelian gauge
interaction [157] and (iii) the fermion mass parameter
generically remains a free parameter [110] so that even
in nonchiral fermion systems bound-state formation may be
achieved. If indeed composite models with dark sectors are
viable in asymptotic safety, then a dark gauge interaction is
present, but, unlike in the setting of this paper, does not
supply the dark-matter candidate itself.
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APPENDIX: GAUGE-FIXED ACTION
FOR THE SM-GRAVITY SUBSYSTEM

The gauge-fixed pure gravity sector of our truncated
flowing action is given by the Einstein-Hilbert action

Γk;grav ¼
1

16πGN

Z
x
ð2Λ̄ − RðgÞÞ

þ 1

2α

Z
x̄
ḡμνF μ½h; ḡ�F ν½h; ḡ� þ Sgravghosts; ðA1Þ

where R is the Ricci scalar and GN and Λ̄ are the
scale-dependent dimensionful Newton coupling and cos-
mological constant, respectively. Their dimensionless
counterparts are obtained through GNðkÞ ¼ k−2GðkÞ and
Λ̄ðkÞ ¼ k2ΛðkÞ.
Local coarse-graining techniques demand the introduc-

tion of a nondynamical background metric ḡμν. The (full)
metric is expanded into an Euclidean background ḡμν ¼ δμν
and a dynamical (not necessarily small) fluctuation
piece hμν as

gμν ¼ δμν þ Z1=2
h ð32πk−2GðkÞÞ1=2hμν; ðA2Þ

where Zh is the wave function renormalization factor
for the graviton hμν. The choice of a flat background is
sufficient in order to compute the RG-flow of curvature-
independent, matter couplings.
The linear gauge-fixing function is

F μ½h; ḡ� ¼
ffiffiffi
2

p
Z1=2
h

�
δαμḡνβ −

1þ β

4
δνμḡαβ

�
∇νhαβ; ðA3Þ

where α and β are gauge-fixing parameters. Here, ∇μ

stands for the spacetime covariant derivative defined with
respect to the background metric. The Landau-gauge
limit, α → 0, is adopted. The corresponding Faddeev-
Popov ghost term Sgravghosts is computed from the gauge-
fixing function F μ½h; ḡ�.
The gauge-fixed SM truncation, without the Higgs

potential, reads,
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Γ0
k;SM ¼ 1

4

Z
x
Wa

μνWa;μν þ 1

4

Z
x
BμνBμν þ SEWg:f: þ SEWghosts

þ 1

4

Z
x
Ga

μνGa;μν þ SSUð3Þg:f: þ SSUð3Þghosts

þ
X

j¼1;2;3

Z
x
iψ̄L=R

i;j =DψL=R
i;j þ Γk;Yukawa

þ
Z
x
ðDμΦiÞ†ðDμΦiÞ: ðA4Þ

Here Bμ is the hypercharge gauge field, Wa
μ are the weak

gauge fields and Aa
μ are the gluon gauge fields, with

Bμν ¼ ∂μBν − ∂νBμ, Wa
μν ¼ ∂μWa

ν − ∂νWa
μ þ g2ϵabcWb

μWc
ν

and Ga
μν ¼ ∂μAa

ν − ∂νAa
μ þ g3fabcAb

μAc
ν being their respec-

tive field-strengths. The fermionic fields ψ i;j represent
general quark qi;j and lepton li;j doublet fields, with i
being the isospin index and j labelling the generation,
ranging over the whole families of quarks and leptons of the
SM. Compactly, we have ψ i;j ¼ ðqi;j; li;jÞ. The covariant
derivative of the fermionic fields reads

Dμψ
I
i;j ¼ ∂μψ

I
i;j þ ωμψ

I
i;j − igYYBμψ

I
i;j

− ig2Wa;μTa
ikψ

I
k;j þ ig3Aμ;btbIJψ

J
i;j: ðA5Þ

The quarks live in the fundamental representation of the
color group SUð3ÞC with color indices I; J ¼ 1, 2, 3.
The matrices Ta and ta are the generators of SUð2ÞL
and SUð3ÞC, respectively. The hypercharge values Y are
assigned according to each quark and lepton generation and
their respective chiralities. The coupling of the fermionic
fields with gravity is via the so(4)-valued spin-connection
ωμ. Furthermore, the coupling of the Higgs doublet with the
EW gauge group is done via the covariant derivative

DμΦi ¼ ∂μΦi −
i
2
gYBμΦi − ig2Wa;μTa

ijΦj: ðA6Þ

The gauge-fixing and the associated Faddeev-Popov
ghost action for the EW and QCD sectors are, respectively,

SEWg:f: þSEWghosts¼
1

2ξW

Z
x̄
ð∂μWa;μÞ2þ 1

2ξB

Z
x̄
ð∂αBαÞ2

þ
Z
x̄

�
c̄ð2Þa ∂μ∂

μcð2Þa −g2ϵabcc̄
ð2Þ
a ∂αðWc

αcð2Þb Þ
�
;

ðA7Þ
SSUð3Þg:f: þ SSUð3Þghosts

¼ 1

2ξA

Z
x̄
ð∂μAa;μÞ2

×
Z
x̄

�
c̄ð3Þa ∂μ∂

μcð3Þa − g3fabcc̄
ð3Þ
a ∂αðAc

αcð3Þb Þ
�
; ðA8Þ

For the Yukawa sector, we consider an approximation
where only the top and bottom quarks have nonvanishing
(real) Yukawa couplings. The explicit action reads

Γk;Yukawa ¼
Z
x
ytðq̄Li;3ΦiqR1;3 þ q̄R1;3Φ†iqLi;3Þ

þ
Z
x
ybðq̄Li;3Φ̃iqR2;3 þ q̄R2;3Φ̃†iqLi;3Þ; ðA9Þ

where the spinorial and color indices are omitted and
Φ̃i ¼ iσij2 Φ

†
j with σ2 being the second Pauli matrix.

The third generation of the right chirality SUð2ÞL quark
doublet is explicitly given by qRi;3 ¼ ðtR; bRÞT. Moreover,
all the SM and beyond SM fields, including ghosts,
are augmented by wave function renormalization factors,
i.e., ϕSM ↦ Z1=2

SMϕSM and ϕDM ↦ Z1=2
DMϕDM.
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