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Consistency in Contouring of Organs at Risk by Artificial Intelligence 

vs Oncologists in Head and Neck Cancer Patients 

Background: In the Danish Head and Neck Cancer Group (DAHANCA) 35 trial, 

patients are selected for proton treatment based on simulated reductions of  

Normal Tissue Complication Probability (NTCP) for proton compared to photon 

treatment at the referring departments. After inclusion in the trial, 

immobilization, scanning, contouring and planning are repeated at the national 

proton centre. The new contours could result in reduced expected NTCP gain of 

the proton plan, resulting in a loss of validity in the selection process. The present 

study evaluates if contour consistency can be improved by having access to AI 

(Artificial Intelligence) based contours. 

Materials and Methods: The 63 patients in the DAHANCA 35 pilot trial had a CT 

from the local DAHANCA centre and one from the proton centre. A nationally 

validated convolutional neural network, based on nnU-Net, was used to contour 

OARs on both scans for each patient. Using deformable image registration, local 

AI and oncologist contours were transferred to the proton centre scans for 

comparison. Consistency was calculated with the Dice Similarity Coefficient 

(DSC) and Mean Surface Distance (MSD), comparing contours from AI to AI 

and oncologist to oncologist, respectively. Two NTCP models were applied to 

calculate NTCP for xerostomia and dysphagia. 

Results: The AI contours showed significantly better consistency than the 

contours by oncologists. The median and interquartile range of DSC was 0.85 

[0.78 – 0.90] and 0.68 [0.51 – 0.80] for AI and oncologist contours, respectively. 

The median and interquartile range of MSD was 0.9 mm [0.7 – 1.1] mm and 1.9 

mm [1.5 – 2.6] mm for AI and oncologist contours, respectively. There was no 

significant difference in ∆NTCP. 

Conclusions: The study showed that OAR contours made by the AI algorithm 

were more consistent than those made by oncologists. No significant impact on 

the ∆NTCP calculations could be discerned. 
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Background 

Modern radiation treatment is complex and involves many manual and time-

consuming procedures. Even with national and international guidelines, contouring of 

cancer targets and organs at risk (OARs) in head and neck (H&N) cancer patients varies 

between treatment centres and clinical experts [1-3]. Variability in the contouring of 

OARs has a significant dosimetric impact on patient treatment [2,4] and may influence 

the results of clinical trials [5].  

In the Danish Head and Neck Cancer Group (DAHANCA) 35 trial 

(NCT04607694), H&N cancer patients are selected for proton treatment based on the 

simulated benefit in terms of Normal Tissue Complication Probability (NTCP) for 

xerostomia and dysphagia [6]. Contouring of OARs is part of the basis for treatment 

planning and, consequently, for the NTCP estimations. Thus, the accuracy and 

consistency of the OAR contours potentially affect the patient selection process for the 

DAHANCA 35 trial. 

To test the feasibility and safety of proton treatment, the DAHANCA 35 pilot 

trial (NCT05423704) was conducted [7]. All patients selected for the DAHANCA 35 

pilot trial received proton treatment, whereas the patients selected for the DAHANCA 

35 trial will be randomised for proton or photon treatment [6]. Results from the 

DAHANCA 35 pilot trial showed that the NTCP estimates, based on contours and 

treatment plans from different treatment centres, had variations that could be related to 

target contouring. There were also indications that the variation in OAR contours could 

play an important role in the robustness of patient selection [7]. 

Artificial Intelligence (AI) has been investigated as a useful tool in radiotherapy 

[8,9], and previous studies implemented AI algorithms for auto-segmentation of OARs 

on computed tomography (CT) scans in H&N cancer treatment, showing improved 

efficiency and standardisation of treatment [10,11]. AI has also shown good 



performance in contouring OARs compared to oncologist contours as ground truth 

[12,13]. It is therefore hypothesised that AI segmentation of OARs could improve the 

patient selection robustness for the DAHANCA 35 trial. 

