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ABSTRACT
Given the counters of vehicles that traverse the roads of a traffic network, we re-
construct the travel demand that generated them expressed in terms of the number
of origin-destination trips made by users. We model the problem as a bi-level opti-
mization problem. At the inner-level, given a tentative demand, we solve a Dynamic
Traffic Assignment (DTA) problem to decide the routing of the users between their
origins and destinations. Finally, we adjust the number of trips and their origins
and destinations at the outer-level to minimize the discrepancy between the coun-
ters generated at the inner-level and the given vehicle counts measured by sensors
in the traffic network. We solve the DTA problem by employing a mesoscopic model
implemented by the traffic simulator SUMO. Thus, the outer problem becomes an
optimization problem that minimizes a black-box Objective Function (OF) deter-
mined by the results of the simulation, which is a costly computation. We study
different approaches to the outer-level problem categorized as gradient-based and
derivative-free approaches. Among the gradient-based approaches, we look at an
assignment matrix-based approach and an assignment matrix-free approach that
uses the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm.
Among the derivative-free approaches, we investigate Machine Learning (ML) al-
gorithms to learn a model of the simulator that can then be used as a surrogate
OF in the optimization problem. We compare these approaches computationally on
an artificial network. The gradient-based approaches perform the best in terms of
solution quality and computational requirements. In contrast, the results obtained
by the ML approach are currently less satisfactory but provide an interesting avenue
for future research.

KEYWORDS
Bi-level optimization; Dynamic origin-destination matrix estimation; Dynamic
traffic assignment; Simulation-based optimization

1. Introduction

Traffic on the road networks of urban areas is continuously increasing. Municipalities
can act on the infrastructure to keep high mobility standards, modifying it to avoid
congestion and ensure reliability. Therefore, there is an urge to provide decision-makers
with tools to make informed decisions. For this purpose, traffic simulation software
has been developed to assess different planning scenarios. To use these simulators,
the network supply, and the travel demand must be known with some certainty. The
network supply is, in general, defined as the maximum number of vehicles the network
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road infrastructure can handle at a given time. In contrast, the demand can generally
be said to be the number of vehicles that would like to travel on the network at a
given time.

The network supply and travel demand interact dynamically, i.e., the users travel
in their vehicles from one location to another on the network and interact with each
other and with the road infrastructure. However, congestion may occur, and users
might change their decisions and re-distribute on the network. If the demand and the
network supply are known, it can be possible to obtain accurate distributions of users
on the given network by calculating an equilibrium situation corresponding to solving
a Dynamic Traffic Assignment (DTA) problem. Then, by varying the network supply,
one can analyze different scenarios to address a network design task. Consequently, if
the demand in a particular traffic network is unknown, it is desirable to estimate it.

Travel demand can be modeled in many different ways but is commonly modeled
using dynamic Origin-Destination (OD) matrices. These matrices describe the aggre-
gate demand pattern changing over time (dynamic) in a set of time intervals of a
much larger analysis period. Due to their simplicity and conciseness, these dynamic
OD matrices are usually the required input of many traffic simulation software pack-
ages. Because of this, the problem of trying to estimate dynamic OD matrices has
gained a lot of attention from researchers in recent years.

The problem of estimating dynamic OD matrices is usually referred to as the Dy-
namic OD Estimation (DODE) problem in the literature. Different formulations exist,
but it is commonly formulated as a bi-level optimization problem consisting of an inner
and an outer optimization problem. A proposed dynamic OD matrix is given as input
to the inner problem, and a DTA problem is solved. The result is a routing of the
users in the network between origins and destinations at every time interval. In the
outer optimization problem, the dynamic OD matrices are adjusted to minimize the
discrepancy between the routing returned by the solution of the inner problem and
the one observed in real-life, i.e., the number of vehicles that transited in every time
interval on every road of the network as measured by sensors. The observed routing
is usually expressed in terms of the number of vehicles, average speeds, densities, etc.,
that have been captured by sensors located along roads in the traffic network under
investigation. However, other kinds of traffic observations can also be included (e.g.,
travel times, intersection turning ratios, etc.). This information is assumed to be di-
rectly related to the unknown travel demand and can guide the retrieval of such a
demand. In other words, the DODE problem can be summarized as the problem of
finding the dynamic OD matrices that, when assigned to the traffic network as vehicles
traveling between origins and destinations, reproduce the traffic measurements cap-
tured by sensors in the network. In addition to this, the dynamic OD matrices should
be close to some hypothesized ones that can be determined, e.g., by the number of
people living in the zones that are considered as origins and destinations.

Solving bi-level optimization problems is quite challenging, as the inner problem
constrains the outer problem, i.e., only an optimal solution to the inner problem is
a feasible solution to the outer problem. To overcome this challenge, it is crucial to
design solution approaches that are efficient and able to produce good and reliable
solutions in a reasonable amount of time. As such, much of the recent research on the
DODE problem tries to include and leverage additional input data or problem-specific
knowledge to improve the efficiency of the applied algorithms.

The DODE problem is solved frequently for a certain geographical area of study
and traffic network whenever a more up-to-date demand estimate is needed. If the
general structure of the traffic network and the possible OD pairs within the area of
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study remain the same over a reasonable amount of time, the input data in the form of
recent traffic observations is the only component of the DODE problem that changes
from one optimization task to another. The solution approaches that apply sequential
optimization algorithms to solve the DODE problem imply performing many DTAs in
each separate optimization task, essentially starting from scratch every time a new de-
mand estimate is needed. In a single optimization task, vast computational resources
are spent on performing the DTAs, and each DTA produces valuable information.
This information is usually discarded and not used in subsequent optimization tasks,
primarily due to the inherent sequential nature of some of the applied solution ap-
proaches. In this context, an ML approach becomes appealing as it allows leveraging
data produced by many DTAs.

Therefore, we study an approach to bypass the computationally costly and time-
consuming computations performed in the solution of the inner optimization problem
by learning a model for the input-output relationship established by solving this inner
problem.

To benchmark the ML approaches, we compare them combined with classical
gradient-based approaches. In addition, we provide an analysis of the advantages and
disadvantages of these approaches.

Our work provides the following contributions: We design a possible way to use ML
in the solution of the DODE problem by learning a model for the inner problem and
reducing its computational cost. Further, we perform a fair computational comparison
under a controlled scenario, carefully designed and synthetically generated, of two
state-of-the-art methods and our new ML approach.

Finally, we provide an analysis of the advantages and disadvantages of the different
approaches and indications about the contexts in which they could be performing the
best.

All methods are here reimplemented and share the same subroutines. We use the
well-established, open-source traffic simulator SUMO (Lopez et al. 2018) to perform
the DTA in the inner optimization problem. As such, the DTA performed by SUMO
will be regarded as a black-box function that assigns to a given input dynamic OD
matrix a set of path flows in the network according to a certain equilibrium criterion
called a Stochastic User Equilibrium (SUE). This equilibrium criterion is described in
more detail in Section 3.

The rest of the chapter is outlined as follows. First, Section 2 gives a general overview
of the existing literature on the DODE problem. Then, Section 3 introduces nota-
tion and the traditional (continuous) bi-level optimization formulation of the DODE
problem that we will use in the subsequent sections. In Section 4, we describe the
approaches considered in the study, and in Section 5, the irregular grid network and
the synthetic problem data that we used for our experiments. Next, the results are
presented in Section 6. The best method turns out to be a gradient-based approach
with assignment matrix modeling, while the ML approach shows inferior performance.
Finally, we conclude with a discussion of the results in Section 7.

2. Literature Review

In the classical static OD estimation problem, static OD trips are considered. The
problem is to estimate the demand in a single time interval (a single OD matrix is
estimated). On the other hand, time-dependent OD trips are considered in the DODE
problem, and the demand can vary in the different time intervals (i.e., time-dependent
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OD matrices are estimated).
The static OD matrix estimation problem has a long history, and a large body

of literature on this problem is available. The ideas and insights that have been
gained through studying the static problem are also extended and applied to the
dynamic problem. For an overview of the different classical solution approaches to the
static problem, see Abrahamsson (1998); Marzano, Papola, and Simonelli (2009); Bert
(2009). On the other hand, the most recent and extensive literature review on the dy-
namic problem is provided in Omrani and Kattan (2012); Djukic (2014). In contrast,
a literature review on much earlier work is provided in Balakrishna (2006). For a more
general overview of the DODE problem and the different modeling components and
decisions that have to be considered when solving this problem, we refer the reader to
Lindveld (2003); Bert (2009). Finally, an overview of related and relevant problems is
provided in Antoniou et al. (2016).

