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Simple Summary: Multiple myeloma is the second most common hematological malignancy, and the
majority of patients have osteolytic lesions by the time of diagnosis. Bone destruction increases the
risk of fractures and spinal cord compression, reduces quality of life, and is associated with increased
mortality. This paper focuses on current and novel medical and surgical treatment modalities
and improvements in prevention and the treatment of therapy-related complications, in particular,
medication-related osteonecrosis of the jaw. A special focus reviews new promising targets in the
bone marrow microenvironment.

Abstract: Osteolytic bone disease is present in about 80% of patients with multiple myeloma at the
time of diagnosis. Managing bone disease in patients with multiple myeloma is a challenge and
requires a multi-faceted treatment approach with medication, surgery, and radiation. The established
treatments with intravenous or subcutaneous antiresorptives can cause debilitating adverse events
for patients, mainly osteonecrosis of the jaw, which, traditionally, has been difficult to manage. Now,
oral surgery is recommended and proven successful in 60–85% of patients. Patients with spinal
involvement may benefit from surgery in the form of vertebroplasty and kyphoplasty for pain
relief, improved mobility, and reestablished sagittal balance, as well as the restoration of vertebral
height. These procedures are considered safe, but the full therapeutic impact needs to be investigated
further. Ixazomib, the first oral proteasome inhibitor, increases osteoblast differentiation, and recently
published preliminary results in patients treated with Ixazomib maintenance have promisingly shown
increased trabecular volume caused by prolonged bone formation activity. Other novel potential
treatment strategies are discussed as well.

Keywords: multiple myeloma; kyphoplasty; vertebroplasty; osteonecrosis of the jaw; antiresorptive
agents; bone marrow microenvironment

1. Introduction

Multiple myeloma (MM), a plasma cell cancer, is the second most common hemato-
logical malignancy [1,2], characterized by the proliferation and expansion of monoclonal
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plasma cells in the bone marrow. Osteolytic lesions are a hallmark finding in patients
with MM, and as many as 80% of patients have osteolytic bone disease at the time of
diagnosis [3]. The increased degradation of bone causes a high risk of skeletal-related
events (SRE], such as pathological fractures and spinal cord compression, and greatly
contributes to morbidity [4]. The burden of symptoms in patients with MM has a high
impact on health-related quality of life (HRQoL), mainly due to reduced physical function
and bone pain. Compared to other hematological malignancies, the disease is associated
with a higher risk for patients to end up receiving disability pensions [5–7]. Moreover,
SRE in patients with MM is associated with inferior overall survival [8]. Thus, managing
bone disease in patients with MM is important. In addition to antineoplastic treatment,
the treatment of myeloma bone disease may involve radiotherapy, antiresorptives, and
percutaneous orthopedic interventions such as vertebroplasty and kyphoplasty, as well
as major surgery. The aim of this manuscript is to review the literature and practices of
antiresorptive treatments, their adverse effects, and the management of these, along with
current standards and new developments in vertebroplasty and kyphoplasty, including
examples of bone reconstructive surgery. Antineoplastic treatment and radiotherapy are
not within the scope of this review; instead, we focus on potential novel targets in the bone
marrow microenvironment.

2. Antiresorptive Treatments

In a healthy individual, bone homeostasis is maintained through the continuous
resorption of old bone, which is followed by the coupled refilling (formation) of new bone
within the bone resorption cavity. Myeloma bone disease arises in patients with MM due
to uncoupled bone remodeling with upregulated osteoclast and downregulated osteoblast
activity [9–11]. The receptor activator of nuclear factor-κB (RANK), a transmembrane
receptor expressed in several bone cells as well as in hematopoietic osteoclast precursor
cells, activates upon binding with RANK-Ligand (RANKL) and facilitates pre-osteoclast
recruitment and osteoclast activation and survival [12]. Myeloma plasma cells increase
RANKL expression and decrease osteoprotegerin (OPG) expression. OPG is a decoy
receptor that inhibits bone resorption by binding to RANKL and prevents it from binding
to its receptor, RANK [13]. The increased RANKL to OPG ratio favors the activation of
osteoclasts [14]. The cornerstone in the treatment of MBD is antiresorptive (AR) medication,
which inhibits osteoclast activity. Amino-bisphosphonates, zoledronic acid (ZA), and
pamidronate (PA), specifically, have for several years been the standard in the treatment of
MBD [15]. ZA has the highest relative potency of all bisphosphonates, which is a hundred
times higher than that of PA [16]. Either one is recommended as a first choice for all
patients with active MM, with or without radiological findings of MBD [17], because micro-
architectural changes can be present at the earliest stages of the disease [18]. ZA is preferred,
partly because of its more convenient administration time, as well as its superiority over
PA regarding mortality rate reduction [19,20]. ZA has shown a progression-free survival
(PFS) benefit [21], is not inferior to PA in reducing SREs or bone pain [22], and is superior
in treating malignancy-related hypercalcemia [23].

After the discovery of the RANKL pathway, denosumab (Dmab), a human immunoglob-
ulin G2 anti-RANKL antibody, was developed. It inhibits RANKL and is the preferred
choice when bisphosphonates are contraindicated (e.g., renal impairment). It is speculated
that Dmab could be a viable replacement for bisphosphonates in the treatment of MBD.
A large double-blind, double-dummy, randomized trial comparing Dmab to ZA that in-
cluded 1718 patients, however, found no difference in the median time to the first on-study
skeletal-related event and showed no significant difference in incidence for serious adverse
events, such as medication-related osteonecrosis of the jaw (MRONJ) [24]. An exploratory
end-point was later published from the same study. It found that treatment with Dmab
resulted in an increased median PFS by 10.7 months, but only in patients intent on un-
dergoing autologous stem cell transplantation and patients with CrCl > 60 mL/min [25].
Future prospective studies are needed to validate this finding. As of 2021, The International
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Myeloma Working Group recommends ZA over Dmab until more data are available [17].
So far, Dmab has been shown to be as effective as ZA in preventing MBD, but it comes
at a higher cost. Furthermore, the later discontinuation of Dmab may be more trouble-
some than the discontinuation of ZA as bone resorption may rebound. This phenomenon
will be discussed in detail in a later section. A study is currently investigating if Dmab
can effectively delay the time for high-risk smoldering myeloma to transform into MM
requiring active treatment (clinicaltrials.gov: NCT03792763, accessed on 1 November 2023),
and data are awaited. The recent approval of romosozumab (anti-sclerostin antibody) for
the treatment of osteoporotic patients is a promising development that may translate into
treatment for patients with MM. It is supported by pre-clinical observations that sclerostin
inhibition prevents fractures and pathological bone loss in patients with MM [26–28].

3. Medication-Related Osteonecrosis of the Jaw and Multiple Myeloma

The jaws are rarely symptomatically affected directly by the cancer as much as the
spine and hip bones. However, the high-dose AR treatment involves a risk of developing
MRONJ. One nationwide population-based cohort study in Denmark found the incidence
of MRONJ to be around 2% in patients treated with high-dose AR [29]. Other studies have
found ZA MRONJ incidence to be from 2.6% to 4% [20,30]. Importantly, however, is that the
incidence of MRONJ rises with higher cumulative doses of, or treatment duration with, AR
therapy [31]. One systematic review and meta-analysis including a total of 42.003 patients
with different malignancies showed that with 4 mg of ZA every 3 or 4 weeks, MRONJ
incidence was 2.0% versus 1% when ZA was given every third month. MRONJ incidence
with 120 mg Dmab given every month was 2.09%, whereas it was zero when 60 mg was
given every 6 months [32]. However, in the currently recommended treatment regimes in
MM, 120 mg Dmab or 4 mg ZA both given every four weeks, a large randomized phase
3 study including only MM patients found the risk of developing MRONJ to be similar
between the two treatments [24].