This study aimed to quantify the consistency and variation in the contouring by 

oncologists of relevant OARs on two different CT scans for the same patient. This was 

compared to the consistency in contours performed by an AI segmentation algorithm on 

the same CT scans. Secondly, the impact on estimated NTCP using AI contours of 

OARs compared to contours made by oncologists was assessed to evaluate the clinical 

relevance of the difference in contouring consistency between AI and oncologists. 

Materials and Methods 

From May 2019 to March 2021, 63 patients were included in the DAHANCA 35 

pilot trial [6,7]. Each patient was diagnosed with squamous cell carcinoma of the 

pharynx or larynx at a local DAHANCA centre. Before potential inclusion in the trial, 

the following was performed at the local centre: a CT scan (local CT scan), contouring 

of the target volumes and OARs by radiation oncologists (local oncologist contours), as 

well as treatment planning for both photon treatment (local photon plan) and proton 

treatment (local proton plan). 

Two NTCP models, one for xerostomia grade 2+ and one for dysphagia grade 

2+, validated in a Danish cohort [14], were used to estimate the NTCP [15] for the local 

photon and proton treatment plans. If the difference in estimated NTCP (∆NTCP) for 

the local photon plan compared to the local proton plan was larger than 5 %-point for 

either xerostomia, dysphagia or both, the patient was offered inclusion in the trial and, 

on informed consent, referred to the national proton centre for proton treatment. 



At the proton centre, a new proton therapy compatible immobilisation mask and 

a new CT scan were made (clinical CT scan), as well as new contours (clinical 

oncologist contours) and a new proton treatment plan (clinical proton plan).  

The present study is a retrospective analysis of contouring consistency and 

∆NTCP, and thus does not influence the course of treatment of the patients included in 

the DAHANCA 35 pilot trial. 

Artificial Intelligence Segmentation Model 

The AI model used for segmentation was a Convolutional Neural Network 

(CNN) based on the nnU-Net model presented by Isensee et al. [16]. The AI model was 

trained on CT scans from a national trial [14] and relevant contours of OARs in H&N 

cancer recontoured by radiation oncologists following international standards [17]. The 

model performance was validated on OARs contoured by H&N oncology specialists 

from a Danish national workshop [18]. The model was used to retrospectively contour 

12 OARs relevant for H&N cancer on both local and clinical CT scans for all patients 

from the DAHANCA 35 pilot trial (local AI contours and clinical AI contours, 

respectively). The OARs available from the model were: extended oral cavity, upper-, 

middle-, and lower constrictor muscles, glottic larynx, supraglottic larynx, left and right 

parotid, left and right submandibular, thyroid, and oesophagus. 

Data Analyses 

The data analyses were performed on data from the 63 patients in the pilot trial. 

Local AI contours on local CT scans were compared to clinical AI contours on clinical 

CT scans, and local oncologist contours on local CT scans were compared to clinical 

oncologist contours on clinical CT scans. 



Data pre-processing and statistical analyses were performed in MATLAB 

R2022b. 

Data Pre-Processing 

One patient was missing the contour of the left submandibular on one of the CT 

scans, and another patient was missing contours of both the left and right 

submandibular. Thus, contours from 61 patients were used for the statistical comparison 

of the left submandibular and 62 for the right submandibular. Contours from all 63 

patients were used for the remaining 10 OARs. 

Using MIM software, Deformable Image Registration (DIR) was performed 

[19], transferring local AI and oncologist contours to the clinical CT scan, transferring 

both sets of contours using the same DIR for each patient. The DIR process in MIM 

first uses a rigid registration, then a coarse-to-fine multi-resolution approach, and 

finally, a custom-modified gradient descent for optimisation [20]. The result of the DIR 

was accepted based on visual inspection of the deform fusion alignment in MIM. 

Contour Overlap 

Contouring consistency was measured by contour overlap in terms of Dice 

Similarity Coefficient (DSC) [21,22] and Mean Surface Distance (MSD) [23]. The 

higher the DSC and the lower the MSD for a contour comparison, the better the 

consistency.  