Most of the solution approaches to the DODE problem described in the literature
can be divided into two broad classes: DTA-based and non-DTA-based approaches.
A DTA-based approach is usually used in congested networks where the path choices
of the users of the network and the road-use patterns are of interest. DTA-based ap-
proaches provide a sound way to consider behavioral factors that affect travel decisions
but are more computationally demanding than non-DTA-based approaches. Contrary
to this, in a non-DTA-based approach, vehicles are assumed to take the shortest path,
which is usually also the one that minimizes the travel time. In this case, if the users of
the traffic network are assumed to be able to take the shortest path, then to solve the
DODE problem, a non-DTA-based approach is usually sufficient. Therefore, we focus
on the literature concerned with DTA-based solution approaches with this distinction
in mind.

Usually, solution approaches to the outer problem of the bi-level formulation of the
DODE problem consider the problem of minimizing the discrepancy between the quan-
tities determined by a DTA solution and the corresponding observed quantities given
as input. The problem is treated as a continuous optimization problem, and general-
purpose optimization algorithms from local and global optimization are used. The main
advantage of general-purpose algorithms is that they do not require exact knowledge
of the functional relationship of the variables to be estimated. The drawback is that
these algorithms are usually inefficient in their original form if the different algorithm
components and parameters are not adapted and tuned to the problem at hand. The
general-purpose algorithms applied to the DODE problem can be categorized as either
gradient-based or derivative-free optimization algorithms. Gradient-based algorithms
are iterative procedures that adjust estimates based on the information provided by the
gradient and possibly higher-order derivatives. This is not the case for derivative-free
algorithms (e.g., simulated annealing, evolutionary algorithms, and sampling-based
algorithms, such as the Nelder-Mead algorithm) that usually rely solely on Objective
Function (OF) evaluations.

We can further identify assignment matrix-based or assignment matrix-free ap-
proaches within the class of gradient-based algorithms. The distinction can be made
based on whether an Assignment Matrix (AM) is used as a part of the applied opti-
mization algorithm or not. An AM summarizes the result of a DTA and consists of
elements that describe the utilization of the roads in the traffic network with respect
to the number of users that travel between origins and destinations within a certain
time period. This means that the AM varies as a function of the travel demands. The
solution approaches to the DODE problem that uses gradients and AMs exploit that it
can be possible to analytically derive the exact gradient from a functional relationship
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between the variables through the AM. On the other hand, a gradient-based but AM-
free approach primarily uses finite difference approximations of the gradient, which
are established through OF evaluations.

The most recent studies that adopt a gradient and AM-based approach are given
in Bert (2009); Toledo and Kolechkina (2013); Frederix, Viti, and Tampère (2013);
Djukic et al. (2017); Shafiei et al. (2017); Masip et al. (2018). These studies primarily
focus on improving the efficiency of the applied algorithms by better modeling the
functional relationship between the variables that are to be estimated. A common
theme for the gradient and AM-based approaches is that count observations are the
only type of traffic observations usually given as input to the optimization problem.
The modeling of the relationship between the variables to be estimated can be done
through the AM. However, using this type of approach limits the type of observations
that can be accommodated in the optimization problem. For example, the functional
relationship between demands and count observations can easily be established if a
proportional relationship between these variables is assumed (see Eq.9). However, for
other types of observations, it can be harder and more cumbersome to determine
appropriate relationships between the variables to be estimated.

Gradient and AM-free approaches have also gained considerable attention in the
literature. Several researchers have especially been interested in studying and apply-
ing different variations of the Stochastic Perturbation Simultaneous Approximation
(SPSA) algorithm by Spall (Spall 1998), tailoring it to the DODE problem. This algo-
rithm only relies on OF evaluations with no need for an explicit characterization of the
relationship between the variables to be estimated. In each iteration of the SPSA al-
gorithm, OF evaluations are used to approximate the gradient. This approach makes
it possible to include other types of traffic observations besides count observations,
and it has therefore been the predominant approach in these cases (Vaze et al. 2009;
Cipriani et al. 2011; Tympakianaki, Koutsopoulos, and Jenelius 2015; Antoniou et al.
2015; Lu et al. 2015; Carrese et al. 2017). Just like most gradient-based optimization
algorithms, the performance of the SPSA algorithm is sensitive to (i) the tuning of
algorithm parameters, (ii) the possibly very different magnitudes of the variables to
be estimated, and (iii) the OF shape. Different enhancements to the SPSA algorithm
in the mentioned references thus have also been focused on components that address
these points to improve the stability and robustness of the algorithm when applied to
the DODE problem.

A surrogate model can be estimated based on empirical data if a model for the
OF is not available through theoretical argumentation. Gradient-based or derivative-
free methods can then be applied using the surrogate model. In Balakrishna (2006),
a model-based and derivative-free method is compared against the SPSA algorithm.
Response surface techniques are used to model the OF by low order polynomials
fitted locally to the values in correspondence of sample points of the search space. The
author applies a Stable Noisy Optimization by Branch and Fit (SNOBFIT) algorithm
that uses a derivative-free Box-Complex algorithm. The Box-Complex algorithm is a
direct search and sampling-based method that extends the well-known Nelder-Mead
algorithm. The Box-Complex and SNOBFIT algorithm performed worse in efficacy
and scalability than the SPSA algorithm.

Generally, the derivative-free solution algorithms require a high number of OF eval-
uations to obtain results comparable to the gradient-based solution algorithms (Audet
and Hare 2017).

A promising line of research is provided in Osorio (2019), which describes a surro-
gate model-based approach that relies on fitting simplified analytical models to the
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underlying simulation and DTA model resulting in a system of equations that can be
solved efficiently by standard system of equations solvers. The approach thus obtains
good computational results under tight computational budgets. The surrogate model-
based approach is compared against the SPSA and a derivative-free pattern search
algorithm. The approach performs well, while the pattern search algorithm and the
SPSA algorithm perform poorly in comparison.

Our work contributes to this thread of research by studying ML approaches to de-
termine surrogate models as an alternative to response surface techniques Balakrishna
(2006) and the surrogate model-based approach proposed in Osorio (2019).

Fewer studies can be found where model-free (and hence derivative-free) algorithms
have been applied to the DODE problem. These algorithms only rely on OF eval-
uations and exhibit the advantage that they can be distributed and parallelized, as
they allow independent OF evaluations. Evolutionary algorithms have been the most
popular among derivative-free optimization algorithms. Notably, in Kattan and Ab-
dulhai (2006), an evolutionary algorithm was applied in a setting with distributed and
parallel computing. Other studies that apply evolutionary algorithms can be found in
Vaze et al. (2009); Omrani (2014), while Tsekeris, Dimitriou, and Stathopoulos (2007)
also use an evolutionary algorithm, but in a non-DTA based approach. However, in
Vaze et al. (2009), the evolutionary algorithm was shown to perform worse than the
SPSA algorithm.

Two variants of DODE problems are usually addressed in the literature. Their of-
fline or online setting characterizes them. In an offline setting, historical data is used
to estimate the network-wide demand, such that long-term predictions of future traf-
fic conditions can be made. This is especially beneficial to decision-makers. It enables
them to evaluate different planning scenarios and make informed decisions when pro-
posed changes to infrastructure and facilities are made. Offline demand estimation
procedures are usually applied in network-wide studies, so the computational cost
can be considerably high in this setting. In an online setting, real-time traffic data is
used and historical data to estimate the current level of demand such that short-term
predictions of future traffic conditions can be made. This primarily benefits real-time
traffic control and path-guidance systems. Online demand estimation procedures are
usually applied on smaller traffic networks or locally, e.g., at intersections, where traf-
fic patterns are identified, such that adaptive traffic control strategies can be used.
For references on work that studies the online DODE problem, we refer the reader
to Ashok and Ben-Akiva (2000); Antoniou et al. (2009); Omrani and Kattan (2012).
In this work, we focus on the offline, DTA-based, bi-level formulation of the DODE
problem.