The precise mechanism behind MRONJ development is not fully understood, but
the development is closely associated with dental extraction or pressure damage from
oral prostheses [33]. Theories involve micro-trauma or infection in the bone, triggering
an impaired bone healing process, which leads to inflammation with compromised blood
supply and subsequent bone necrosis. Recent studies indicate that infection probably is the
major determinant of MRONJ [34–37] and, thus, eliminating local infection may prevent
the development of MRONJ. Dental extraction and minor oral surgeries can safely be
performed with minimal risk of MRONJ when performed in combination with prophylactic
antibiotic therapy [38–40]. Additional risk factors include smoking and diabetes as these
also compromise healing and increase susceptibility to oral infections after treatment.
Prevention and risk reduction of developing MRONJ include appropriate dental treatment
before initiating antiresorptive therapy, close monitoring during treatment, and regular
dental evaluations to prevent developing dental infections following AR initiation [41].

Temporary discontinuation of AR treatment before upcoming oral surgery, known as
a drug holiday, has been considered as a strategy to minimize the risk of MRONJ. However,
a large meta-analysis including a total of 6808 patients found no significant difference in the
development of MRONJ between the drug holiday group (n = 4847) and the control group
(n = 1961) [42]. One RCT included 23 patients undergoing surgical tooth extraction and
randomly allocated patients to a drug holiday from 1 month prior to 3 months post-surgery,
with the majority of patients receiving Dmab. It also found no evidence of drug holidays
preventing MRONJ. They did, however, report a decline in the patient-reported health state
in those on a drug holiday compared to those in the drug-continuation arm [43].

Diagnosing MRONJ is based on radiological and clinical findings, including exposed
necrotic bone and fistulas to underlying necrotic bone, with symptoms such as jaw pain,
non-healing ulcers, and soft tissue swelling. Radiological imaging can help distinguish
MRONJ from other oral pathologies and help stage the amount of necrosis for subsequent
treatment planning. Conservative treatment was previously recommended for patients
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with MM who developed MRONJ [44] as this was believed to slow or stop the progression
of osteonecrosis. This may include antibiotic therapy, local oral hygiene maintenance
with chlorhexidine, the removal of sequestered bone, or minor debridement of the site [44].
However, a recent study shows that despite conservative treatment, MRONJ still progresses
in 80% of patients with stage I MRONJ [45]. Thus, the European task force on MRONJ now
recommends surgical treatment, when possible, but conservative treatment may still be
indicated in frail, elderly patients or in a palliative setting [33].

Recommended surgical treatment (Figure 1) consists of resection of the osteonecrotic
tissue and primary closure of the gingiva. The procedure is planned from a 3D cone beam
or multislice CT scan. Surgical treatment is performed in combination with antibiotic
therapy (amoxicillin with clavulanic acid, 3 g/day, a minimum of one day before and
6–9 days after surgery) [46]. An incision is made that extends from the perforation of the
osteonecrosis in both mesial and distal directions on the alveolar ridge. The gingiva is
carefully elevated to access the osteonecrotic tissue and the bone is resected with a drill
to the planned extension and depth. The remaining bone should display vital bleeding
points. Biopsies can be taken from the vital bone and from the resected necrotic bone to
confirm the diagnosis of MRONJ, eliminate an additional cancer diagnosis, and confirm
vital bone in the margins of the resection. Finally, the gingiva is mobilized and sutured
to a tension-free primary closure. In case the gingiva cannot close the defect, a cutaneous
flap must be raised to close it. Surgical treatment has been shown to successfully remove
necrosis and infection in more than 60 to 85% of treatments [47]. To increase the chance of
successful surgical treatment, adjuncts to surgery, such as teriparatide [48,49] platelet-rich
fibrin/plasma [50], and growth factors [51], have shown promising results, but require
further investigation. Additionally, fluorescence-guided surgery also shows an increase in
success rates by ensuring that all the infected and necrotic bone is removed [52,53]. Overall,
the level of evidence for optimal treatment is low for all treatment protocols, building on
few randomized controlled trials [37]. The preferable and most effective measure seems
to be the prevention of MRONJ by preventing infection and inflammation in the bone by
dental examination at 3-month intervals [39].
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Figure 1. (A) Clinical presentation of medication-related osteonecrosis of the jaw (MRONJ). The
stage 3 osteonecrosis in the anterior part of the mandible is clinically visible as grey bone protruding
through the inflamed gingiva. (B) MRONJ. The figure shows the area of necrosis and the suggested
resection area for resection. The edges are slightly rounded to avoid sharp edges that may perforate
the gingiva during healing. (C) Surgical treatment with submandibular incision to access the necrotic
bone. A wide incision is necessary to ensure that all necrotic bone is removed, and the mandible
can subsequently be restored by a reconstruction plate. Blue line marks the extention of visible
osteonecrosis. Yellow line marks the intermediate, sclerotic zone.

4. Antiresorptive Agents and Duration of Treatment

Before the emergence of MRONJ, AR treatment usually continued indefinitely. How-
ever, since incidences of both MRONJ and atypical femur fractures [54,55] increase with
the dose and duration of AR treatment, guidelines have been updated to reflect this and
reduce its usage. Since the original studies with ZA and PA had a follow-up of approxi-
mately 2 years, this is what most guidelines recommend [19,56]. The British Myeloma IX
study, however, found that the increased protective effect of ZA compared to the inferior
clodronate remained significant beyond 2 years of treatment. Likewise, a Mexican study
found a 20% reduction in SRE in patients with MM receiving ZA for 4 years compared to
only 2 years [57]. A recent presentation at IMW 2023 presented data from the Magnolia
trial, a randomized study comparing 2 vs. 4 years of treatment with ZA in patients with
MM, found that the risk of progressive bone disease (PBD) was significantly lower in
the 4-year ZOL arm, with a hazard ratio of 0.38, without an increased significant risk of
MRONJ [58]. To mitigate the risk of side effects with prolonged AR treatment, some guide-
lines suggest that the treating physician can consider decreasing the dosing frequency after
12 months of treatment to every 3 months for patients obtaining VGPR or better [15]. This
is mainly based on the Myloma IX study, which found that the positive effect of ZA over
clodronate on PBD disappeared in patients that had obtained CR + 100 days after autolo-
gous stem cell transplantation [59]. However, clinical studies have also demonstrated that
patients obtaining a deep response post-transplant have a very low risk of future PBD [60].
Two studies including mainly patients with other malignant diseases than MM found
treatment with ZA every 12 weeks versus every 4 weeks to be non-inferior; in these studies,
the 12-week schedule was initiated at diagnosis [61,62]. Whether or not these data justify
the de-escalation of AR based on response depth still has not been tested prospectively.
We know from the Magnolia trial that 24% of all cases of PBD were indeed observed in
patients who had obtained CR in their latest line of treatment [63]. Furthermore, it has been
demonstrated that stopping ZA after 12 months of treatment results in a shorter suppres-
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sion of bone resorption, reflected by lower levels of bone resorption markers, compared to
24 months of treatment [64]. It thus seems that 48 months of treatment with AR is superior
to only 24 months of treatment. Whether dosing can be reduced to every 12 weeks, or if
patients with a certain depth of response may tolerate less treatment, remains to be tested
prospectively. A future alternative approach to determine which patients can safely descale
or pause AR treatment could perhaps be taking measurements of circulating microRNA.
MicroRNAs have recently been shown to play an important role in osteoblasto- as well as
osteoclastogenesis [65]. In addition, the same microRNAs are able to accurately predict the
presence of osteolytic bone disease in newly diagnosed multiple myeloma [66].

