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Abstract 

Single-cell and single-nucleus RNA-sequencing (sxRNA-seq) measures gene expression in individual cells or nuclei enabling comprehensive 
characterization of cell types and states. Ho w e v er, isolation of cells or nuclei for sxRNA-seq releases contaminating RNA, which can distort 
biological signals, through, for example, cell damage and transcript leakage. Thus, identifying barcodes cont aining high-qualit y cells or nuclei is a 
critical analytical step in the processing of sxRNA-seq data. Here, we present valiDrops, an automated method to identify high-quality barcodes 
and flag dead cells. In valiDrops, barcodes are initially filtered using data-adaptive thresholding on communit y-st andard qualit y metrics, and 
subsequently, valiDrops uses a novel clustering-based approach to identify barcodes with distinct biological signals. We benchmark valiDrops 
and show that biological signals from cell types and states are more distinct, easier to separate and more consistent after filtering by valiDrops 
compared to e xisting tools. Finally, w e sho w that v aliDrops can predict and flag dead cells with high accuracy. T his no v el classifier can further 
impro v e data quality or be used to identify dead cells to interrogate the biology of cell death. T hus, v aliDrops is an effective and easy-to-use 
method to impro v e dat a qualit y and biological interpret ation. Our method is openly a v ailable as an R package at www.github.com/madsen-lab/ 
valiDrops . 
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ntroduction 

he widespread adaptation of single-cell and single-nucleus
NA-sequencing (sxRNA-seq) is producing new and revolu-

ionizing insights into the function of cells and tissues. How-
ver, during the isolation of cells or nuclei for sxRNA-seq, they
an become apoptotic, stressed or damaged. The magnitude of
hese artefacts is protocol-specific and can lead to distortion of
he biological signal, for example, through activation of early
esponse factors, induction of apoptosis and transcript leak-
ge ( 1–4 ). In addition to distorting the biological signal, these
rocesses also lead to the contamination of the solution with
ebris, such as cell-free ambient RNA ( 5 ,6 ). This problem is
xacerbated when processing solid tissues, where harsh meth-
ds can be required to release single cells, or when processing
uclei, where cells are lysed, and their contents are released. 
Currently, most high-throughput sxRNA-seq methods ei-

her use combinatorial indexing [e.g. sci-RNA-seq ( 7 ), SPLiT-
eq ( 8 ) and scifi ( 9 )] or are based on droplet emulsions [e.g.
hromium Single Cell Gene Expression ( 10 ), Drop-seq ( 11 ),

nDrop ( 12 ) or HyDrop ( 13 )]. In droplet-based methods, mi-
rofluidics is used to process single cells or nuclei in a water-in-
il emulsion, which contains the necessary reagents to synthe-
ize complementary DNA with droplet-specific barcodes. De-
ris may be captured together with cells or nuclei adding noise
o the biological signal, or debris may be encapsulated into
mpty droplets creating unwanted signals. Thus, the isolation
rocess can introduce at least three analytical challenges: to
eparate contaminated empty droplets from cell- or nucleus-
eceived: April 25, 2023. Revised: October 5, 2023. Editorial Decision: October 
The Author(s) 2023. Published by Oxford University Press on behalf of NAR G

his is an Open Access article distributed under the terms of the Creative Comm
hich permits unrestricted reuse, distribution, and reproduction in any medium, 
containing droplets; to separate cell- or nucleus-containing
droplets with a high signal-to-noise ratio from those with a
low signal-to-noise ratio; and to identify droplets containing
cells or nuclei, which were not strongly affected by the isola-
tion process. 