3. Notation and Problem Statement

A traffic network can be defined as a directed graph G = (N,A) consisting of a set
of nodes N and a set of arcs A. Each node in the network represents a junction or
an origin/destination point, while arcs represent roads. The arcs are directed, which
means that the traffic between two nodes can be uni-directional and one-way roads
are possible. The arcs in the network have additional attributes that generally indicate
how much and how well the roads in the network can handle traffic. Some examples of
essential arc attributes are the number of lanes, the length (kilometer) and a free-flow
speed (kilometer/hour) that is the maximum allowed speed a vehicle can travel with on
an uncongested road. Additionally, geographical information can be added to the arcs
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and nodes to indicate their physical location and shape.
A subset of the nodes N in a traffic network can be identified as possible origins

and/or destinations. More precisely, we let O ⊆ N be a set of origins and D ⊆ N a
set of destinations, where it is usually the case that D ∩ O 6= ∅, i.e., it is possible for
a node to be an origin and a destination simultaneously. A trip is the movement of
a vehicle from one location to another. More precisely, a trip departs from an origin
i ∈ O and terminates at a destination j ∈ D. In this case, we associate the trip
with an OD w = (i, j) ∈ W = O × D. Here W is the set of all OD pairs with size
|W | = m, and it is assumed that no trip departs and arrives in the same location, i.e.,
the OD pairs are defined such that i 6= j for all w = (i, j) ∈ W . Finally, a subset of
the arcs in the network G is assumed to be equipped with sensors defined by the set
Q = {1, . . . , nQ} ⊆ A.

To define the quantities of interest in the DODE problem, we introduce
an analysis period T = [0, tend) discretized into a set of nS subintervals
{[0, t1), [t1, t2), . . . , [tnS−1, tnS = tend)} of equal duration. For the sake of convenience,
we identify these intervals by the indices in the set S = {1, . . . , nS}. These indices
define the time intervals in which we want to estimate the demands for each of the m
OD pairs. The estimation of the demands is then based on the arc count observations
made within these time intervals.

The quantities of interest are usually referred to as being arranged in matrices.
Here, however, we will arrange these quantities in vectors. In other words, we flatten
or vectorize the matrices, i.e., given a matrix A ∈ Rp1×p2

+ , we concatenate consecutive
rows of the matrix in a column vector (Rp1×p2 → Rp1·p2):

vec(A) = a = [a11, . . . , ap11, . . . , a12, . . . , ap12, . . . , ap1p2
]> ∈ Rp1·p2 . (1)

The quantities of interest can then be described in terms of the following vectors:

• x, x̃ ∈ Rm·nS+ are the vectors of estimated demands and seed demands, respec-
tively. Each element of these vectors xws or x̃ws is associated with an OD pair
w ∈ W and a time interval s ∈ S. The vector x of estimated demands contains
the estimate of the number of trips made for each OD pair in each of the time
intervals. The vector x̃ of seed demands defines the prior knowledge of the num-
ber of trips made for each OD pair in each time interval. This prior knowledge
is usually assumed to have been obtained from a previous demand study, e.g.,
from a population survey. Note that we model discrete values as real numbers.
We thus define the continuous relaxation of a discrete optimization problem.
• xLower,xUpper ∈ Rm·nS+ are the vectors of lower and upper bounds on the esti-

mated demands, respectively. These upper and lower bounds define the search
space.
• c, ĉ ∈ ZnQ·nS+ are the vectors of estimated and observed arc counts, respectively.

Each element of these vectors cqs or ĉqs is associated with a sensor q ∈ Q and a
time interval s ∈ S.

The outer optimization problem of the bi-level formulation of the DODE problem
can now be defined as:

min F (x, x̃, c(x), ĉ) (2)

subject to xLower ≤ x ≤ xUpper (3)
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The solution of this problem, x∗, is the demand estimate that results from minimiz-
ing the OF F , which we define as the weighted sum of the measures of discrepancy
between the estimated quantities and their corresponding observed or a priori values:

F (x, x̃, c(x), ĉ) = ω1 · f (1)(x, x̃) + ω2 · f (2)(c(x), ĉ), ω1, ω2 ∈ R+. (4)

In our specific case, the discrepancy f (1) is measured between the estimated demands
x and a priori known demands x̃ and the discrepancy f (2) between the estimated arc
counts c(x) and the observed arc counts ĉ. Note that in a more general setting, the OF
may consist of several additional terms f (3), f (4), . . . with respective weights ω3, ω4, . . .
that consider additional available information, such as arc speed, density, travel times,
turning ratios, etc., that can be included to improve the guidance of the search process.

An inner optimization problem must be solved to evaluate the OF in Eq. (2) for a
proposed vector x of demands to find a corresponding vector c(x) of arc counts. The
inner optimization problem takes the form of a DTA problem. The task is to determine
the routing of users between origins and destinations according to a particular assign-
ment principle. The users of the traffic network are assumed to make decisions per the
criterion specified by the assignment principle. Two examples of assignment principles
that are widely used and studied within the area of transportation research are (i)
the User Equilibrium (UE) principle (Wardrop’s first principle (Friesz and Bernstein
2016)), which states that each user makes decisions that minimize their own individual
travel time, and (ii) the System Optimum (SO) principle (Wardrop’s second principle
(Friesz and Bernstein 2016)), which states that users make joint decisions to minimize
the total system travel time.

DTA models adopt an assignment principle and incorporate several different travel
choice components to reflect the travel choices a user of an actual traffic network might
face when wanting to travel between an origin and a destination. Travel choices that
are possible to model and include in a DTA model are, among others: path choice,
departure time choice, mode choice, and destination choice, to name a few. However,
in the context of the DODE problem, a simple DTA model that only incorporates path
and departure time choice components is usually used, meaning path and departure
time choices are endogenous to the DTA model, while other travel choice components
are exogenous or fixed.

To obtain accurate travel times between origins and destinations, a DTA model
relies on an underlying traffic flow model, i.e., detailed traffic flow models are used by
DTA models to explicitly propagate vehicles from one arc to another while considering
space constraints. In other words, queuing and congestion are modeled, and the effects
of these phenomena are reflected in the travel time. For a good introduction and a
general overview of the DTA problem, we refer the reader to Peeta and Ziliaskopoulos
(2001), as we only give a brief description here.

Two traffic flow models are implemented in SUMO and can be used in conjunction
with a DTA: a mesoscopic and a microscopic. These two types of traffic flow models
differ in the level of detail in which they model traffic flow dynamics. In the mesoscopic
model, the arcs in a traffic network are modeled as discrete queues through which
vehicles are propagated. Further, a coarser model for intersections and lane-changing
is used (German Aerospace Center 2022). On the other hand, in the microscopic
model, detailed quantities such as position, speed, acceleration, and braking distance
are considered in the propagation of vehicles on an arc.

The mesoscopic model is computationally cheaper to solve and can provide the nec-
essary data to a sufficient degree of detail needed in the estimation problem. Therefore,
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we choose that model.
A DTA can be obtained heuristically through an iterative simulation process using

the mesoscopic traffic flow model implemented in SUMO. At the end of the iterative
process, a stationary distribution of the path choice decisions of the users of the traffic
network respects an assignment principle. This assignment principle is the Stochastic
User Equilibrium (SUE) in SUMO. The SUE assignment principle extends the UE
assignment principle, where stochastic elements have been incorporated into the DTA
model. This form of UE assignment is regarded as the more realistic, as uncertainty is
incorporated in the assignment model to take into account the uncertainty of the users’
knowledge about network conditions. Contrary to the UE assignment principle, which
is defined in terms of actual travel times, the SUE assignment principle is instead
defined in terms of perceived travel times.

The iterative method used by SUMO to determine a DTA that respects the SUE as-
signment principle is described in Gawron (1998). This method determines the proba-
bilities of choosing between path alternatives for each user who wants to travel between
an origin and destination at a certain time. In brief, the path choice probabilities are
determined based on (i) the arc travel times experienced in the previous iteration, (ii)
the sum of arc travel times along different least-cost paths (these paths constitute a
set of alternatives to a user), and (iii) the previous probabilities of choosing the paths.
These quantities are used to obtain new estimates of the path choice probabilities
at each iteration. Finally, we note that the least-cost paths are computed in parallel
in SUMO by a time-dependent version of Dijkstra’s algorithm, while a single traffic
simulation is single-threaded and sequential.

Note that we modeled demands x as continuous variables while the mesoscopic
simulator implemented by SUMO solves a discrete optimization problem. When the
demands are given to SUMO as input, they are rounded to the nearest integer values.
In all other cases, the demands are handled as being continuous, which allows us to
apply continuous optimization algorithms in the outer-level problem.

For our purposes here, the DTA performed by SUMO can conveniently be defined
by the function:

Γ : Rm·nS+ → ZnQ·nS+ . (5)

This function maps demands x to arc counts through a DTA, i.e., x 7→ Γ(x) = c(x).
The arc counts c(x), together with the corresponding input demands x, can then be
used in the OF in Eq. (4) to determine the quality of the current demand estimate.

Eq. (3) defines upper and lower bounds on the demands. These are usually supplied
to avoid a situation where an unrealistic high amount of demand is loaded on the traffic
network, exceeding the network’s capacity. In a realistic setting, the bounds on the
demands are usually determined based on population survey data and experimental
results from previous studies.