Importantly, however, discontinuation of ZA and Dmab have very different effects
on bone remodeling. Discontinuation of ZA results in a gradual declining effect, while
discontinuation of Dmab may result in a devastating resorptive rebound phenomenon,
probably due to an underlying upregulation of RANKL. Studies including patients with
other diseases than MM have shown that terminating treatment with Dmab, or even a brief
temporary discontinuation, may result in severe bone resorptive rebound, leading to an
increased risk of multiple vertebral fractures [67–70]. A direct transition from Dmab to ZA
has shown to diminish, but not prevent, this rebound phenomenon [71], and this approach
may not be viable in patients on Dmab with reduced renal function. A practical approach
in these patients could be to not discontinue treatment with Dmab but only reduce the
intensity to every 12 weeks. Another proposed way to counter this problem is a combined
short-term regimen with teriparatide and Dmab [72]. The Federal Drug Administration
(FDA), however, has placed a black box warning on teriparatide for patients with skeletal
malignancies as it increases the risk of osteosarcoma in rats.

If AR treatment is completely discontinued, we know from the Azabache trial that it
should be re-initiated at biochemical progression [73].

5. Vertobroplasty and Kyphoplasty

Vertebral compression fractures are a common complication of myeloma bone disease,
resulting in severe pain and functional impairment. Surgical interventions, such as vertebro-
plasty and kyphoplasty, have emerged as effective treatment options for pain relief and the
restoration of vertebral height in these patients [74,75]. Vertebral augmentation, vertebro-
plasty, and kyphoplasty are minimally invasive procedures performed under fluoroscopic
guidance. Vertebroplasty involves the percutaneous injection of polymethylmethacrylate
(PMMA) into the fractured vertebral body, providing stabilization. Kyphoplasty includes
an additional step of balloon inflation to restore vertebral height before PMMA injection.
These procedures are typically performed on an outpatient basis under local anesthesia
with light sedation. The indications for vertebroplasty and kyphoplasty in patients with
MM with vertebral compression fractures include symptomatic fractures and severe pain
that is unresponsive to conservative management [75]. The protection of sagittal balance
has emerged as an important indication, with increasing long-term survival rates in the
MM population [75].

Several studies have reported favorable clinical outcomes following vertebral aug-
mentation procedures in patients with MM [74,76,77]. Significant pain relief, improved
mobility, and the restoration of vertebral height have been observed [74,76,78]. These
interventions have shown a reduction in pain scores, decreased analgesic requirements,
and improvements in quality of life [74,76,78]. Moreover, they are associated with low
complication rates and minimal perioperative morbidity [74,79–81]. A Danish national
clinical guideline for the treatment of malignant lesions with percutaneous vertebroplasty,
published in 2020, includes a weak recommendation for the procedure [82]. However, the
number of high-quality studies to uncover the full impact of the procedures is still low.
Presently, a single-blinded, randomized clinical trial is being conducted to compare the
outcomes of standard care alone versus standard care supplemented with vertebroplasty
(clinicaltrials.gov: NCT04533217, accessed on 1 November 2023) [83]. Wedge osteotomy
can be considered in cases where severe kyphotic deformity affects the patient’s activi-
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ties of daily living. It allows for the reestablishment of sagittal balance and correction of
deformity (Figure 2).
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6. Targeting the Microenviroment

Myeloma bone disease is characterized by the development of focal “punch-out”
lesions, which are the result of a highly active bone resorption with an uncoupling of the
subsequent bone formation. The uncoupled bone formation is likely a consequence of
myeloma cell-induced disruption of the bone remodeling compartment (BRC) canopies
(Figure 3), which reflect a bone marrow envelope that is lifted above remodeling sites [84].
The canopies/envelope consist of elongated osteoprogenitor cells that physically separate
the bone surface cells, including remodeling events from the bone marrow cavity [10,85],
considered to be a local reservoir of osteoprogenitor cells [84,86]. This local reservoir is
critical for the transition from bone erosion to formation, requiring the recruitment of a
critical density of osteoprogenitor cells to the eroded surfaces formed by bone-resorbing
osteoclasts. It has previously been shown that the number of osteolytic lesions in patients
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with MM is directly correlated to the uncoupling of bone resorption and bone formation
and that this uncoupling occurs primarily upon MM disruption of the canopies [10]. The
mechanisms of canopy disruption are not fully understood, but it may be mediated by
cancer-induced apoptosis of the canopy cells [11], as myeloma cells have been shown to
induce apoptosis in osteoblastic cells via tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL) and Fas-Ligand (FasL) [87,88].

Upon gaining proximity to the bone surface cells, the MM cells upregulate osteoclast
activity and differentiation along with osteoblast hypoactivity, altering the tightly coupled
process of bone remodeling. The bidirectional effect of myeloma on bone cells is mediated
by a myriad of osteoclast-activating factors, such as RANKL, macrophage inflammatory
protein alpha (MIP-1 alpha), interleukin-1 (IL-1), interleukin-3 (IL-3), and tumor necrosis
factor alpha (TNF-α) [89–91], and osteoblast-inhibiting factors like dickkopf WNT signaling
pathway inhibitor 1 (DKK1), sclerostin, hepatocyte growth factor (HGF), interleukin-7
(IL-7), and TNF-α [92–96]. MM cells additionally express syndecan-1, which binds OPG,
resulting in its endocytosis and degradation, further contributing to osteoclastogenesis [97].
In addition to the autocrine effect of myeloma cells on osteoclasts and osteoblasts, their
modulation of the proximal bone marrow microenvironment also results in the further
release of RANKL, macrophage colony-stimulating factor (MCSF), interleukin-6 (IL6),
and TNF-α from bone marrow stromal cells [98–100] or osteoblast inhibitory factors like
sclerostin from osteocytes [26,28,101–103], among others. Increased bone resorption leads
to the release of growth factors from the bone matrix, which, in turn, promote cancer cell
growth, leading to a reciprocal interaction known as the “vicious cycle”.

In addition to their direct and indirect effects on bone cells, myeloma cells modify
other bone marrow microenvironment components that consequently support their engraft-
ment, growth, and survival. Co-culture experiments demonstrate that MM cells inhibit
adipocyte differentiation, promote adipocyte lipolysis, and uptake fatty acids from proxi-
mal adipocytes [104,105]. In turn, myeloma-modified adipocytes support cancer growth
and survival, demonstrating a shift towards a pro-tumorigenic microenvironment upon
cancer cell colonization.