The oncologists contour oesophagus in the caudal direction until it is no longer deemed 

clinically relevant, concerning the radiotherapy treatment plan. However, as the dose 

tolerance is the mean dose, it can influence the plan. The oesophagus contours were 

analysed as directly contoured and after correcting the contours to have the same caudal 

length i.e., when comparing two contours of oesophagus, the contour with the caudal 



part, most cranial determined the caudal length, and slices below that point were 

removed for the other contour. 

Normal Tissue Complication Probability 

NTCP is the foundation for patient selection in the DAHANCA 35 trial, and 

preliminary results from the pilot trial showed a disparity in ∆NTCP when comparing 

the local ∆NTCP (𝑁𝑇𝐶𝑃𝑙𝑜𝑐𝑎𝑙 𝑝ℎ𝑜𝑡𝑜𝑛 𝑝𝑙𝑎𝑛 − 𝑁𝑇𝐶𝑃𝑙𝑜𝑐𝑎𝑙 𝑝𝑟𝑜𝑡𝑜𝑛 𝑝𝑙𝑎𝑛) to the clinical ∆NTCP 

(𝑁𝑇𝐶𝑃𝑙𝑜𝑐𝑎𝑙 𝑝ℎ𝑜𝑡𝑜𝑛 𝑝𝑙𝑎𝑛 − 𝑁𝑇𝐶𝑃𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑝𝑟𝑜𝑡𝑜𝑛 𝑝𝑙𝑎𝑛) [7]. NTCP for xerostomia grade 2+ 

and dysphagia grade 2+ was estimated using the Dutch models for selection [15]. The 

model for xerostomia included baseline xerostomia and mean dose to the contralateral 

parotid [24], the model for dysphagia included baseline dysphagia and mean dose to the 

upper pharyngeal constrictor muscle and extended oral cavity (regression coefficients in 

Supplementary Table 1). 

In the present study, NTCP was calculated based on the original contours made 

by oncologists and the corresponding photon and proton plans, as described by Hansen 

et al. [7]. Additionally, NTCP was calculated based on the AI contours on the original 

photon and proton plans. The treatment plans were not optimised for the AI contours, as 

these were delineated retrospectively after patient treatment. 

The disparity in local and clinical ∆NTCP was visualized using a scatterplot and 

the variation using a Bland-Altman plot. 

Statistical Analyses 

Wilcoxon Signed Rank test for non-parametric data was used to compare the 

consistency and ∆NTCP between AI and oncologist contours for each patient, using a 

significance level of 5 %. 



Results 

Contour Overlap 

In terms of DSC and MSD, the AI contours showed significantly better 

consistency than the contours by the oncologists. The median and interquartile range of 

DSC across all 12 OARs was 0.85 [0.78 – 0.90] and 0.68 [0.51 – 0.80] for AI and 

oncologist contours, respectively. The median and interquartile range of MSD for all 

OARs was 0.9 mm [0.7 – 1.1] mm and 1.9 mm [1.5 – 2.6] mm for AI and oncologist 

contours, respectively. The DSC and MSD for the individual OARs are collected in 

Table 1. Comparing the DSC between AI and oncologists for each OAR, the DSC was 

significantly larger for AI contours. All p-values were significant (p < 10−5). The MSD 

for all OARS was significantly lower for AI contours compared to oncologist contours. 

All p-values were significant (p < 10−5). As seen in Table 1, the AI contours of 

oesophagus were still significantly more consistent than oncologist contours after 

correction to have the same caudal length (p  < 10−10). 

 DSC AI  DSC oncologists  MSD AI  MSD oncologists 

 [index] IQR  [index] IQR  [mm] IQR  [mm] IQR 

Extended oral cavity 0.95 0.94 - 0.95  0.84 0.81 - 0.89  0.8 0.7 - 1.0  2.2 1.7 - 2.9 

PCM up 0.79 0.76 - 0.81  0.40 0.31 - 0.51  0.8 0.7 - 0.9  2.4 2.0 - 3.0 

PCM mid 0.76 0.72 - 0.79  0.51 0.41 - 0.59  0.8 0.7 - 0.9  2.0 1.5 - 2.6 

PCM low 0.75 0.70 - 0.79  0.50 0.39 - 0.60  0.9 0.7 - 1.1  2.3 1.7 - 3.5 

Glottic larynx 0.79 0.76 - 0.82  0.45 0.35 - 0.57  0.8 0.6 - 0.9  2.2 1.7 - 3.0 

Suppraglottic larynx 0.88 0.86 - 0.89  0.58 0.48 - 0.64  0.9 0.8 - 1.1  1.9 1.6 - 2.6 