In the remaining part of this work, we use the shorthand notation F (x) for the OF
defined in Eq. (4), as x̃ and ĉ are given and c(x) is derived from x.

4. Solution Approaches

Different definitions of the discrepancy between observed and estimated quantities in
the OF F are possible. Drawing on the knowledge obtained in Cipriani et al. (2011)
and Antoniou et al. (2016), we use an OF that penalizes large errors between observed
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and estimated quantities and that weights the different terms evenly, i.e., we take into
account that the different quantities f (1) and f (2) that enter into the OF can have
different magnitudes and hence normalize their values. Thus, we define the terms f (1)

and f (2) used in the OF F in the following functional form:

f (1)(x, x̃) =

√ ∑
w∈W
s∈S

(xws − x̃ws)2

√ ∑
w∈W
s∈S

x̃2
ws

and f (2)(c(x), ĉ) =

√∑
q∈Q
s∈S

(cqs − ĉqs)2

√∑
q∈Q
s∈S

ĉ2
qs

. (6)

To further limit the search space, we introduce generation constraints (Antoniou
et al. 2016) that set an upper bound on the number of outbound trips from an origin.
we let oi denote the maximum number of vehicles that can leave origin i ∈ O and
enforce that: ∑

j∈D, w=(i,j)∈W
s∈S

xws ≤ oi ∀i ∈ O. (7)

This type of constraint can easily be incorporated into the problem formulation as
it is typically the case that data for the values of oi, i ∈ O are readily available and
highly reliable, e.g., from survey data or population density statistics. Other possible
constraints are also mentioned in Antoniou et al. (2016), such as trip distribution
constraints or attraction constraints that, contrary to the generation constraints, limit
the number of trips that can arrive at a certain destination. However, data pertaining
to these constraints might be harder to provide and will thus not be considered in this
study.

The algorithms that follow are iterative algorithms. We define an iteration index
τ ∈ {0, . . . , τmax} where τmax is the maximum number of iterations of an algorithm.
We thus let xτ define the estimate at iteration τ .

4.1. Gradient-based Approaches

Gradient-based algorithms for continuous optimization problems take the general form
of an iterative procedure where an incumbent estimate at iteration τ is adjusted in
such a way that it is moved towards a minimum to yield the new estimate at iteration
τ + 1:

xτ+1 = xτ + ητ · dτ . (8)

Here ητ is a scalar value that we will refer to as the step rate, and dτ is the descent
direction. The descent direction is determined by the gradient through dτ = −gτ .
Different gradient-based optimization algorithms differ in how the descent direction
and the step rate are chosen. For the DODE problem, it is possible to distinguish two
ways to derive the gradient: AM-based and AM-free.
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4.1.1. An Assignment Matrix-based Approach

Through the use of an AM the gradient of the OF can be calculated analytically. The
(vectorized) AM pτ = vec(Pτ (xτ )) at an iteration τ consists of entries pqrws ∈ [0, 1]
that describe the proportion of trips xws for OD pair w ∈ W in time interval s ∈ S
that go through arc q ∈ Q in time interval r ∈ S, r ≥ s. In other words, depending on
a number of factors such as the travel time between origins and destinations and the
length of the time intervals s ∈ S, the traffic present on an arc a ∈ A may originate
from OD trips from several different OD pairs from the current time interval or several
previous time intervals. Using this knowledge the OD trips can be related to the arc
counts through the linear relation:

cqr =
∑
w∈W
s∈S
s≤r

pqrws · xws, ∀q ∈ Q, r ∈ S. (9)

Through the use of the AM it is possible to derive an analytical expression for the
gradient of the OF F at every iteration:

∂F

∂x
= ω1 · g(1) + ω2 · g(2), (10)

where the vectors g(1) and g(2) are the gradients of the two terms f (1) and f (2),
respectively, whose elements can be derived to be (see A):

g(1)
ws =

∂f (1)

∂xws
=

xws − x̃ws√ ∑
w′∈W
s′∈S

(xw′s′ − x̃w′s′)
2 ·
√ ∑
w′∈W
s′∈S

x̃2
w′s′

, ∀w ∈W, s ∈ S, (11)

g(2)
ws =

∂f (2)

∂xws
=

∑
q′∈Q
r′∈S
r′≥s

(cq′r′ − ĉq′r′) · pq′r′ws

√ ∑
q′∈Q
r′∈S

(cq′r′ − ĉq′r′)2 ·
√ ∑
q′∈Q
r′∈S

ĉq′r′
, ∀w ∈W, s ∈ S. (12)

The descent direction in Eq. (8) is then simply the negative of the expression in
Eq. (10):

dτ = −
(
ω1 · g(1)

τ + ω2 · g(2)
τ

)
. (13)

4.1.2. An Assignment Matrix-free Approach

As mentioned in Section 2, most of the studied gradient-based and AM-free approaches
for the DODE problem use the SPSA algorithm. This algorithm uses the negative of
the gradient as a way to obtain a descent direction in a similar way as the previous
approach. As no AM is needed in the derivation of the gradient of the first OF term
f (1), we can simply use the exact gradient defined in Eq. (11). However, the gradient
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of the second OF term f (2) will have to be approximated because now no AM is given
and no functional relationship between the variables to be estimated is assumed.

A one-sided finite difference approximation of the gradient is usually used:

g̃(2)
τ =

f (2)(c(xτ ), ĉ)− f (2)(c−(xτ ), ĉ)

bτ
·∆τ , τ ∈ {0, . . . , τmax} . (14)

Here, c(xτ ) = Γ(xτ ), c−(xτ ) = Γ(xτ − bτ ·∆τ ) and ∆τ ∈ {−1, 1}m·nS is a random
perturbation vector, where the entries ∆ws, w ∈ W, s ∈ S are independent Bernoulli
random variables taking the value ±1 with probability 1/2. Furthermore, the vector ∆τ

consists of entries 1/∆ws and bτ = b/τγ is defined with respect to the parameters b > 0
and γ > 0. These parameters and the Bernoulli distribution are usually chosen because
they satisfy certain conditions (Spall 1992) that ensure the algorithm to be able to
converge to a minimum, asymptotically. To ensure compatibility with SUMO that only
accepts integer inputs, we keep the perturbation parameter fixed bτ = 1 throughout
all iterations, which is equivalent to perturbing each element in the demand vector by
±1 trip.

4.1.3. Determining Step Lengths

The step length in the descent direction can be chosen appropriately by solving for ητ
a line search problem in each iteration τ :

ητ = arg min
α≥0

F (xτ + α · dτ ) . (15)

The goal of the line search is to find the step rate α that minimizes the OF in
the descent direction given by dτ . To solve this sub-problem we use a multiple linear
regression approach where a 2nd-degree polynomial is fitted to sample points evaluated
in the descent direction. More specifically, we first define a single-variable function of
the step rate α, as follows:

y(α) = F (xτ + α · dτ ) . (16)

Then, we determine:

(1) An upper bound ` on α imposed by the generation constraints in Eq. (7). An
algorithmic sketch to carry out this task is given in Algorithm 1.

(2) A number of equally spaced points α1, . . . , αn, n ≥ 2 to evaluate in the interval
[ /̀n, `].

Given these parameters we can obtain sample points with corresponding responses:

(α0, y(α0)), . . . , (αn, y(αn)).

The point (α0 = 0, y(α0) = F (xτ )) is already known. In this case, by specifying two
additional sample points we are able to uniquely fit a 2nd-degree polynomial. More
precisely, an estimator for the function y(α) in Eq. (16) is:

ŷ(α) = β0 + β1 · α+ β2 · α2 (17)
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Algorithm 1: Procedure for determining the upper bound on the step rate.

1 Procedure DetermineMaxStepRate(xτ , xl, xu, dτ , `∆ = 108, ε1 = 10−8)
2 `← 0
3 while true do
4 `← `+ `∆
5 x̆← xτ + ` · dτ

// Apply upper and lower bounds
6 x̆← maximum(xl, x̆)
7 x̆← minimum(xu, x̆)

// Check if generation constraints are violated or whether
// all upper or lower bound constraints are binding

8 if
∑

j∈D, w=(i,j)∈W
s∈S

x̆ws > oi ∀i ∈ O ∨

(x̆ws == xLower
ws ∨ x̆ws == xUpper

ws ) ∀w ∈W, s ∈ S then
// Backtrack and try again with a smaller step rate

9 `← `− `∆
10 `∆ ← `∆/2
11 if `∆ < ε1 then
12 break

// Return the largest positive step rate that does not violate any
constraints

13 return `

where the coefficients β0, . . . , β2 are determined by least squares, given the sample
points and corresponding responses. The value αmin that minimizes this polynomial
is given by αmin = −β1

2·β2
, if β2 > 0. Otherwise, αmin is taken to be the step rate that

produced the sample point with the smallest response.