Skeletal stem and progenitor cells (SSPCs, known as mesenchymal stem cells) also
play a crucial role in MBD and are distinctly altered by the presence of MM cells in both a
paracrine and an autocrine fashion. SSPCs reversely alter MM cell phenotype and function
by the secretion of micro-vesicles and cytokines that stimulate MM cell proliferation and
migration [106–108], contributing to the establishment of a pro-tumorigenic microenvi-
ronment. In turn, SSPCs differentiation capacity is hampered in MM [109–111], resulting
in osteoblastopenia [112] and an accumulation of SSPCs in the bone marrow [113]. Fur-
thermore, SSPC gene expression is largely altered by MM, as demonstrated by in vitro
co-culture studies of SSPCs with MM cell lines [114,115]. Even after ex vivo expansion of
SSPCs without MM cells, the gene expression profiles of SSPCs from patients with MM are
distinguishable from SSPCs from patients with premalignant monoclonal gammopathy of
undetermined significance (MGUS; an asymptomatic condition that precedes MM) and
healthy donors [114,116–119]. Deregulated transcriptional pathways include cell cycle
regulation, osteoblast maturation, MM cell survival factors, and immune-modulating fac-
tors [117,119]. The deregulation of gene expression in SSPCs persists after anti-myeloma
therapy [113,118,119], even in patients who are negative for measurable residual dis-
ease [119], suggesting a permanent modulation of the cells. This is supported by findings
of genomic alterations [120] and epigenetic modifications of the SSPC genomes in MM,
dependent on disease stage and inducible by MM cell co-culture [121]. While recent years’
advances in anti-myeloma therapy have improved survival in patients with MM tremen-
dously [122], there has been no revolution in the treatment of myeloma bone disease, which
still relies mainly on AR therapies.

Novel treatments targeting alterations of SSPCs could suppress the pro-tumorigenic
bone marrow microenvironment while stimulating the differentiation of osteoblasts with
bone-forming capacity and even anti-myeloma effects [123,124]. Proteasome inhibitors
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have been shown to exert some of their therapeutic effects, not only by their anti-tumor
effect on myeloma cells but also through the off-target inhibition of the nuclear factor-
kB (NF-kB) signaling pathway, which results in decreased RANKL-mediated osteoclastic
differentiation [125]. Indeed, Bortezomib increases serum bone formation markers and
decreases markers of bone resorption in clinical studies [126,127]. Another proteasome
inhibitor, carfilzomib has been shown to promote increased trabecular bone volume in a
mouse model of MM [128]. Furthermore, in a clinical trial with humans, carfilzomib has
been shown to increase the bone formation markers osteocalcin and procollagen type I
N-propeptide, independently of myeloma response to treatment [129].

The proteasome inhibitors’ improvement of the skeletal compartment is, however,
overshadowed by problematic adverse toxicities, such as neuropathy and cardiac toxic-
ity [130–132], and by the development of resistance in MM cells. Ixazomib, the first oral
proteasome inhibitor, has proven to be more tolerable in clinical trials. In addition to its
anti-tumor effect [133], it also improves osteoblast differentiation while inhibiting osteo-
clast differentiation in in vitro studies [134,135]. The effect of ixazomib on myeloma bone
disease is currently being investigated in a clinical trial on patients with MM in remission
(clinaltrials.gov NCT04028115, accessed on 1 November 2023). Recently published pre-
liminary results from this trial [136] revealed a drug-mediated increase in trabecular bone
volume mediated by decreased osteoclast activity and longer bone formation events in bone
biopsies taken after just 3 months of treatment [136]. Daratumumab, a CD38 antibody that
is extensively used to treat MM, has also demonstrated positive effects on bone formation.
Whether this is due to a direct effect on the osteoblasts or through an indirect effect on the
myeloma cells needs further exploration [137]. A quick overview of possible bone-targeting
therapies can be obtained from Table 1.

Table 1. Major or novel bone targeting therapies and their mechanism of action.

Drug Target Pathway Mechanism of Action Reference

Zoledronic Acid
(bisphosphonate) Osteoclasts Mevalonate pathway Inhibits bone resorption [138]

Denosumab
(monoclonal antibody) RANK RANK/RANKL pathway Inhibits bone resorption [12]

Daratumumab
(monoclonal antibody) CD38

Antibody-dependent
cellular cytotoxicity

(ADCC)
Complement-dependent

cytotoxicity (CDC)
Direct apoptosis

Signaling events,
receptor-mediated adhesion,

regulation of migration
[139]

Romosozumab
(monoclonal antibody) Sclerostin Wnt-signaling pathway

Inhibits osteoclastogenesis
and perhaps stimulates bone

formation
[140]

Ixazomib
(proteasome inhibitor)

20S proteasome
(proteasome subunit

beta type-5)

Ubiquitin-proteasome
pathway

Inhibition of NF-κB signaling
Cell cycle arrest
Cell apoptosis

Stimulates osteoblast
differentiation

Inhibits osteoclast
differentiation

[141]

clinaltrials.gov
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Figure 3. Current therapies in myeloma bone disease. MM cells interact with their surrounding
bone marrow microenvironment, including vasculature/innervation, SSPCs, and adipocytes, which,
in turn, promote MM cell survival and proliferation. Upon disruption of the bone remodeling
compartment (BRC) canopy, MM cells enter into direct contact with osteoclasts, osteoblasts, and
osteoprogenitor cells, uncoupling the bone resorption and formation and inducing osteolytic disease.
Bisphosphonates bind the bone surface and promote osteoclast apoptosis and Dmab binds RANKL,
thereby decreasing osteoclast differentiation. Ixazomib, a proteasome inhibitor, decreases osteoclast
activity and simultaneously promotes longer bone formation events by osteoblasts, resulting in net
bone gain.

Importantly, the sum of the described MM-induced alterations to the bone marrow
microenvironment drives the production of anti-apoptotic cytokines and suppresses anti-
tumor responses, resulting in an environment supporting MM cells’ growth, survival, and
resistance to therapy—termed “the MM niche”. This niche plays a pivotal role in the
induction of MM dormancy [142,143], a state of quiescent growth arrest that allows MM
cells to become unavailable to anti-myeloma therapy. Here, osteoblastic cells may control
dormancy induction, while osteoclastic bone remodeling may promote dormancy escape
and consequent disease relapse [144]. These residual MM cells accumulate mutations
over time, driving later disease relapses and resulting in the incurable disease that is MM;
thus, targeting myeloma bone disease may ultimately pose an effective avenue towards
disease cure.

7. Conclusions and Future Perspectives

Myeloma bone disease remains a challenging condition to manage. Vertebral compres-
sion fractures are painful and immobilizing and thereby are potentially dangerous. Surgical
interventions with a focus on pain relief and restoring the sagittal balance indicate a very
low perioperative risk versus a great therapeutic value, but the full therapeutic impact still
needs to be investigated further. AR treatment is necessary for patients with MM, but, for a
small number, it can bring debilitating adverse events, such as MRONJ, that is difficult to
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manage. AR therapy regimes could benefit from prolonging treatment periods from two to
four years in order to reduce the risk of PDB. But, since the incidence of MRONJ rises with
the cumulative dosage of antiresorptive medication, the treating physician might consider
reducing the dosing frequency to every 3rd month for patients who achieve VGPR or better
after their anti-myeloma therapy.

In the treatment of MRONJ, conservative treatment was previously the preferred
option, but, now, surgery is recommended and is successful in 60–85% of patients. Overall,
the treatment protocols lack high-grade evidence, and several adjuvating therapies are
being investigated. No consensus has been reached on drug holidays and whether these
are beneficial in preventing MRONJ, and the preferable and most effective measure seems
to be the prevention of MRONJ by preventing infection and inflammation in the bone by
regular dental examinations.