Parotid left 0.91 0.89 - 0.92  0.82 0.77 - 0.85  0.9 0.8 - 1.1  1.7 1.6 - 2.3 

Parotid right 0.93 0.92 - 0.93  0.82 0.78 - 0.84  0.8 0.7 - 0.9  1.7 1.5 - 2.1 

Submandibular left 0.86 0.83 - 0.88  0.78 0.74 - 0.82  1.0 0.9 - 1.2  1.4 1.1 - 1.8 

Submandibular right 0.89 0.86 - 0.90  0.78 0.74 - 0.81  0.8 0.8 - 1.0  1.5 1.2 - 1.9 

Thyroid 0.83 0.78 - 0.86  0.72 0.67 - 0.78  1.2 0.9 - 1.4  1.7 1.4 - 2.2 

Oesophagus 0.81 0.78 - 0.85  0.63 0.55 - 0.71  1.1 0.9 - 1.6  3.3 2.1 - 6.2 

Oesophagus* 0.84 0.81 - 0.86  0.72 0.67 - 0.77  0.8 0.7 - 1.0  1.9 1.3 - 2.6 

Table 1: DSC and MSD for 12 OARs contoured by AI oncologists, respectively. PCM 

up: upper pharyngeal constrictor muscle, PCM mid: middle pharyngeal constrictor 



muscle, PCM low: lower pharyngeal constrictor muscle. Interquartile range (IQR). 

* Oesophagus after correction so the contours have the same caudal length. 

 

Figure 1 shows the DSC represented as box plots with raw data points overlaid 

for all 12 OARs, and Figure 2 shows the MSD. Supplementary Figure 1 and 2 shows 

the DSC and MSD, respectively, for the oesophagus with and without correction to have 

the same caudal length. When correcting for the same length, the median DSC and 

MSD match the other OARs. 

Normal Tissue Complication Probability 

Considering the local ∆NTCP compared to the clinical ∆NTCP, no significant 

difference was found between the ∆NTCP calculated based on AI contours and ∆NTCP 

calculated on oncologist contours. 

Figure 3Fejl! Henvisningskilde ikke fundet. shows a scatter plot with the local 

∆NTCP on the x-axis and the clinical ∆NTCP on the y-axis. The ∆NTCP is shown in 

%-point. The dotted black line shows the identity line. If there was no difference 

between the local and clinical ∆NTCP, all samples would be on the dashed identity line.  

Figure 4 shows a Bland-Altman plot of the mean between the local and clinical 

∆NTCP on the x-axis and the difference between the local and clinical ∆NTCP on the y-

axis. The ∆NTCP is shown in %-point. 

 For the model used in the DAHANCA 35 pilot trial, the median difference and 

interquartile range in ∆NTCP for xerostomia was 0 %-point [-2 – 3] %-points for AI 

and 0 %-point [-1 – 4] %-points for oncologists. The p-value was not significant (p =

0.45). For dysphagia, the median difference in ∆NTCP was 1%-point [-1 – 4] for AI 

and 1%-point [-1 – 4] for oncologists. The p-value was not significant (p = 0.72). 



Discussion  

The results of the present study showed that contours generated by the AI 

segmentation algorithm were significantly more consistent than contours made by 

oncologists. The AI contours investigated in the present study are not adjusted by 

oncologists, which they would be if used for patient treatment. Furthermore, different 

centres might have slightly different procedures when working with AI contours. This 

could alter the consistency between contours, but it would presumably still be more 

harmonised, as all oncologists would use a more consistent starting point. Implementing 

an AI segmentation algorithm, with consistency as shown in this study, would therefore 

introduce less inter-observer variability in a clinical trial, assuming that the post-

correction done by oncologists would be limited. 