4.1.4. Computational Complexity of the Gradient-based Approaches

If we look at the computational cost associated with the AM-based approach, we notice
that two OF evaluations and thus DTA problems are solved in each iteration. First, a
single DTA is needed to obtain a (vectorized) AM pτ such that the descent direction
and two additional points (using the relation in Eq. (9)) in the descent direction
can be evaluated, and a 2nd-degree polynomial can be fitted. Using the 2nd-degree
polynomial, the best step length in the descent direction can be determined. Then,
one additional DTA is solved to evaluate the new point that has been found by using
the best step length that minimizes the OF in the descent direction.

On the other hand, the AM-free approach needs to solve up to four DTA problems in
each iteration, i.e., one DTA is required to estimate the gradient, and two additional
DTAs are needed for determining the best step length in the descent direction. As
with the AM-based approach, an additional DTA is then necessary to evaluate a new
estimate found.

4.2. Machine Learning Approaches

The DTA performed by SUMO can be regarded as a black-box function that maps
input demands to network-specific quantities, such as arc counts, speeds, densities,
etc. As mentioned in Section 3, we will focus on the arc counts. In this case, the black-
box function representing the DTA performed by SUMO can be described by Eq. (5),
a vector-valued multivariate function that describes the input-output relationship of
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 Sobol. Samples: 100  Sobol. Samples: 200  Sobol. Samples: 400

Figure 1. Example of a sampling strategy in the plane that uses a Sobol low-discrepancy sequence.

the DTA performed by SUMO with respect to the output quantity we are interested
in modeling. The ML approach’s main idea is to learn a model of this input-output
relationship.

A dataset is needed to learn a model of the input-output relationship. This dataset
can be obtained through a sampling strategy, which is a technique for deciding how
many and which points should be included in a dataset provided to a learning algo-
rithm. Using the dataset, the learning algorithm is trained in a supervised fashion,
which results in a model Γ̂ for the relationship in Eq. (5). Subsequently, the DODE
problem can be solved using the obtained model as a surrogate for DTA in the OF.

Overall, the ML approach put forth here consists of three primary components:
a sampling strategy, the application of a ML algorithm and a final application of an
optimization algorithm to obtain an approximate minimum of the DODE problem that
is then to be evaluated and returned as a final estimate. These steps are described in
more detail in the following.

4.2.1. Sampling Strategy

The sampling strategy should preferably be chosen such that the amount of infor-
mation gained from a limited number of sample points is maximal. Sampling more
points than necessary implies additional computational resources and time. In other
words, for the dataset we want to obtain a set of points that are sampled evenly in
the search space. A way to accomplish this is by using optimal experimental designs,
which among others include: Box-Behnken, central composite, factorial designs, and
latin hypercube sampling, to name a few. These sampling strategies are specialized
because they are tailored for fitting specific parametric models (e.g., linear or mul-
tiple linear models). Moreover, they dictate the exact number of samples needed to
end up with a set of sample points that covers the search space well. Consequently,
these strategies are well-suited for fitting models when prior knowledge of the model’s
structure is available, and the sampling budget allows for the number of samples re-
quired by the sampling strategy. If this is not the case, an alternative is to use a
strategy that samples points according to a low-discrepancy sequence (also referred to
as a quasi-random sequence). Examples of low-discrepancy sequences include Halton,
Hammersley, Niederreiter, and Sobol (see Pardalos, Zhigljavsky, and Žilinskas (2016)
for more theoretical details on low-discrepancy sequences).

An advantage of the strategies that generate sample points according to low-
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discrepancy sequences is that they can evenly cover the search space, regardless of
the number of samples. It can also be possible to add additional samples later to fill
the search space progressively.

Ultimately, the chosen sampling strategy depends on (i) the dimensionality of the
problem and (ii) the simulation budget, which imposes an upper bound on the number
of points to evaluate, i.e., the number of DTAs to perform.

In our experiments (see Section 6), we will use a dataset with points sampled ac-
cording to the numbers in a Sobol sequence (an example is shown in Figure 1)).

Formally, let DΓ = {(x1,y1), . . . , (xn,yn)} denote the dataset where xi ∈ Rm·nS+ is

an element of a Sobol sequence and yi = Γ(xi) ∈ RnQ·nS+ for all i ∈ {1, . . . , n}. Recall
that Γ represents the function applied by the SUMO simulator. The learning task is
to determine Γ̂ such that it approximates well Γ on new data points.

4.2.2. Machine Learning Algorithms

A wide selection of off-the-shelf implementations of general-purpose ML algorithms can
be used to find Γ̂. The ML algorithms we are interested in studying can be categorized
as nonparametric models. In contrast to parametric models, nonparametric models are
more flexible as no prior assumptions are made on the structure of the model that is
to be trained.

It could be possible to learn the input-output relationship between the demand and
the scalar value of the second OF term in Eq. (4), that is:

f (2) : RnQ·nS+ → R+, (18)

This term of the OF measures the discrepancy between the observed arc counts and the
current estimate of arc counts, which depends indeed on the DTA. On the contrary, the
other term in Eq. (4), f (1), measures the discrepancy between the estimated demands
and the seed demands and does not require performing a DTA.

However, preliminary experiments showed that a better approach is trying to learn
the input-output relationship of a vector-valued multivariate function as in Eq. (5)
and predict the vector of arc counts. Note that this approach has the advantage of
being more robust to a change in the number of sensors in the network (e.g., due to
failure), since in that case the corresponding predicted arc counts can be ignored in
the calculation of f (2). Learning a single model to predict p target variables can be
done by inherently multi-target ML algorithms, which are able to exploit inter-target
correlations. The inherently multi-target ML algorithms that we will make use of are
Feed-Forward Networks (FNNs) and k-Nearest Neighbors (k-NN). The algorithms are
briefly described in the following and in more detail in Appendix B.

A Feed-Forward Network (FNN) is a type of neural network consisting of units
arranged in layers: An input layer, a number of hidden layers and an output layer. A
FNN architecture is thus mainly defined by the number of layers (the depth of the
network md ∈ N not counting the input layer) and the number of units in each layer
(the width of a layer li ∈ N, with i ∈ {1, . . . ,md}), along with the activation functions
used in the different layers. In the network architectures that we consider a ReLU
(φ(·) = max(0, ·)) activation function is used in the units situated in the hidden layers
and a linear activation function is used in the output layer, since the task of learning
Γ is a regression task. Finally, to reduce overfitting and improve the out-of-sample
predictive performance a regularization parameter λ ∈ R+ is also set. An appropriate
value for this parameter is usually chosen using out-of-sample Cross-Validation (CV)
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techniques.
k-NN is one of the simplest nonparametric models used for regression. To predict

the value ŷ of a new unseen point x, k needs to be specified. Its value specifies the
number of points from a training set D closest to x that should be used to calculate
the predicted value ŷ. Unlike the FNN and most other ML algorithms, no model must
be determined, rather the training data are kept and continuously used.

It is good and common practice for supervised learning tasks to perform model
selection and validation to estimate the out-of-sample predictive performance and
obtain a model that ultimately has good prediction accuracy and generalizes well to
unseen data. To perform model selection and validation, we will use the MSE as a
performance metric to evaluate the performance of a trained model.

To select an appropriate FNN or k-NN model and estimate its performance on
unseen data, we will perform hyperparameter tuning through an exhaustive grid search
and use k-fold CV (note that this k is different from k in k-NN) on a dataset. For
a hyperparameter configuration, k-fold CV consists of the following steps: (i) Divide
the dataset into k non-overlapping groups of approximately equal size, then (ii) save
a single fold as a validation dataset and use an ML algorithm to train a model on
the remaining k− 1 folds. Lastly, (iii) assess the performance of the trained model by
calculating the MSE on the held-out fold. Steps (i) and (ii) are repeated k times where
a new fold is treated as the validation dataset. Through this procedure, we obtain error
estimates MSE1,MSE2, . . . ,MSEk that can be used to calculate the overall k-fold
CV score:

CVk =
1

k

k∑
i=1

MSEi (19)

The CVk score estimates the error we can expect when using a trained model to
predict new values given unseen data. The model with the best score is chosen in a
model selection context. The value of k is commonly set to 5 or 10, usually due to
computational considerations (James et al. 2013).