A major breakthrough in myeloma bone disease treatment is still awaited, and research
should continue to investigate bone anabolic treatments. Romosozumab, the anti-sclerostin
antibody approved in treatments for osteoporosis, could be relevant in the treatment of
myeloma bone disease. Further, proteasome inhibitors stimulating the stromal cells in the
bone marrow microenvironment show promise in inducing bone healing and also poten-
tially diminishing the risk of myeloma progression. Ixazomib, the first oral proteasome
inhibitor, is currently being investigated in this respect, and preliminary data are promising.
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of percutaneous vertebroplasty in patients with multiple myeloma having vertebral pain. Diagn. Interv. Radiol. 2016, 22, 263–268.
[CrossRef]

80. Klazen, C.A.; Lohle, P.N.; de Vries, J.; Jansen, F.H.; Tielbeek, A.V.; Blonk, M.C.; Venmans, A.; van Rooij, W.J.; Schoemaker, M.C.;
Juttmann, J.R.; et al. Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos
II): An open-label randomised trial. Lancet 2010, 376, 1085–1092. [CrossRef]

81. Pflugmacher, R.; Taylor, R.; Agarwal, A.; Melcher, I.; Disch, A.; Haas, N.P.; Klostermann, C. Balloon kyphoplasty in the treatment
of metastatic disease of the spine: A 2-year prospective evaluation. Eur. Spine J. 2008, 17, 1042–1048. [CrossRef] [PubMed]

82. Rousing, R.; Kirkegaard, A.O.; Nielsen, M.; Holtved, E.; Sørensen, L.H.; Lund, T.; Olesen, V.; Andersen, M. Percutaneous
vertebroplasty as treatment of malignant vertebral lesions: A systematic review and GRADE evaluation resulting in a Danish
national clinical guideline. Eur. Spine J. 2020, 29, 1573–1579. [CrossRef] [PubMed]

83. Wickstroem, L.A.; Carreon, L.; Lund, T.; Abildgaard, N.; Lorenzen, M.D.; Andersen, M. Vertebroplasty in patients with multiple
myeloma with vertebral compression fractures: Protocol for a single-blind randomised controlled trial. BMJ Open 2021, 11, e045854.
[CrossRef] [PubMed]

84. Andersen, T.L.; Jensen, P.R.; Sikjaer, T.T.; Rejnmark, L.; Ejersted, C.; Delaisse, J.M. A Critical Role of the Bone Marrow Envelope in
Human Bone Remodeling. J. Bone Miner. Res. 2023, 38, 918–928. [CrossRef] [PubMed]

85. Hauge, E.M.; Qvesel, D.; Eriksen, E.F.; Mosekilde, L.; Melsen, F. Cancellous bone remodeling occurs in specialized compartments
lined by cells expressing osteoblastic markers. J. Bone Miner. Res. 2001, 16, 1575–1582. [CrossRef]

86. Kristensen, H.B.; Andersen, T.L.; Marcussen, N.; Rolighed, L.; Delaisse, J.-M. Osteoblast recruitment routes in human cancellous
bone remodeling. Am. J. Pathol. 2014, 184, 778–789. [CrossRef]

87. Silvestris, F.; Cafforio, P.; Tucci, M.; Grinello, D.; Dammacco, F. Upregulation of osteoblast apoptosis by malignant plasma cells: A
role in myeloma bone disease. Br. J. Haematol. 2003, 122, 39–52. [CrossRef]

88. Tinhofer, I.; Biedermann, R.; Krismer, M.; Crazzolara, R.; Greil, R. A role of TRAIL in killing osteoblasts by myeloma cells. FASEB
J. 2006, 20, 759–761. [CrossRef]

89. Lee, J.W.; Chung, H.Y.; Ehrlich, L.A.; Jelinek, D.F.; Callander, N.S.; Roodman, G.D.; Choi, S.J. IL-3 expression by myeloma cells
increases both osteoclast formation and growth of myeloma cells. Blood 2004, 103, 2308–2315. [CrossRef]

90. Lichtenstein, A.; Berenson, J.; Norman, D.; Chang, M.P.; Carlile, A. Production of cytokines by bone marrow cells obtained from
patients with multiple myeloma. Blood 1989, 74, 1266–1273. [CrossRef]

91. Giuliani, N.; Colla, S.; Sala, R.; Moroni, M.; Lazzaretti, M.; La Monica, S.; Bonomini, S.; Hojden, M.; Sammarelli, G.; Barillè, S.;
et al. Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: A
potential role in multiple myeloma bone disease. Blood 2002, 100, 4615–4621. [CrossRef]

92. Politou, M.C.; Heath, D.J.; Rahemtulla, A.; Szydlo, R.; Anagnostopoulos, A.; Dimopoulos, M.A.; Croucher, P.I.; Terpos, E. Serum
concentrations of Dickkopf-1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell
transplantation. Int. J. Cancer 2006, 119, 1728–1731. [CrossRef]

93. Brunetti, G.; Oranger, A.; Mori, G.; Specchia, G.; Rinaldi, E.; Curci, P.; Zallone, A.; Rizzi, R.; Grano, M.; Colucci, S. Sclerostin is
overexpressed by plasma cells from multiple myeloma patients. Ann. N. Y Acad. Sci. 2011, 1237, 19–23. [CrossRef]

94. Kristensen, I.B.; Christensen, J.H.; Lyng, M.B.; Møller, M.B.; Pedersen, L.; Rasmussen, L.M.; Ditzel, H.J.; Abildgaard, N. Hepatocyte
growth factor pathway upregulation in the bone marrow microenvironment in multiple myeloma is associated with lytic bone
disease. Br. J. Haematol. 2013, 161, 373–382. [CrossRef]

95. Giuliani, N.; Colla, S.; Morandi, F.; Lazzaretti, M.; Sala, R.; Bonomini, S.; Grano, M.; Colucci, S.; Svaldi, M.; Rizzoli, V. Myeloma cells
block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation.
Blood 2005, 106, 2472–2483. [CrossRef] [PubMed]

96. Adamik, J.; Jin, S.; Sun, Q.; Zhang, P.; Weiss, K.R.; Anderson, J.L.; Silbermann, R.; Roodman, G.D.; Galson, D.L. EZH2 or HDAC1
Inhibition Reverses Multiple Myeloma-Induced Epigenetic Suppression of Osteoblast Differentiation. Mol. Cancer Res. 2017, 15,
405–417. [CrossRef] [PubMed]

97. Standal, T.; Seidel, C.; Hjertner, Ø.; Plesner, T.; Sanderson, R.D.; Waage, A.; Borset, M.; Sundan, A. Osteoprotegerin is bound,
internalized, and degraded by multiple myeloma cells. Blood 2002, 100, 3002–3007. [CrossRef] [PubMed]

98. Maiso, P.; Mogollón, P.; Ocio, E.M.; Garayoa, M. Bone Marrow Mesenchymal Stromal Cells in Multiple Myeloma: Their Role as
Active Contributors to Myeloma Progression. Cancers 2021, 13, 2542. [CrossRef]