Several methods have been developed to address the first
two challenges: EmptyDrops ( 14 ) fits a Dirichlet-multinomial
distribution to an estimated ambient RNA and removes
droplets, whose expression profile does not significantly dif-
fer from the fitted distribution. CB2 ( 15 ) extends Empty-
Drops by introducing a clustering step prior to comparison
with the fitted ambient RNA distribution. DIEM ( 16 ) clus-
ters barcodes initially using K -means clustering on principal
components (PCs) and then optimizes the cluster labels us-
ing a semi-supervised expectation–maximization algorithm.
Finally, DIEM removes contaminated barcodes if they are as-
signed to debris clusters or have high expression of genes sig-
nificantly enriched in debris clusters. Both EmptyNN ( 17 ) and
CellBender ( 18 ) use deep learning models to identify and re-
move empty and highly contaminated barcodes. EmptyNN
employs positive-unlabelled learning to directly identify which
barcodes to remove, while CellBender uses an unsupervised
generative model to learn the background RNA profile and
recover uncontaminated counts from non-empty droplets. Fi-
nally, dropkick ( 19 ) automatically labels barcodes as informa-
tive or non-informative based on the number of detected genes
and then refines labels using a logistic regression model with
elastic net regularization. 
30, 2023. Accepted: November 1, 2023 
enomics and Bioinformatics. 
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Except for dropkick, all the above methods are depen-
dent on a threshold that separates cell- or nucleus-free bar-
codes from putative cell- or nucleus-containing barcodes. Fur-
thermore, except for CellBender, DIEM and dropkick, the
above methods require additional filtering to remove bar-
codes, which contain a low-quality cell or nucleus. Commonly,
this is done by thresholding the fraction of unique molecular
identifiers (UMIs) derived from mitochondrial genes, the total
number of detected genes and the total number of UMIs ( 20 ).

Here, we present valiDrops, an automated method for
identifying cell- or nucleus-containing barcodes with a high
signal-to-noise ratio and low signal distortion. Our method
is open source and available as an R package at www.
github.com/ madsen-lab/ valiDrops . We showcase how each
step in valiDrops improves the data quality and we extensively
benchmark valiDrops and existing methods using 47 real sam-
ples from five different studies to show that valiDrops has the
best performance for both single-cell and single-nucleus RNA-
seq data. Finally, we demonstrate how valiDrops, unlike ex-
isting methods, is also able to detect and flag dead cells to
further increase data quality or to enable interrogation of the
biological processes leading to cell death. 

Materials and methods 

Quality filtering and dead cell prediction with 

valiDrops 

The first stage in valiDrops is to remove lowly sequenced bar-
codes that likely represent barcodes primarily containing am-
bient RNA. The log-transformed total number of UMIs as a
function of the log-transformed rank in order of decreasing to-
tal UMIs (which is the basis of the so-called barcode rank plot)
is smoothened using the rolling mean with a bin size defined
using the Rice rule ( b = 2 

3 
√ 

n ) . Piecewise linear regression is
fitted to the smoothened curve using segmentation. In the de-
fault settings, models with two to five breakpoints are fitted.
For each model, the root-mean-square error (RMSE) of the fit
is calculated and the smallest number of breakpoints that have
an error with 1.5 times the smallest RMSE is selected. The an-
gle between all piecewise linear curves is calculated from left
to right, such that negative angles correspond to the transition
from a negative to a flat slope (or a flat to a positive slope,
which should not occur due to ordering by rank) and positive
angles correspond to the transition from a positive to a flat
slope. The breakpoint with the most negative angle is selected
(corresponding to the transition from the largest negative to
the flattest slope) as the threshold for filtering lowly sequenced
barcodes. 

The second stage in valiDrops is to collect and filter on com-
mon quality metrics. To collect quality metrics, valiDrops ini-
tially automatically finds and calculates the fraction of UMIs
associated with mitochondrially encoded genes (mitochon-
drial fraction), protein-coding genes (coding fraction) and
genes encoding ribosomal genes (ribosomal fraction), as well
as the log-transformed total number of UMIs and the log-
transformed total number of detected genes. This automatic
detection works for most common model organisms (human,
mouse, rat, fly, worm and zebrafish) and common gene an-
notations (Ensembl, Entrez, HGNC, MGI and gene symbols),
but can be overwritten by users studying other organisms or
using other gene annotations. Optionally, valiDrops can cal-
culate the fraction of UMIs associated with exons (or introns)
that has been shown to be a valuable additional metric for 
quality filtering ( 21 ). To filter on the mitochondrial fraction,
valiDrops fits a mixture of two normal distributions to the 
log-transformed total feature count using mixtools ( 22 ) to 

identify a group of high-coverage barcodes that are probably 
high-quality barcodes. For each putative threshold between 

the median mitochondrial fraction in high-coverage barcodes 
and one in increments of 0.001, the number of high-coverage 
barcodes passing the filter is calculated and the final threshold 

is selected by finding the knee point of the curve using inflec- 
tion. In rare edge cases with generally high mitochondrial frac- 
tions, this approach identifies thresholds above 0.3, which is 
not biologically plausible ( 23 ). In these cases, valiDrops uses 
piecewise linear regression between the mitochondrial frac- 
tion and the log-transformed number of detected genes to set 
a stricter threshold. To filter on the coding fraction (and op- 
tionally the exon or intron fraction), valiDrops calculates the 
median of the fraction as well as S n , which is a more efficient 
alternative robust scale estimator than the median absolute 
deviation ( 24 ). Barcodes more than three times S n above or 
below the median are removed. Finally, to filter the relation- 
ship between the log-transformed total number of UMIs and 

the number of detected genes, valiDrops fits a piecewise linear 
regression model with three breakpoints, and for each bar- 
code calculates the residuals. Barcodes more than five times 
S n above or below the median residual are removed. 