4.2.3. Optimization

We can then solve the outer-level optimization problem in Eq. (2) with Γ̂ to model
the relationship in Eq. (5). So instead of obtaining arc counts by performing a time-

consuming DTA with SUMO, we get arc counts by querying the ML model Γ̂. Since
we use nonparametric ML algorithms, the OF is not explicitly available. Hence, we
need to resort to derivative-free methods. However, now evaluating the OF has become
fast, and we can use algorithms that are less parsimonious in requiring this.

We can thus apply an off-the-shelf global optimization algorithm called the basin-
hopping algorithm, described in Wales and Doye (1997) and implemented by the SciPy
Python library (Virtanen et al. 2020). The basinhopping algorithm is similar to the
well-known simulated annealing optimization algorithm in the sense that it consists
of two main components that are applied iteratively: (i) A random perturbation of a
current point and (ii) a criterion for accepting or rejecting the perturbed point based
on its OF value.

The basinhopping algorithm extends the idea of the simulated annealing algorithm
by applying a local optimization algorithm to the perturbed point to find a local
minimum of the OF before deciding to accept or reject the point that resulted in the
local minimum. This process is repeated until a maximum number of iterations has
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been reached. The local optimization algorithm used in the basinhopping algorithm as
a subprocedure is, in this work, chosen to be a Sequential Least-Squares Programming
(SLSQP) algorithm also implemented by the SciPy library. This choice is because this
algorithm can handle not only the upper and lower bound constraints in Eq. (3) but
also the inequality constraints in Eq. (7).

Ultimately, the basinhopping algorithm is applied to find an approximate minimum
of the DODE problem. SUMO will then evaluate the final demand estimate as a final
result.

5. Experimental Setup

We decided to test and compare the methods described in a controlled environment
by synthetically generating an artificial traffic network. To generate this test data,
three primary components are needed: (i) a traffic network where possible OD pairs
W have been identified, (ii) a discretization of the analysis period T , and (iii) a ground-
truth vector of demands based on (i) and (ii). The specific parameters used in each of
the experiments are described in Section 6. Here, we focus on details of components
(i)-(iii).

The network can be defined as an irregular grid network. The network was generated
to contain features that can be encountered in a real traffic network. More specifically,
some paths in the network between origins and destinations are shorter than others
in terms of free-flow travel time. The network used is depicted in Figure 2(a) and
described in more detail in the following.

The network has 48 directed arcs and 16 nodes, either representing intersections
or origins and destinations. More precisely, 12 of the nodes represent origins and
destinations, which means that O = D and |O| = |D| = 12, resulting in 132 OD pairs.
Furthermore, the arcs in the network were prescribed a speed limit of 50 kilometer/hour

and assigned a default length of 1250 meters. The coordinates of the nodes in the
network are then perturbed by a uniform random number U(0, 1250), resulting in arcs
between nodes with different lengths, yielding the irregular grid.

We settled for a one-hour scenario with an analysis period T = [0, tend), where
tend = 3600 seconds = 60 minutes = 1 hour. This one-hour time period was discretized
into 4 time intervals of equal duration, i.e., we have S = {1, ..., nS = 4}, where each of
the indices in this set refers to a time interval of 900 seconds = 15 minutes duration.
Given this information and a network with OD pairs W , a ground-truth vector of
demands is constructed by sampling the number of trips defined for each variable
according to a continuous uniform distribution with lower bound a and upper bound
b:

xTrue
ws ∼ U(a, b), ∀w ∈W, s ∈ S. (20)

From the ground-truth vector of demands, trip productions oi for i = 1, . . . , |O| that
enter into the generation constraints (in Eq. (7)) were obtained in addition to upper
and lower bounds on the estimated demands:

xl = 0 and xu = 1.5 ·max (x) · 1, (21)

where 0 is an m · nS vector of zeros and 1 is an m · nS vector of ones.
Finally, the ground-truth vector of demands was given to SUMO as input and the
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(a) The network used in the case study. All

the nodes on the perimeter of the network
can be identified as origins and destinations.
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(b) Characteristics of the synthetically generated test data us-

ing the artificial network.

Figure 2. The network used in the case study along with the characteristics of the synthetically generated

test data.

iterative DTA procedure implemented by SUMO was run for 15 iterations yielding the
vector ĉ of observed arc counts.

For the seed demand vector x̃ ∈ Rm·nS we consider two scenarios:

Prior low-demand vector (LD): This scenario simulates the case where lower de-
mand estimates are available from a previous study:

x̃ws = xTrue
ws · (0.7 + 0.3 · uws) , uws ∼ U(0, 1), ∀w ∈W, ∀s ∈ S. (22)

Prior high-demand vector (HD): This scenario simulates the case where higher
demands are available from a previous study:

x̃ws = xTrue
ws · (0.9 + 0.3 · uws) , uws ∼ U(0, 1), ∀w ∈W, ∀s ∈ S. (23)

These two scenarios were constructed based on the guidelines provided in Antoniou
et al. (2016) and the computational experiments performed in Cipriani et al. (2011);
Masip et al. (2018).

The ground-truth vector of demands was generated according to Eq. (20), using
lower bound a = 1 and upper bound b = 20. The value for the upper bound b depends
on the number of OD pairs and the size of the network, i.e., the network supply,
which essentially determines how much traffic the network can handle at a given
point in time. In this case, the appropriate upper bound was found experimentally
by sampling different ground-truth vectors of demand for increasing values of b. A
DTA was performed by SUMO for each of the generated ground-truth vectors, and
the resulting output from the DTA was assessed by checking the level of congestion
present in the network. Finally, the ground-truth vector of demands with corresponding
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upper bound b that generated a scenario with light congestion was chosen as the basis
for the case study using this network.

The scenario that was deemed the most appropriate was determined based on assess-
ing the characteristics of the three plots in Figure 2(b). In the first plot, we observe that
the average trip length is 4.6 kilometers and, in the next plot, that the average travel
time for a trip is 338 seconds. Finally, keeping these two attributes in mind, we observe
in the last plot that an average delay of 52 seconds (52 seconds/338 seconds = 0.15%) of the
total travel time is due to congestion and driving below the possible free-flow speed.
Furthermore, some unfortunate vehicles experience a delay far more significant than
the average of 52 seconds, while on the other hand, most vehicles experience only little
to no travel time delays. Therefore, based on these scenario attributes, we classify the
scenario as a scenario with light congestion.

For the results we present in the following sections, it is assumed that sensors cover
100% of the network. A good overview of the problem of determining appropriate
locations to place sensors in a traffic network, along with some recent developments
on this problem, is given in Viti et al. (2014); Hu and Liou (2014); Salari et al. (2019).
In addition to this, the arc counts obtained by the sensors are assumed to be error-free.
This is, of course, not the case in a real traffic network, but it simplifies the analysis
and comparison of the different solution approaches. Lastly, we mention that all the
experiments were executed using an initial feasible solution consisting of all ones, i.e.,
xτ=0 = 1. This initial guess was chosen so to not confine the search for a minimum to
the vicinity of the seed demands.

To compare the performance of the different approaches, we report the Root Mean
Squared Error (RMSE). If we consider place-holders y, ŷ ∈ Rn, where y is a vector of
observed values and ŷ is a vector of estimated values, then the RMSE value is defined
as follows:

RMSE(y, ŷ) =

 1

n

n∑
j=1

(yi − ŷi)2

 1

2

. (24)

This error measure is easily interpretable because the error is given in the same units
as the data. Furthermore, the RMSE is reported separately for each of the different
quantities entering the optimization problem, i.e., we report the RMSE statistic for
the arc counts and the demands. Finally, we remark that for the demands, the RMSE
is calculated based on the ground-truth values and not on the seed demand vectors
that enter the optimization problem.

We note that the size of the network and the number of OD pairs, arcs equipped
with sensors and time intervals of the dataset described are similar to those used in
other algorithm comparison studies (Cipriani et al. 2011; Carrese et al. 2017; Nigro
et al. 2018), while larger sizes and numbers are used in Toledo and Kolechkina (2013);
Antoniou et al. (2016); Djukic et al. (2017); Masip et al. (2018).

6. Experimental Results

We implemented all methods in Python with external calls to the SUMO simulator.
The primary Python libraries used include Pandas (McKinney 2010) for data orga-
nization purposes, NumPy (Harris et al. 2020) for its numerical methods for fitting
polynomials, along with SciPy (Virtanen et al. 2020) for its off-the-shelf global opti-
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Figure 3. The learning curves and CV results associated with the training of the k-NN and FNN model.