The contouring consistency was lower for oncologists than for AI across all 

OARs; however, the consistency for oncologists was highest in the OARs that have the 

longest history of guidelines and where the oncologist interpretation has been discussed 

over the years (i.e. extended oral cavity, left and right parotid, left and right 

submandibular, and thyroid) [25-27]. This is especially evident in Figure 1, showing the 

DSC. The consistency for contours by oncologists was lower for OARs implemented in 

the guidelines most recently, like the glottic larynx, supraglottic larynx, and constrictor 

muscles.  

The variation in consistency in the oesophagus contouring mainly depends on 

the length of the contoured organ as determined by the oncologist. The AI contours 

were still significantly more consistent after correcting the oesophagus contours to have 

the same caudal length. The corrected contours might give a more fair comparison, as 

the length of oesophagus outside of what is clinically relevant is less important. The AI 

contours of oesophagus without correction were also significantly more consistent than 



the oncologist contours after correction; thus, using these would give a more 

representative mean dose. 

The contrast on CT scans differs for different OARs, requiring an individual 

oncologist's specific interpretation of anatomy. This could explain some of the lack of 

consistency for oncologists, as some OARs might be more difficult to distinguish. Here 

the AI algorithm places a typical segmentation that matches the patient in shape and 

size. The algorithm works in 3D, whereas the oncologist works in 2D in the three 

different planes, which again could explain why the AI contours are more consistent. 

The lower consistency in contours made by oncologists supports the statement 

that even with national and international guidelines [17,27], there is a gap between what 

has been generally accepted and what is practically performed at different treatment 

centres [28]. In Denmark, every treatment centre adheres to the same guidelines [27], 

but even then, this study indicates that the interpretation and execution differ across the 

country. Implementing AI for contouring could reduce the gap between guidelines, 

interpretation, and execution. Contouring at the national proton centre is always 

conducted using an MR scan performed in the treatment position in addition to the 

planning CT scan. Although it is recommended to use MR [29], it is not always 

acquired at the local centres, and the use of MR for contouring OARs is not always 

used. This difference may explain some of the inconsistencies in contours between 

oncologists. 

The results on consistency in this study are a combination of contouring 

consistency, DIR, and differences in procedures between local and clinical centres. The 

OARs were investigated in terms of volume change before and after DIR; for most 

OARs, the volume changed by approximately 10%. This could be because of the DIR 

process, but also differences in scanning procedures between local centres and the 



proton centre, where the local CT scans are always performed with contrast and the 

proton centre CT scans are without. However, each set of local oncologist and AI 

contours was transferred using the same DIR process, which means that the potential 

change due to the DIR process was applied to both. Therefore it was assumed not to 

alter the overall conclusion of the study. 

A change in OAR contouring will affect the treatment planning, which in turn 

can affect estimations of NTCP [2]. Brouwer et al. investigated the effect of differences 

in delineation on resulting NTCP estimations. They found little NTCP differences in the 

majority of patients and large NTCP differences of > 10% in a few patients [2]. For a 

clinical trial like DAHANCA 35, utilising patient selection based on NTCP estimates, 

consistency in NTCP is important. Results from the DAHANCA 35 pilot trial, showed 

that for patients selected for a specific toxicity, the mean ∆NTCP for xerostomia and 

dysphagia was significantly reduced from the local centre to the national proton centre 

[7]. The mean local ∆NTCP for xerostomia was 7.3 %-point, and the mean clinical 

∆NTCP was 4.9 %-point. For dysphagia, the mean local ∆NTCP was 6.9 %-point, and 

the mean clinical ∆NTCP was 5.3 %-point [7]. The present study did not show 

significant differences in ∆NTCP between contours by oncologists and AI, potentially 

because the treatment plans were not optimised according to the AI contours. It would 

be expected that improving the contour consistency of OARs and target as well as 

optimising treatment plan quality, would result in more consistent NTCP estimates. The 

consistency of OAR contours could be improved by using AI, as suggested in this 

study. Even though DAHANCA guidelines have already improved the contouring 

consistency of clinical target volumes [3], it could be further enhanced by implementing 

AI for segmentation of target volumes as a starting point for oncologists [30]. 