The third stage in valiDrops is to collect and filter on 

expression-based metrics. First, 5000 highly variable genes 
(HVGs) are selected using scry, which are then decomposed 

using singular value decomposition with irlba on normalized,
log-transformed and standardized counts. The PCs are clus- 
tered using Seurat ( 25 ) using resolution 0.1 (shallow cluster- 
ing) and the highest resolution that does not produce any clus- 
ters containing < 5 barcodes (deep clustering). Differential ex- 
pression analysis is performed using presto between each deep 

cluster and all other barcodes that are not in the same shal- 
low cluster as the deep cluster. To filter on expression-based 

metrics, valiDrops evaluates the top 10 most significantly en- 
riched marker genes for each deep cluster. To pass filtering,
none of these genes can be expressed in at least 1% fewer 
barcodes in the deep cluster compared to barcodes not in the 
deep cluster, and they must on average be expressed in > 30% 

of the barcodes in the deep cluster, < 70% of the barcodes not 
in the deep cluster and at least in 20% more of the barcodes in 

the deep cluster compared to barcodes not in the deep cluster.
These filters remove deep clusters that are enriched for genes 
that are ubiquitously expressed. Next, valiDrops evaluates the 
total number of differentially expressed genes and their signif- 
icance levels. To pass filtering, at least 1% of the tested genes 
for a deep cluster must be significant and the most significant 
gene must pass a data-adaptive threshold that is based on the 
relationship between the false discovery rate (FDR)-corrected 

P -value of the maximally significant gene in a cluster and the 
average difference in percent of cells expressing marker genes 
between the target cluster and barcodes not in the same low- 
resolution cluster. These filters remove deep clusters that have 
weak or no enrichment of specifically expressed genes. Finally,
deep clusters that have a mitochondrial or ribosomal fraction 

higher than three times S n above the median fraction across 
all clusters are removed. 

The fourth stage in valiDrops is to predict dead cells.
First, valiDrops arcsine-transforms the proportion of UMIs 
assigned to ribosomal genes ( R ) and to protein-coding genes 

http://www.github.com/madsen-lab/valiDrops
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 C ) and rescales the transformed values to a range between 0
nd 1 by dividing by half pi. The log-transformed total UMI
ount ( U ) and the log total number of features ( F ) are then
entred, and an initial score is calculated using the following
unction: 

score = −11 . 82 U + 2 . 08 F + 158 . 98 R 

+ 18 . 87 CF − 125 . 9 RC. 

Next, initial labels are created by a data-adaptive threshold,
hich is defined as the first knee point in the empirical distri-
ution function of scores between the 0% quantile and an up-
er quantile of 10%. Barcodes with scores below the threshold
re labelled as putative dead cells, and barcodes with scores
bove the threshold are labelled as putative live cells. If no
arcodes are labelled as putative dead by this approach, the
pper quantile is increased in steps of 10%. If < 3 barcodes,
r > 10% of barcodes, are labelled as putative dead cells, it is
ikely that there are no truly dead cells or that the score is likely
ot well calibrated for the dataset, and label optimization is
alted. If no barcodes that passed quality control are labelled
s putative dead, the barcode with the high score is temporar-
ly relabelled as passing quality control. Next, the top 100
Cs are calculated using irlba based on the top 2000 HVGs
ound using scry. Next, labels are iteratively refined over max-
mally 10 epochs. Each epoch involves first selecting features
sing Kendall’s tau rank correlation coefficients between the
Cs and the labels, and then randomly selecting labels based
n their class probability from the previous epoch (initialized
ith equal probability), introducing random noise by jittering

he features and fitting a ridge regression model using glmnet
 26 ) using 5-fold cross-validation on the noised features and
ampled labels. To increase robustness and assess the quality
f the fit, 10 independent runs of label refinement are per-
ormed and only barcodes that have the same label in at least
 runs are labelled and runs are failed if too many barcodes
re not labelled. 

enchmarking quality filtering 

atasets 
he following public datasets were used (Supplementary
able S3): 

1. Single-cell RNA-seq (scRNA-seq) in human peripheral
blood mononuclear cells (PBMCs): Unfiltered count ma-
trices were downloaded from 10X Genomics. 