The curves show the mean CV and training scores, while the shaded bands show the standard deviation. The
datapoints in the curves are related to the best mean CV score obtained for different sample sizes and over all

tested hyperparameter configurations.

mization algorithms and scikit-learn’s (Pedregosa et al. 2011) implementation of FNN
and k-NN used in the ML approach. A snapshot of the repository (Andersen 2022a)
containing the codebase and the data supporting this study’s findings are archived and
openly available in Zenodo (Andersen 2022b). All experiments described in this sec-
tion were performed on a machine with an AMD Ryzen 7 1800X eight-core processor
and 32 GB of RAM, running Manjaro Linux.

6.1. Computational Budget

We studied the ability of the FNN and k-NN ML algorithms to learn the input-
output relationship using a different number of sample points and hyperparameter
configurations while the CV scores were monitored. The resulting learning curves are
displayed in Figure 3. We observe that by increasing the size of the training set, the
CV scores improve but only slightly.

As we want a model that performs as well as possible on unseen data (the test
scores) and is parsimonious in the usage of SUMO to perform DTAs, we settled to
use 200 points for the dataset to train the ML approaches. This means that we run
SUMO for about 200 DTAs, which took 3912.92 sec = 65.21 min on our computational
environment. We note that an additional DTA (the 201st DTA) will be needed by the
ML approaches to evaluate a final estimate. For the sake of fairness, we thus set a soft
upper bound on the number of allowed OF evaluations to 201 for all other approaches1.

6.2. Parameter Tuning

The gradient-based approaches, i.e., the AM-based and AM-free approach, do not need
parameter tuning before tackling the DODE problem. Indeed, the only parameter, the
step length, is determined automatically by the solution of the line search in Eq. (15).
Thus, these algorithms are straightforward to apply, and no specific consideration has
to be made concerning their parameters.

For the ML approaches, the FNN and the k-NN model, the hyperparameters were

1Due to the inherent nature of some of the applied approaches, a few more OF evaluations and thus DTAs

might have occurred in an iteration and the total number of OF evaluations might not sum up to 201 exactly.
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Table 1. An overview and summary of the results obtained in the different experiments E1-E12. Here, we

define M1: AM-based approach, M2: AM-free approach, M3: FNN predicting Γ, M4: k-NN predicting Γ. For
methods M3-M4 only the running time of the optimization step is reported.

Method Experiment Seed matrix OF evaluations Running time (sec) RMSE(x,xTrue) RMSE(c(x), ĉ)

M1

E1 None 201 2836.4469 1.3413 9.4626

E2 LD 201 2845.5479 1.3413 9.4626
E3 HD 201 2770.9962 1.2516 9.6358

M2

E4 None 203 2552.5320 9.0188 19.4008

E5 LD 201 2366.2931 2.0342 13.5121

E6 HD 202 2475.8943 6.7992 16.1219

M3
E7 None 201 110.9053 9.6494 20.8409
E8 LD 201 116.7221 9.6338 20.4193

E9 HD 201 107.7270 9.6493 20.8409

M4

E10 None 201 103.1716 9.6728 21.1067

E11 LD 201 109.7821 9.6338 20.4193
E12 HD 201 102.5330 9.6339 20.4193

fine-tuned using a grid search coupled with 5-fold CV using the 200 generated sample
points that act as re-usable historical simulation data.

The grid search was performed on the values reported in Table 2. The best perfor-
mance was achieved by the following settings:

• The FNN model with hidden layers containing units (0.75 · m · nS , 0.50 · m ·
nS , 0.50 · m · nS) = (l1 = 396, l2 = 264, l3 = 264) along with regularization
parameter λ = 0.01. This trained model is used in method M3 in Table 1. This
model achieved a 5-fold CV score of CV5 = 579.1282.
• The k-NN model using k = 43 neighbours. This trained model is used in method

M4 in Table 1. This model achieved a 5-fold CV score of CV5 = 621.2651.

For the subsequent optimization step using a trained ML model (FNN or k-NN) as
a surrogate model for DTA, the basinhopping algorithm was used with default param-
eters. Also, the local SLSQP minimizer was used with default parameters. Preliminary
experiments showed that 10 iterations of the basinhopping algorithm were enough to
reach convergence and that improvements after that stage become rare.

6.3. Quality of Estimates

In Table 1, we present an overview of all experiments conducted together with sum-
mary results, that we detail in the following.

6.3.1. Gradient-based Approaches

The final results obtained from the gradient-based approaches are plotted in Fig-
ure 4(a) and Figure 5(a). In these figures, the estimated quantities x and c(x) have
been plotted against the ground-truth vector of demands xTrue and the corresponding
vector of observed arc counts c(x), respectively. The corresponding plots that show
the OF value history of the two algorithms are shown in Figure 4(b) and Figure 5(b).

If we compare the results in Figure 4(a) and Figure 5(a) between the two gradient-
based approaches, we observe that the AM-based approach outperforms the AM-free
approach. In fact, the AM-based approach is able to consistently overcome local min-
ima and reach a good demand estimate. This can be seen in Figure 4(a) where the
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(a) The ground-truth values plotted against the estimated values.
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(b) The OF value history. Utilizing out-

put data directly from SUMO Γ(x).

Figure 4. The final results from experiments E1-E3, that used the gradient and AM-based approach.

estimated demands and the ground-truth vector of demands align well, and so do also
the estimated arc counts and the observed arc counts.

If we look at the progress of the two algorithms in Figure 4(b) and Figure 5(b),
we see that the AM-based approach can find a good estimate within only a single OF
evaluation, while the AM-free approach uses a much larger number of evaluations to
arrive at good estimates.

If we return to Table 1 and the results relating to methods M1 and M2’s com-
putational time, we observe that the AM-free (M2) appears to be faster than the
AM-based (M1) approach. This is the case, even though two OF evaluations and thus
DTA computations are needed in each iteration of M1, while M2 needs up to four.
The prolonged computational time can be attributed to slow gradient calculations due
to AM data organization, which takes time in Python. As the network and scenario
are scaled, we expect the case to be inverted, i.e., data organization will take less time
than performing DTA’s.

6.3.2. ML Approaches

The final estimate reached by the k-NN approach is shown in Figure 6 and the one
reached by the FNN approach in Figure 7. The figures also report the development of
solution quality over the 10 iterations of the basinhopping algorithm which typically
yield around 6000 OF evaluations using the surrogate model Γ̂.

Across the different experiments with the ML approaches, we observe that the two
ML models achieve very similar results. Under both models, the estimated and ob-
served arc counts align well but the ground-truth demands and the estimated demands
do not. In other terms, these approaches can find demand estimates that reproduce
the arc counts well but are in no way similar to the ground-truth demands.
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Figure 5. The final results from experiments E4-E6, that used the gradient and AM-free approach.

In the optimization step of the ML approaches, we observe a general lack of progress.
In fact, an examination of the quality of the data points against the final point after
the optimization step show that the ML approaches seem able to improve only slightly
the estimates already available initially.

Furthermore, if the OF values pertaining to the first and the second term of the OF
is inspected, then it appears that the first term (in Eq. (6)) relating to the demands is
not worked on as much as the second term that takes into account the arc counts. This
behavior helps explain why the ground-truth demands and the estimated demands do
not align well even when a seed vector is provided to guide the search. Another reason
for the overall poor performance can also be attributed to the goodness-of-fit of the
trained ML models. If the trained models do not sufficiently capture the complex
input-output relationship of a DTA performed by SUMO, then we might only be able
to explore or reach local minima of the DODE problem in the subsequent optimization
step that are not actual minima. A hint that this might be the case is the high CV
scores reported in Figure 3.

Table 2. The ML model hyperparameters chosen for hyperparameter tuning. Preliminary experiments were
performed to narrow down the domains of the hyperparameters.

Machine learning alg. Hyperparameter name Domain

FNN
Architecture

{(0.75 ·m · nS , 0.50 ·m · nS , 0.50 ·m · nS),

(0.75 ·m · nS , 0.25 ·m · nS , 0.25 ·m · nS),
(0.75 ·m · nS , 0.125 ·m · nS , 0.125 ·m · nS)}

Regularization λ {0.0001, 0.001, 0.01, 0.1}

k-NN Neighbours k {b2zc : z = 2 + i · (6−2)/14, ∀i = 0, . . . , 14}
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Figure 6. The final results from experiments E7-E9, where the k-NN model predict Γ.

6.4. Scaling

Under the assumption that the training set of data is available initially in the form
of historical data, then performing the optimization step on the ML models took
on average 108.47 sec (average running time of M3-M4 in Table 1). In contrast, the
average time for the gradient-based approaches using SUMO directly for DTA was
2641.28 sec (average running time of M1-M2 in Table 1).