Furthermore, optimising treatment plan quality to spare OARs could be done using 



automated and knowledge-based treatment planning tools [31-33]. The field of AI 

continues to develop, and better segmentation models will likely be developed for 

contouring for both OARs and cancer targets, thus improving consistency between 

treatment centres. Similarly, dose prediction AI algorithms [34-36] will potentially help 

improve NTCP estimates. The dose distribution can be predicted without simulating the 

full complex photon or proton plan, presumably increasing the consistency.  

The results of this study do not indicate whether contours made by AI or 

oncologists are more correct, only that AI contours are more consistent for the same 

patient. Before implementing an AI model for the segmentation of OARs, it should be 

investigated if the AI model performs to a clinically acceptable standard. This was not 

investigated in this study; however, the current AI model performance was investigated 

in a study by Lorenzen et al. [37], who found that it performed as well as, or better than, 

the expert oncologists for almost all OARs investigated here. An exception was the 

upper pharyngeal constrictor muscle, where the model was trained on segmentation 

from a vague definition of the upper pharyngeal constrictor muscle. For this reason, the 

AI model is being updated.  

Higher consistency in contouring would contribute to increasing the chance of 

more consistent treatment planning across treatment centres, influencing NTCP 

estimates. In combination with improved target contouring, it would thus potentially 

result in improved patient selection for the trial, potentially improving the overall 

outcome of the trial. In general, AI OAR segmentation could provide a common starting 

point which, in the long run, could lead to harmonised treatment procedures and 

improve the local selection of patients for appropriate treatment, independent of local 

expertise and workload, and hence improve equality in health care. 



This study investigated the consistency in contouring when using AI, but AI 

may also be useful for Quality Assurance (QA) of clinical trials and clinical practice 

[36]. QA could be implemented like in this study, where AI constitutes a second 

opinion to consider, or as a tool for decision support to form the basis for oncologist 

contouring. It could also be used directly for QA of the AI-generated contours [38]. 

In conclusion, AI is more consistent for segmentation of OARs in H&N cancer 

patients compared to oncologist contours. However, the more consistent contours did 

not translate into more consistent ΔNTCP estimates. 
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Figure Legends 

Figure 1: Box plot with individual samples overlaid showing the DSC for the 12 OARs. 

Green boxes and samples show the DSC for the AI contours, and blue boxes and 

samples are results comparing oncologist contours. The raw data points are shown to 

visualise the distribution. 

Figure 2: Box plot with individual samples overlaid showing the MSD for the 12 OARs. 

Green boxes and samples show the MSD for the AI contours, and blue boxes and 

samples are results comparing oncologist contours. The raw data points are shown to 



visualise the distribution. For visualisation, the plot has been scaled, omitting two 

outliers from oesophagus and one from glottic larynx for oncologist contours. 

Figure 3: Scatter plot of the local ∆NTCP (𝑁𝑇𝐶𝑃𝑙𝑜𝑐𝑎𝑙 𝑝ℎ𝑜𝑡𝑜𝑛 𝑝𝑙𝑎𝑛 −

𝑁𝑇𝐶𝑃𝑙𝑜𝑐𝑎𝑙 𝑝𝑟𝑜𝑡𝑜𝑛 𝑝𝑙𝑎𝑛) and clinical ∆NTCP (𝑁𝑇𝐶𝑃𝑙𝑜𝑐𝑎𝑙 𝑝ℎ𝑜𝑡𝑜𝑛 𝑝𝑙𝑎𝑛 −

𝑁𝑇𝐶𝑃𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑝𝑟𝑜𝑡𝑜𝑛 𝑝𝑙𝑎𝑛) based on AI (green data points) and oncologist (blue data 

points) contours, respectively, for xerostomia and dysphagia.  

Figure 4: Bland-Altman plot showing the mean and difference between the local and 

clinical ∆NTCP for xerostomia and dysphagia. The green data points represent the 

∆NTCP based on AI contours, and the blue data points represent the ∆NTCP calculated 

based on oncologist contours. 
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