2. scRNA-seq in human lungs ( 27 ): Unfiltered count ma-
trices from healthy donors were downloaded from NCBI
Gene Expression Omnibus (GEO) under accession num-
ber GSE122960. 

3. scRNA-seq in human islets of Langerhans ( 28 ): Raw
data were downloaded from the European Nucleotide
Archive (ENA) under accession number GSE114297.
Count matrices were generated using STARsolo ( 29 ), the
human genome version hg38 and Ensemble gene anno-
tations. 

4. Single-nucleus RNA-seq in human PBMCs: Unfiltered
count matrices were downloaded from 10X Genomics. 

5. Single-nucleus RNA-seq in human brain ( 30 ): Raw data
from healthy donors were downloaded from GEO un-
der accession number GSE174332. Count matrices were
generated using STARsolo ( 29 ), the human genome ver-

sion hg38 and Ensemble gene annotations.  
Processing 
For all datasets, all methods were run with default parame-
ters. For EmptyDrops ( 14 ) and scCB2 ( 15 ), barcodes with an
FDR ≤ 0.01 were retained. For DIEM ( 16 ), calls were made
using debris clusters and barcodes labelled with Clean were
retained. For EmptyDrops, scCB2 and EmptyNN barcodes
were also filtered on the fraction of UMIs derived from mi-
tochondrially encoded genes using miQC ( 31 ) for scRNA-seq
datasets and by removing barcodes three times the median ab-
solute deviation above the median mitochondrial fraction for
single-nucleus RNA-seq, which corresponds to a strict filter-
ing regime ( 32 ). 

Metrics 
Labels were transferred to barcoding passing quality control
using Azimuth ( 25 ) and associated reference atlases and la-
bels (PBMCs mapped to PBMC reference: level 1: celltype.l1
labels, level 2: celltype.2; islets mapped to pancreas reference:
levels 1 and 2: annotation.l1; brain mapped to motor cortex
reference: level 1: subclass, level 2: cluster; and lung mapped to
lung v2 (HCLA): level 1: ann_level 3, level 2: ann_finest_level).
For each dataset, a total of nine metrics were calculated based
on level 2 labels unless otherwise indicated: 

1. The average mapping score is calculated by Azimuth ( 25 )
during label transfer. Higher scores indicate better label
transfer; methods were ranked in decreasing order. 

2. The average label score for level 2 labels is calculated
by Azimuth during label transfer. Higher scores indicate
better label transfer; methods were ranked in decreasing
order. 

3. The fraction of labels that have the correct label hierar-
chy, which is defined as barcodes where the transferred
level 1 and level 2 labels are child–parent labels in the
reference atlas. Higher fractions indicate more consis-
tent labelling across granularities; methods were ranked
in decreasing order. 

4. The entropy of the top 200 most highly expressed genes
in each label class was calculated using BioQC ( 33 ).
Lower entropy indicates lower heterogeneity; methods
were ranked in increasing order. 

5. Median local inverse Simpson’s index (LISI) ( 34 ) across
transferred labels in the first 10 PCs calculated from
2000 HVGs using Seurat ( 25 ). Lower LISI indicates
lower mixing of cell type labels; methods were ranked
in increasing order. 

6. The average silhouette width across transferred cell type
labels using Euclidean distances in the first 10 PCs was
calculated from 2000 HVGs using Seurat ( 25 ). Higher
silhouette width indicates a better separation of cell
types; methods were ranked in decreasing order. 

7. Adjusted Rand index (ARI) was calculated using clus-
ter labels obtained using Louvain clustering using Seu-
rat ( 25 ) and the transferred labels. Clustering was per-
formed with resolutions between 0.1 and 2.0 in steps
of 0.1. The maximum ARI was used. High values indi-
cate better consistency between the obtained clusters and
the cell type labels; methods were ranked in decreasing
order. 

8. Normalized mutual information (NMI) was calculated
using the same strategy as for ARI. High values indicate
better consistency between the obtained clusters and the
cell type labels; methods were ranked in decreasing order.
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9. V-measure was calculated using the same strategy as for
ARI. High values indicate better consistency between the
obtained clusters and the cell type labels; methods were
ranked in decreasing order. 