99. Roux, S.; Meignin, V.; Quillard, J.; Meduri, G.; Guiochon-Mantel, A.; Fermand, J.P.; Milgrom, E.; Mariette, X. RANK (receptor
activator of nuclear factor-kappaB) and RANKL expression in multiple myeloma. Br. J. Haematol. 2002, 117, 86–92. [CrossRef]

https://doi.org/10.1186/s13013-016-0107-6
https://www.ncbi.nlm.nih.gov/pubmed/28050604
https://doi.org/10.1016/S1470-2045(11)70008-0
https://doi.org/10.5152/dir.2016.15201
https://doi.org/10.1016/S0140-6736(10)60954-3
https://doi.org/10.1007/s00586-008-0701-2
https://www.ncbi.nlm.nih.gov/pubmed/18560905
https://doi.org/10.1007/s00586-020-06392-w
https://www.ncbi.nlm.nih.gov/pubmed/32246231
https://doi.org/10.1136/bmjopen-2020-045854
https://www.ncbi.nlm.nih.gov/pubmed/34489267
https://doi.org/10.1002/jbmr.4815
https://www.ncbi.nlm.nih.gov/pubmed/37038371
https://doi.org/10.1359/jbmr.2001.16.9.1575
https://doi.org/10.1016/j.ajpath.2013.11.022
https://doi.org/10.1046/j.1365-2141.2003.04374.x
https://doi.org/10.1096/fj.05-4329fje
https://doi.org/10.1182/blood-2003-06-1992
https://doi.org/10.1182/blood.V74.4.1266.1266
https://doi.org/10.1182/blood-2002-04-1121
https://doi.org/10.1002/ijc.22033
https://doi.org/10.1111/j.1749-6632.2011.06196.x
https://doi.org/10.1111/bjh.12270
https://doi.org/10.1182/blood-2004-12-4986
https://www.ncbi.nlm.nih.gov/pubmed/15933061
https://doi.org/10.1158/1541-7786.MCR-16-0242-T
https://www.ncbi.nlm.nih.gov/pubmed/28119431
https://doi.org/10.1182/blood-2002-04-1190
https://www.ncbi.nlm.nih.gov/pubmed/12351414
https://doi.org/10.3390/cancers13112542
https://doi.org/10.1046/j.1365-2141.2002.03417.x


Cancers 2023, 15, 5585 16 of 18

100. Pearse, R.N.; Sordillo, E.M.; Yaccoby, S.; Wong, B.R.; Liau, D.F.; Colman, N.; Michaeli, J.; Epstein, J.; Choi, Y. Multiple myeloma
disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc. Natl.
Acad. Sci. USA 2001, 98, 11581–11586. [CrossRef]

101. Liu, H.; He, J.; Bagheri-Yarmand, R.; Li, Z.; Liu, R.; Wang, Z.; Bach, D.H.; Huang, Y.H.; Lin, P.; Guise, T.A.; et al. Osteocyte CIITA
aggravates osteolytic bone lesions in myeloma. Nat. Commun. 2022, 13, 3684. [CrossRef]

102. Delgado-Calle, J.; Bellido, T.; Roodman, G.D. Role of osteocytes in multiple myeloma bone disease. Curr. Opin. Support. Palliat.
Care 2014, 8, 407–413. [CrossRef] [PubMed]

103. Calle, J.D.; Bellido, T.; Roodman, G.D.D. Direct Cell-To-Cell Interactions Between Osteocytes and Multiple Myeloma (MM) Cells
Upregulate Sost and Downregulate OPG Expression In Osteocytes: Evidence For Osteocytic Contributions To MM-Induced Bone
Disease. Blood 2013, 122, 3140. [CrossRef]

104. Panaroni, C.; Fulzele, K.; Mori, T.; Siu, K.T.; Onyewadume, C.; Maebius, A.; Raje, N. Multiple myeloma cells induce lipolysis in
adipocytes and uptake fatty acids through fatty acid transporter proteins. Blood 2022, 139, 876–888. [CrossRef]

105. Fairfield, H.; Costa, S.; Falank, C.; Farrell, M.; Murphy, C.S.; D’amico, A.; Driscoll, H.; Reagan, M.R. Multiple Myeloma Cells Alter
Adipogenesis, Increase Senescence-Related and Inflammatory Gene Transcript Expression, and Alter Metabolism in Preadipocytes.
Front. Oncol. 2020, 10, 584683. [CrossRef] [PubMed]

106. Dabbah, M.; Attar-Schneider, O.; Matalon, S.T.; Shefler, I.; Dolberg, O.J.; Lishner, M.; Drucker, L. Microvesicles derived from
normal and multiple myeloma bone marrow mesenchymal stem cells differentially modulate myeloma cells’ phenotype and
translation initiation. Carcinogenesis 2017, 38, 708–716. [CrossRef] [PubMed]

107. Ibraheem, A.; Attar-Schneider, O.; Dabbah, M.; Jarchowsky, O.D.; Matalon, S.T.; Lishner, M.; Drucker, L. BM-MSCs-derived ECM
modifies multiple myeloma phenotype and drug response in a source-dependent manner. Transl. Res. 2019, 207, 83–95. [CrossRef]

108. Dabbah, M.; Jarchowsky-Dolberg, O.; Attar-Schneider, O.; Matalon, S.T.; Pasmanik-Chor, M.; Drucker, L.; Lishner, M. Multiple
myeloma BM-MSCs increase the tumorigenicity of MM cells via transfer of VLA4-enriched microvesicles. Carcinogenesis 2020, 41,
100–110. [CrossRef]

109. André, T.; Meuleman, N.; Stamatopoulos, B.; De Bruyn, C.; Pieters, K.; Bron, D.; Lagneaux, L. Evidences of early senescence in
multiple myeloma bone marrow mesenchymal stromal cells. PLoS ONE 2013, 8, e59756. [CrossRef]

110. Arnulf, B.; Lecourt, S.; Soulier, J.; Ternaux, B.; Lacassagne, M.-N.; Crinquette, A.; Dessoly, J.; Sciaini, A.K.; Benbunan, M.;
Chomienne, C.; et al. Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients
with multiple myeloma. Leukemia 2007, 21, 158–163. [CrossRef]

111. Corre, J.; Mahtouk, K.; Attal, M.; Gadelorge, M.; Huynh, A.; Fleury-Cappellesso, S.; Danho, C.; Laharrague, P.; Klein, B.; Rème,
T.; et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 2007, 21, 1079–1088. [CrossRef]
[PubMed]

112. Bataille, R.; Chappard, D.; Marcelli, C.; Dessauw, P.; Baldet, P.; Sany, J.; Alexandre, C. Recruitment of new osteoblasts and
osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma. J. Clin. Investig. 1991, 88, 62–66.
[CrossRef] [PubMed]

113. Alameda, D.; Saez, B.; Lara-Astiaso, D.; Sarvide, S.; Lasa, M.; Alignani, D.; Rodriguez, I.; Garate, S.; Vilas, A.; Paiva, B.; et al.
Characterization of freshly isolated bone marrow mesenchymal stromal cells from healthy donors and patients with multiple
myeloma: Transcriptional modulation of the microenvironment. Haematologica 2020, 105, e470–e473. [CrossRef] [PubMed]

114. Dotterweich, J.; Schlegelmilch, K.; Keller, A.; Geyer, B.; Schneider, D.; Zeck, S.; Tower, R.J.; Ebert, R.; Jakob, F.; Schütze, N. Contact
of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells -Implications for myeloma bone
disease. Bone 2016, 93, 155–166. [CrossRef]