Further, depending on the network size, the ML approaches could scale better than
the gradient-based approaches. Compared to the gradient-based approaches that per-
form many DTAs, starting from scratch in each new optimization task, the ML ap-
proaches utilize existing DTA data, meaning that fewer DTAs overall might be needed.

A factor affecting the running time of all approaches is the number of demand
variables to be estimated. Increasing the number of variables produces a more com-
plex estimation problem that results in many more DTAs having to be solved for an
approach to find improving estimates. To cope with this growth, it is possible to man-
ually adjust the number of variables, e.g., by merging OD pairs by combining areas
into larger zones or by adjusting the number of sub-intervals of the analysis period in
which the demand is estimated. Moreover, arcs equipped with sensors can be priori-
tized, and arcs deemed less critical can be filtered out, making it possible to scale to
larger networks.

7. Conclusions and Future Work

The results presented in Table 1 and the plots in Figure 4, 5, 6, and 7 show that the
AM-based approach (method M1) outperforms, in terms of quality of the estimates
produced, the AM-free approach (method M2), as well as the ML approaches (methods
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Figure 7. The final results from experiments E10-E12, where the FNN model predict Γ.

M3-M4). We also note that even if no seed vectors were supplied, the AM-based
approach could find a reasonable estimate for both the ground-truth demands and the
corresponding observed arc counts.

A further advantage of the AM-based approach is that it is easy to apply as no
parameters will have to be set or tuned before using the approach. Moreover, only
two new OF evaluations and thus DTA computations are needed in each iteration,
while in comparison, the AM-free approach needs up to four. On the other hand, the
disadvantage of the AM-based approach is that it might be harder to include different,
more complex types of data into the optimization problem, as it can be harder to derive
analytical expressions for the gradient of function terms that take into account more
complex data types such as road queuing length, turning ratios, etc.

If we look at the results obtained with the ML approach in Table 1 and Figures 6
and 7, we can conclude that the estimated and observed counts align somewhat well,
while the estimated demands and ground-truth demands do not align at all. This
result seems to remain the same independently of which ML algorithm is used. Based
on these results, the ML approach is not good if one seeks a demand estimate that is
sufficiently close to a given seed vector. However, it can produce more diverse estimates
than, e.g., the AM-based approach and may be useful for other purposes.

Our conclusion is that the gradient-based approaches work the best. However, the
ML methodology does provide a way to utilize data generated through many DTAs,
and it might be a viable option if certain changes are made. In this case, we suggest
possible directions for future research to improve the ML approach:

• In the optimization step of the ML approach, investigate why only the second OF
term, relating to the arcs counts, appears to have an effect. That is, determine
why the first term pertaining to the demands is not being optimized and able to
guide the search even when a seed vector is supplied.
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• Incorporate additional constraints into the optimization step of the ML approach
to further restrict the search space and possibly obtain better estimates.
• Use other types of information, e.g., about the complete paths used by users in

the network instead of just the arc counts.
• Model a different part of the DODE problem and change the type of prediction

being made (i.e., Eq. (18)) by using more sophisticated ML models. For example,
it can be conjectured that by using Graph Neural Networks (GNN), it is possible
to capture the cause and effect better of the demand on the resulting arc counts
as the relationships and interdependencies that exists between the arcs and thus
arc counts in the traffic network are modeled more explicitly.
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Appendix A. Derivation of the Gradient of the Objective Function

In the following we show how the gradient of the OF F is derived. To do this we only
show how the gradient of the first term is computed, as the derivation of the gradient
of the second term is very similar. The gradient of the OF F is the defined as:

∂F

∂xws
= ω1 ·

∂f (1)

∂xws
+ ω2 ·

∂f (2)

∂xws
, ∀w ∈W, s ∈ S. (A1)

To proceed we compute the gradient of the first term f (1) as follows:
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1/2


(A2)

We notice that the expression in the denominator is simply a constant. We can
factor this constant out and get:

=
∂

∂xws


 ∑
w′∈W
s′∈S

(xw′s′ − x̃w′s′)
2


1/2
 · 1 ∑

w′∈W
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x̃2
w′s′

1/2
(A3)

We then proceed by applying the chain rule to this expression and get:

=
1

2
·

 ∑
w′∈W
s′∈S

(xw′s′ − x̃w′s′)
2


−1/2

Deriv. of outer func.

· 2 · (xws − x̃ws)

Deriv. of inner func.

· 1 ∑
w′∈W
s′∈S

x̃2
w′s′

1/2
(A4)

When taking the partial derivative of the inner function w.r.t. xws we notice that
the terms with w′ 6= w and s′ 6= s are 0. We are thus only left with a single term, when
taking the derivative of the inner function. Finally, we can reduce this expression and
define the gradient of f (1) as:

g(1)
ws =

∂f (1)

∂xws
=

xws − x̃ws ∑
w′∈W
s′∈S

(xw′s′ − x̃w′s′)
2

1/2

·

 ∑
w′∈W
s′∈S

x̃2
w′s′

1/2
(A5)

The gradient of the second term f (2), which describes the marginal effect of a change
in the demand variables on the arc counts, can be computed in a similar way. The
only difference is that the relation in Eq. (9) should be used in the derivation as well.

Appendix B. Machine Learning Algorithms

Feed-Forward Networks (FFN): A feed-forward network is a nonparametric model
and a type of artificial neural network with a directed acyclic graph structure consisting
of units arranged in layers: First an input layer, then possibly several hidden layers,
and lastly, an output layer. Each of the units in a layer has links to the units in a
subsequent layer, and each of the links has an associated weight that determines the
strength and sign of the connection. In each unit, an activation function is applied to
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an offset term (usually referred to as a bias term in the FNN terminology) plus the
weighted sum of activations coming from the units in a previous layer. Depending on
the layer, different activation functions are used. No activation function is used in the
input layer and a ReLU (φ(·) = max(0, ·)) activation function is usually used in the
units situated in the hidden layers. The choice of activation function used in the output
layer is tied to the nature of the task at hand. For example, a linear activation function
is used for the regression task at hand where the target variables are continuous. A loss
function that measures a model’s goodness-of-fit also needs to be defined to determine
the bias terms and the weights of the links between the units. Just as the activation
function used in the output layer is tied to the task at hand, the choice of the loss
function is also closely tied to the activation function used in the output layer. For
example, a Mean Squared Error (MSE) loss function is used for a regression task.

A FNN architecture is defined by the number of layers (the depth of the network
md ∈ N not counting the input layer) and the number of units in each layer (the width
of a layer li ∈ N, with i ∈ {1, . . . ,md}), along with the activation functions used in
the different layers. In this case, to train the network, the problem is to find a set of
weight matrices W = {W1, . . . ,Wn} and corresponding biases B = {b1, . . . ,bn} that
minimize the Mean Squared Error (MSE) loss function:

(Ŵ, B̂) ∈ arg min
W,B
||y − ŷW,B(x)||22 + λ

n∑
i=1

||Wi||22 (B1)

ŷW,B(x) = (hmd
◦ hmd−1 . . . ◦ h1) (x) (B2)

where hi(a) = φi
(
W>

i a + bi
)

for i ∈ {1, . . . ,md}. Furthermore, the activation func-
tion φi is applied element-wise to the vector-valued argument, and a contains all the
activations received in the ith layer, while Wi contains the corresponding weights,
and bi is the bias term. Finally, in the last term of Eq. (B1) λ ∈ R+ is a regulariza-
tion parameter added to reduce overfitting and improve the out-of-sample predictive
performance. An appropriate value for the regularization parameter is usually chosen
using out-of-sample cross-validation techniques.

Gradient-based methods are widely used for solving the problem in Eq. (B1). This
is because gradients can be computed efficiently using the backpropagation algorithm
(see, e.g., Goodfellow, Bengio, and Courville (2016) for an in-depth explanation). Es-
sentially, we learn an input-output relationship by applying a sequence of semi-affine
nonlinear transformations, which in terms of the layers in a FNN can be understood
as applying the composite map in Eq. (B2) to a given input x.
k-Nearest Neighbors (k-NN): k-NN is one of the simplest nonparametric models

used for regression. To predict the value ŷ of a new unseen point x, k needs to be
specified. Its value specifies the number of points from a training set D closest to x
that should be used to calculate the predicted value ŷ. Let Nk(x) ⊆ D be the set of k
points closest to x in terms of the Euclidean distance, then the predicted value of x is
calculated as the average of the nearest points:

ŷk(x) =
1

k
·

∑
(x′,y′)∈Nk

y′. (B3)

Unlike the FNN and most other ML algorithms, no model must be determined, rather
the training data are kept and continuously used.
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