An overall rank was calculated by calculating the average
rank across all nine metrics and ranking the average in increas-
ing order. A rank for label mapping was calculated using the
first three metrics (mapping score, label score and label hier-
archy), a rank for expression similarity corresponds to ranks
of the expression entropy metrics, a rank for label cohesion
was calculated using the median LISI and the average silhou-
ette width, and a rank for label clusterability was calculated
using the ARI, NMI and V-measure. Across all ranks, rank 1
corresponds to the lowest average across the ranked metrics
and indicates the best performance. 

For benchmarking after integration, each sample was qual-
ity controlled individually, labelled using Azimuth ( 25 ) and
integrated using the RPCA method in Seurat ( 25 ) with default
parameters. In the integrated space, we calculated 12 metrics
associated with the quality of integration, the extent of batch
effects and the consistency of biological signals using level 2
labels: 

1. For each label class, the fraction of marker genes, de-
fined as differentially expressed genes [FDR ≤ 0.05, fold
change ≥ 1, area under a receiver operating character-
istic curve (AUC) ≥ 0.7] in a class label compared to
all other barcodes, which were detected in at least three
samples. Higher fractions indicate higher biological con-
sistency between datasets; methods were ranked in de-
creasing order. 

2. The median Spearman’s rank coefficient of correlation
between pseudo-bulk expression levels per class label per
dataset. Higher correlations indicate higher biological
consistency between datasets; methods were ranked in
decreasing order. 

3. LISI ( 34 ) across transferred labels in the first 10 PCs in
the integrated space calculated from 2000 HVGs using
Seurat ( 25 ). Lower LISI indicates lower mixing of cell
type labels; methods were ranked in increasing order. 

4. LISI ( 34 ) across dataset labels in the first 10 PCs in the
integrated space calculated from 2000 HVGs using Seu-
rat ( 25 ). Higher LISI indicates better mixing of batches;
methods were ranked in decreasing order. 

5. The average silhouette width across transferred type la-
bels using Euclidean distances in the first 10 PCs in the
integrated space was calculated from 2000 HVGs using
Seurat ( 25 ). Higher silhouette width indicates a better
separation of cell types; methods were ranked in decreas-
ing order. 

6. The average silhouette width across transferred dataset
labels using Euclidean distances in the first 10 PCs in the
integrated space was calculated from 2000 HVGs using
Seurat ( 25 ). Lower silhouette width indicates less sep-
aration of batches; methods were ranked in increasing
order. 

7. ARI was calculated using cluster labels obtained using
Louvain clustering using Seurat ( 25 ) and the transferred
labels. Clustering was performed with resolutions be-
tween 0.1 and 2.0 in steps of 0.1. The maximum ARI was
used. High values indicate better consistency between the
obtained clusters and the cell type labels; methods were
ranked in decreasing order. 
8. ARI was calculated using cluster labels and dataset labels 
performed as metric 7. Low values indicate better batch 

integration; methods were ranked in increasing order. 
9. NMI was calculated using cluster labels and transferred 

labels performed as metric 7. High values indicate better 
consistency between the obtained clusters and the cell 
type labels; methods were ranked in decreasing order. 

10. NMI was calculated using cluster labels and dataset la- 
bels performed as metric 7. Low values indicate better 
batch integration; methods were ranked in increasing or- 
der. 

11. V-measure was calculated using cluster labels and trans- 
ferred labels performed as metric 7. High values indicate 
better consistency between the obtained clusters and the 
cell type labels; methods were ranked in decreasing or- 
der. 

12. V-measure was calculated using cluster labels and dataset 
labels performed as metric 7. Low values indicate better 
batch integration; methods were ranked in increasing or- 
der. 

An overall rank was calculated by calculating the average 
rank across all 12 metrics and ranking the average in increas- 
ing order. A rank for expression similarity was calculated 

based on the conservation of marker genes and Spearman’s 
correlation coefficient, a rank for label cohesion was calcu- 
lated using the median LISI across labels and the average sil- 
houette width for labels, a rank for label clusterability was 
calculated based on the ARI, NMI and V-measure for cluster- 
ing labels, a rank for batch cohesion was calculated using the 
median LISI across batches and the average silhouette width 

for batches, and a rank for batch clusterability was calculated 

using the ARI, NMI and V-measure for clustering batches.
Across all ranks, rank 1 corresponds to the lowest average 
across the ranked metrics and indicates the best performance.