115. Garcia-Gomez, A.; Rivas, J.D.L.; Ocio, E.M.; Díaz-Rodríguez, E.; Montero, J.C.; Martín, M.; Blanco, J.F.; Sanchez-Guijo, F.M.;
Pandiella, A.; San Miguel, J.F.; et al. Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction
with multiple myeloma cells: Implications in myeloma progression and myeloma bone disease. Oncotarget 2014, 5, 8284–8305.
[CrossRef] [PubMed]

116. Schinke, C.; Qu, P.; Mehdi, S.J.; Hoering, A.; Epstein, J.; Johnson, S.K.; van Rhee, F.; Zangari, M.; Thanendrarajan, S.; Barlogie,
B.; et al. The Pattern of Mesenchymal Stem Cell Expression Is an Independent Marker of Outcome in Multiple Myeloma. Clin.
Cancer Res. 2018, 24, 2913–2919. [CrossRef] [PubMed]

117. Fernando, R.C.; Mazzotti, D.R.; Azevedo, H.; Sandes, A.F.; Gil Rizzatti, E.; de Oliveira, M.B.; Alves, V.L.F.; Eugênio, A.I.P.; de
Carvalho, F.; Dalboni, M.A.; et al. Transcriptome Analysis of Mesenchymal Stem Cells from Multiple Myeloma Patients Reveals
Downregulation of Genes Involved in Cell Cycle Progression, Immune Response, and Bone Metabolism. Sci. Rep. 2019, 9, 1056.
[CrossRef]

118. Lemaitre, L.; Ferreira, L.D.S.; Joubert, M.-V.; Avet-Loiseau, H.; Martinet, L.; Corre, J.; Couderc, B. Imprinting of Mesenchymal
Stromal Cell Transcriptome Persists even after Treatment in Patients with Multiple Myeloma. Int. J. Mol. Sci. 2020, 21, 3854.
[CrossRef]

119. de Jong, M.M.E.; Kellermayer, Z.; Papazian, N.; Tahri, S.; Bruinink, D.H.O.; Hoogenboezem, R.; Sanders, M.A.; van de Woestijne,
P.C.; Bos, P.K.; Khandanpour, C.; et al. The multiple myeloma microenvironment is defined by an inflammatory stromal cell
landscape. Nat. Immunol. 2021, 22, 769–780. [CrossRef]

https://doi.org/10.1073/pnas.201394498
https://doi.org/10.1038/s41467-022-31356-7
https://doi.org/10.1097/SPC.0000000000000090
https://www.ncbi.nlm.nih.gov/pubmed/25289928
https://doi.org/10.1182/blood.V122.21.3140.3140
https://doi.org/10.1182/blood.2021013832
https://doi.org/10.3389/fonc.2020.584683
https://www.ncbi.nlm.nih.gov/pubmed/33680918
https://doi.org/10.1093/carcin/bgx045
https://www.ncbi.nlm.nih.gov/pubmed/28838065
https://doi.org/10.1016/j.trsl.2019.01.003
https://doi.org/10.1093/carcin/bgz169
https://doi.org/10.1371/journal.pone.0059756
https://doi.org/10.1038/sj.leu.2404466
https://doi.org/10.1038/sj.leu.2404621
https://www.ncbi.nlm.nih.gov/pubmed/17344918
https://doi.org/10.1172/JCI115305
https://www.ncbi.nlm.nih.gov/pubmed/2056131
https://doi.org/10.3324/haematol.2019.235135
https://www.ncbi.nlm.nih.gov/pubmed/33054066
https://doi.org/10.1016/j.bone.2016.08.006
https://doi.org/10.18632/oncotarget.2058
https://www.ncbi.nlm.nih.gov/pubmed/25268740
https://doi.org/10.1158/1078-0432.CCR-17-2627
https://www.ncbi.nlm.nih.gov/pubmed/29563136
https://doi.org/10.1038/s41598-018-38314-8
https://doi.org/10.3390/ijms21113854
https://doi.org/10.1038/s41590-021-00931-3


Cancers 2023, 15, 5585 17 of 18

120. Garayoa, M.; Garcia, J.L.; Santamaria, C.; Garcia-Gomez, A.; Blanco, J.F.; Pandiella, A.; Hernández, J.M.; Sanchez-Guijo, F.M.; del
Cañizo, M.C.; Gutiérrez, N.C.; et al. Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as
compared with those from normal donors. Leukemia 2009, 23, 1515–1527. [CrossRef]

121. Garcia-Gomez, A.; Li, T.; de la Calle-Fabregat, C.; Rodríguez-Ubreva, J.; Ciudad, L.; Català-Moll, F.; Godoy-Tena, G.; Martín-
Sánchez, M.; San-Segundo, L.; Muntión, S.; et al. Targeting aberrant DNA methylation in mesenchymal stromal cells as a
treatment for myeloma bone disease. Nat. Commun. 2021, 12, 421. [CrossRef] [PubMed]

122. Soekojo, C.Y.; Chng, W.J. Treatment horizon in multiple myeloma. Eur. J. Haematol. 2022, 109, 425–440. [CrossRef] [PubMed]
123. Kristensen, I.B.; Pedersen, L.; Rø, T.B.; Christensen, J.H.; Lyng, M.B.; Rasmussen, L.M.; Ditzel, H.J.; Børset, M.; Abildgaard, N.

Decorin is down-regulated in multiple myeloma and MGUS bone marrow plasma and inhibits HGF-induced myeloma plasma
cell viability and migration. Eur. J. Haematol. 2013, 91, 196–200. [CrossRef] [PubMed]

124. Yaccoby, S.; Wezeman, M.J.; Zangari, M.; Walker, R.; Cottler-Fox, M.; Gaddy, D.; Ling, W.; Saha, R.; Barlogie, B.; Tricot, G.; et al.
Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse
model. Haematologica 2006, 91, 192–199.

125. Zavrski, I.; Krebbel, H.; Wildemann, B.; Heider, U.; Kaiser, M.; Possinger, K.; Sezer, O. Proteasome inhibitors abrogate osteoclast
differentiation and osteoclast function. Biochem. Biophys. Res. Commun. 2005, 333, 200–205. [CrossRef]

126. Terpos, E.; Heath, D.J.; Rahemtulla, A.; Zervas, K.; Chantry, A.; Anagnostopoulos, A.; Pouli, A.; Katodritou, E.; Verrou, E.;
Vervessou, E.C.; et al. Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand concentrations
and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br. J. Haematol. 2006, 135, 688–692.
[CrossRef]

127. Terpos, E.; Kastritis, E.; Ntanasis-Stathopoulos, I.; Christoulas, D.; Papatheodorou, A.; Eleutherakis-Papaiakovou, E.; Kanellias,
N.; Fotiou, D.; Ziogas, D.C.; Migkou, M.; et al. Consolidation therapy with the combination of bortezomib and lenalidomide (VR)
without dexamethasone in multiple myeloma patients after transplant: Effects on survival and bone outcomes in the absence of
bisphosphonates. Am. J. Hematol. 2019, 94, 400–407. [CrossRef]

128. Hurchla, M.A.; Garcia-Gomez, A.; Hornick, M.C.; Ocio, E.M.; Li, A.; Blanco, J.F.; Collins, L.; Kirk, C.J.; Piwnica-Worms, D.; Vij, R.;
et al. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and
bone-anabolic activity in addition to anti-myeloma effects. Leukemia 2013, 27, 430–440. [CrossRef]