Evaluating the impact of each stage of valiDrops 

To evaluate how each filtering stage in valiDrops affects qual- 
ity metrics, we calculated the nine metrics used for method 

comparison using barcodes kept by stages 1, 2 and 3 in 

valiDrops, respectively, for all benchmarking datasets. In addi- 
tion, we estimated the ambient RNA fraction using DecontX 

( 6 ) defining barcodes with a total of 50 UMIs or less as back- 
ground barcodes. 

Benchmarking prediction of dead cells 

For the O’Flanagan datasets ( 3 ), pre-processed data for sorted 

dead and sorted live cells were downloaded from Zenodo un- 
der DOI: 10.5281 / zenodo.3407791. For the Ordoñez-Rueda 
datasets ( 35 ), raw sequencing data from 10X Genomics runs 
were downloaded from ENA under accession number PR- 
JEB33078 and aligned to the human genome version hg38 

using STARsolo ( 29 ). 
Subsequently, sorted dead and sorted live cells were quality 

filtered using valiDrops with modifications. In the O’Flanagan 

datasets, the initial step was skipped as the datasets had 

already been filtered. Furthermore, in both the O’Flanagan 

datasets ( 3 ) and the Ordoñez-Rueda datasets ( 35 ), a common 

threshold for mitochondrial filtering was calculated using the 
live cells and applied to the dead cells. After filtering, the 
datasets were combined, and dead cells were identified using 
valiDrops with default parameters. Barcodes that pass quality 
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ontrol were embedded in Uniform Manifold Approximation
nd Projection (UMAP) space (left: true labels; right: predicted
abels) using Seurat ( 25 ) based on 20 PCs calculated from
00 HVGs. The quality of classification was evaluated using
atthew’s correlation coefficient (MCC), which was calcu-

ated for the initial labels, for a baseline model using logistic
egression on the initial labels and for optimization of the ini-
ial labels using valiDrops. For sensitivity analysis, we used a
tratified subsampling approach. Barcodes were grouped into
0 groups based on the score used as the basis for the initial la-
els, and between 10% and 50% of truly dead barcodes were
andomly selected and removed in each group. Each subsam-
ling was repeated 20 times. 
Two datasets that had not been analysed as part of the cre-

tion of the method were used to validate the method. First,
n unsorted sample from the Ordoñez-Rueda datasets ( 35 )
as quality filtered using valiDrops with default parameters.
arcodes that pass quality control were combined with bar-
odes from the sorted live and sorted dead cells. The first 10
Cs based on 100 HVGs were calculated using Seurat ( 25 )
nd subsequently used for nearest neighbour analysis using
ANN. Transcriptomic similarity on pseudo-bulk expression

evels was measured by the normalized RMSE (NRMSE) on
he top 100 most highly expressed genes. The RMSE was
ormalized by the interquartile range in the reference sam-
les. Second, raw sequencing data from public scRNA-seq
ata from the spleen, lungs and oesophagus either immedi-
tely processed (fresh) or stored for 72 h prior to process-
ng ( 36 ) were downloaded from ENA under accession number
RJEB31843, aligned to the human genome version hg38 us-
ng STARsolo ( 29 ) and analysed using valiDrops with default
arameters. Initial cell type labels were transferred from anno-
ations by the original authors. Barcodes that passed quality
ltering in valiDrops, but not in the original analysis, had no
abels. For these barcodes, labels were labelled using majority
oting in a k -nearest neighbour classifier using the 10 nearest
eighbours in the 20 first PCs calculated from 2000 HVGs.
ies were broken by selecting the label with the smallest me-
ian Euclidean distance. Dead cell labels were only used for
uns marked as successful by valiDrops. All barcodes in un-
uccessful runs were labelled as live. Transcriptomic similarity
n pseudo-bulk expression levels was measured per cell type
y the NRMSE on the top 100 most highly expressed genes on
ubsamples of either fresh cells or cells predicted to be either
ive or dead after 72 h of storage. The RMSE was normalized
y the interquartile range in the fresh cells. For each cell type,
e matched group sizes by randomly selecting (with replace-
ent) the same number for each group. 
We interpreted how the algorithm makes decisions by ex-

racting the final coefficients from the glmnet models and
eighting them by the standard deviation of the input data us-