129. Terpos, E.; Ntanasis-Stathopoulos, I.; Katodritou, E.; Kyrtsonis, M.-C.; Douka, V.; Spanoudakis, E.; Papatheodorou, A.;
Eleutherakis-Papaiakovou, E.; Kanellias, N.; Gavriatopoulou, M.; et al. Carfilzomib Improves Bone Metabolism in Patients with
Advanced Relapsed/Refractory Multiple Myeloma: Results of the CarMMa Study. Cancers 2021, 13, 1257. [CrossRef]

130. Cata, J.P.; Weng, H.-R.; Burton, A.W.; Villareal, H.; Giralt, S.; Dougherty, P.M. Quantitative sensory findings in patients with
bortezomib-induced pain. J. Pain 2007, 8, 296–306. [CrossRef]

131. Xiao, Y.; Yin, J.; Wei, J.; Shang, Z. Incidence and risk of cardiotoxicity associated with bortezomib in the treatment of cancer: A
systematic review and meta-analysis. PLoS ONE 2014, 9, e87671. [CrossRef]

132. Richardson, P.G.; Briemberg, H.; Jagannath, S.; Wen, P.Y.; Barlogie, B.; Berenson, J.; Singhal, S.; Siegel, D.S.; Irwin, D.; Schuster, M.;
et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with
bortezomib. J. Clin. Oncol. 2006, 24, 3113–3120. [CrossRef]

133. Wang, Q.; Dong, Z.; Su, J.; Huang, J.; Xiao, P.; Tian, L.; Chen, Y.; Ma, L.; Chen, X. Ixazomib inhibits myeloma cell proliferation by
targeting UBE2K. Biochem. Biophys. Res. Commun. 2021, 549, 1–7. [CrossRef]

134. Tibullo, D.; Longo, A.; Vicario, N.; Romano, A.; Barbato, A.; Di Rosa, M.; Barbagallo, I.; Anfuso, C.D.; Lupo, G.; Gulino, R.; et al.
Ixazomib Improves Bone Remodeling and Counteracts sonic Hedgehog signaling Inhibition Mediated by Myeloma Cells. Cancers
2020, 12, 323. [CrossRef]

135. Garcia-Gomez, A.; Quwaider, D.; Canavese, M.; Ocio, E.M.; Tian, Z.; Blanco, J.F.; Berger, A.J.; Ortiz-de-Solorzano, C.; Hernández-
Iglesias, T.; Martens, A.C.; et al. Preclinical activity of the oral proteasome inhibitor MLN9708 in Myeloma bone disease. Clin.
Cancer Res. 2014, 20, 1542–1554. [CrossRef]

136. Diaz-Delcastillo, M.; Gundesen, M.T.; Andersen, C.W.; Nielsen, A.L.; Møller, H.E.H.; Vinholt, P.J.; Asmussen, J.T.; Kristensen, I.B.;
Nyvold, C.G.; Abildgaard, N.; et al. Increased Bone Volume by Ixazomib in Multiple Myeloma: 3-Month Results from an Open
Label Phase 2 Study. J. Bone Miner. Res. 2023, 38, 639–649. [CrossRef]

137. Terpos, E.; Ntanasis-Stathopoulos, I.; Kastritis, E.; Hatjiharissi, E.; Katodritou, E.; Eleutherakis-Papaiakovou, E.; Verrou, E.;
Gavriatopoulou, M.; Leonidakis, A.; Manousou, K.; et al. Daratumumab Improves Bone Turnover in Relapsed/Refractory
Multiple Myeloma; Phase 2 Study “REBUILD”. Cancers 2022, 14, 2768. [CrossRef]

138. Rogers, M.J.; Crockett, J.C.; Coxon, F.P.; Mönkkönen, J. Biochemical and molecular mechanisms of action of bisphosphonates.
Bone 2011, 49, 34–41. [CrossRef]

139. van de Donk, N.W.; Usmani, S.Z. CD38 Antibodies in Multiple Myeloma: Mechanisms of Action and Modes of Resistance. Front.
Immunol. 2018, 9, 2134. [CrossRef]

140. Vasiliadis, E.S.; Evangelopoulos, D.-S.; Kaspiris, A.; Benetos, I.S.; Vlachos, C.; Pneumaticos, S.G. The Role of Sclerostin in Bone
Diseases. J. Clin. Med. 2022, 11, 806. [CrossRef]

141. Gandolfi, S.; Laubach, J.P.; Hideshima, T.; Chauhan, D.; Anderson, K.C.; Richardson, P.G. The proteasome and proteasome
inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017, 36, 561–584. [CrossRef]

https://doi.org/10.1038/leu.2009.65
https://doi.org/10.1038/s41467-020-20715-x
https://www.ncbi.nlm.nih.gov/pubmed/33462210
https://doi.org/10.1111/ejh.13840
https://www.ncbi.nlm.nih.gov/pubmed/35880395
https://doi.org/10.1111/ejh.12125
https://www.ncbi.nlm.nih.gov/pubmed/23607294
https://doi.org/10.1016/j.bbrc.2005.05.098
https://doi.org/10.1111/j.1365-2141.2006.06356.x
https://doi.org/10.1002/ajh.25392
https://doi.org/10.1038/leu.2012.183
https://doi.org/10.3390/cancers13061257
https://doi.org/10.1016/j.jpain.2006.09.014
https://doi.org/10.1371/journal.pone.0087671
https://doi.org/10.1200/JCO.2005.04.7779
https://doi.org/10.1016/j.bbrc.2021.02.048
https://doi.org/10.3390/cancers12020323
https://doi.org/10.1158/1078-0432.CCR-13-1657
https://doi.org/10.1002/jbmr.4807
https://doi.org/10.3390/cancers14112768
https://doi.org/10.1016/j.bone.2010.11.008
https://doi.org/10.3389/fimmu.2018.02134
https://doi.org/10.3390/jcm11030806
https://doi.org/10.1007/s10555-017-9707-8


Cancers 2023, 15, 5585 18 of 18

142. Dadzie, T.G.; Green, A.C. The role of the bone microenvironment in regulating myeloma residual disease and treatment. Front.
Oncol. 2022, 12, 999939. [CrossRef]

143. Khoo, W.H.; Ledergor, G.; Weiner, A.; Roden, D.L.; Terry, R.L.; McDonald, M.M.; Chai, R.C.; De Veirman, K.; Owen, K.L.;
Opperman, K.S.; et al. A niche-dependent myeloid transcriptome signature defines dormant myeloma cells. Blood 2019, 134,
30–43. [CrossRef]

144. Lawson, M.A.; McDonald, M.M.; Kovacic, N.; Khoo, W.H.; Terry, R.L.; Down, J.; Kaplan, W.; Paton-Hough, J.; Fellows, C.; Pettitt,
J.A.; et al. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat. Commun. 2015,
6, 8983. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3389/fonc.2022.999939
https://doi.org/10.1182/blood.2018880930
https://doi.org/10.1038/ncomms9983

	Introduction 
	Antiresorptive Treatments 
	Medication-Related Osteonecrosis of the Jaw and Multiple Myeloma 
	Antiresorptive Agents and Duration of Treatment 
	Vertobroplasty and Kyphoplasty 
	Targeting the Microenviroment 
	Conclusions and Future Perspectives 
	References