ng the XYZ method. The absolute feature loadings from the
ingular value decomposition were multiplied by the weighted
oefficients and summarized across all components. The av-
rage feature contribution was calculated across all 10 dif-
erent glmnet models and features with a contribution score
bove 0.1 were submitted to pathway analysis using the en-
ichR package and the Gene Ontology Biological Processes
023 database. Pathways that were significantly enriched in
ither the O’Flanagan dataset or the Ordoñez-Rueda dataset
ere kept, and the number of pathways was reduced by calcu-

ating the Jaccard distance between the genes in each enriched
erm and clustering the matrix using hierarchical clustering.
For each cluster (consisting of different terms with highly over-
lapping gene sets), the most strongly enriched term was kept.

Results 

Overview of methods and the benchmarking 

strategy 

valiDrops takes as input an unfiltered feature-by-barcode ma-
trix, which can be produced by all common alignment and
count methods, for example CellRanger ( 10 ), STARsolo ( 29 ),
kallisto|bustools ( 37 ) and alevin ( 38 ), and sequentially re-
moves barcodes of low quality (Figure 1 A). Some of the qual-
ity metrics used in valiDrops for barcode filtering, such as
the total number of UMIs, are already extensively used in the
field but often require user input to set thresholds. In contrast,
valiDrops automatically detects thresholds, such as the thresh-
old defining the ‘ambient plateau’, and removes barcodes with
a low number of UMIs, which are likely to contain only ambi-
ent signals. Next, valiDrops uses stepwise linear regression to
infer the relationship between the number of detected features
and the number of UMIs and automatically removes outliers.
It uses knee-point detection to automatically detect an appro-
priate threshold for filtering based on the fraction of UMIs
derived from mitochondrial genes, and it fits a normal distri-
bution to the fraction of UMIs derived from protein-coding
genes and sets a threshold using the fitted mean and standard
deviation. In addition to these commonly used quality metrics,
valiDrops uses a novel filtering approach based on differen-
tially expressed genes. Barcodes are grouped into both high-
resolution and low-resolution clusters using a combination
of graph clustering and a data-adaptive method for selecting
clustering resolutions. The barcodes in each high-resolution
cluster are then compared to all other barcodes, which do
not belong to the same low-resolution cluster, and any high-
resolution clusters that do not show significant differences in
gene expression compared to the other barcodes are removed.
This process helps to remove droplets containing a cell or nu-
cleus with a low signal-to-noise ratio. Finally, valiDrops has
the option to predict and flag putative dead cells. To detect
dead cells, valiDrops initially labels dead cells using a simple
heuristic based on the fraction of UMIs assigned to mitochon-
drial, ribosomal and protein-coding genes. Next, valiDrops re-
fines these noisy labels using ridge regression and an adaptive
resampling strategy. 

Here, we benchmarked valiDrops and six other existing
tools and found that valiDrops has the best performance and
an average run time (Figure 1 B). It is an open problem how
to benchmark barcode filtering methods since there are no
ground truth datasets available. Here, we devised a strategy
based on assessing the quality of transferred labels after bar-
code filtering (Figure 1 C). The use of label transfer circum-
vents any biases towards methods used by the original au-
thors of benchmarking datasets, thereby preventing any ar-
tificial inflation of the performance of mainstream methods.
Additionally, any potential biases introduced by label transfer
will affect all methods equally ensuring a fair comparison. For
each tool, we filtered barcodes across 47 single-cell or single-
nucleus RNA-seq samples from five different datasets and sub-
sequently used Azimuth ( 25 ) to transfer cell type labels. Then,
we assessed the quality of the identified barcodes by evaluating
labelling metrics, conservation of label hierarchies, clustering
of labels and intra-label transcriptional entropy . Additionally ,
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we integrated samples from the same dataset using Seurat ( 25 ),
and assessed the extent of batch effects by evaluating the con-
versation of biological signals, separation of batch labels and
similarity of cell type labels using both cluster-dependent and
cluster-independent metrics. 

valiDrops sequentially removes low-quality 

barcodes 

To evaluate how each stage in valiDrops improves data qual-
ity, we analysed a single PBMC dataset from 10X Genomics
containing 5000 PBMCs and transferred labels using Azimuth
( 25 ) to barcodes passing each of three stages in valiDrops. In
stage 1, valiDrops removed barcodes with a low number of
UMIs. In stage 2, valiDrops removed barcodes using common
quality metrics, such as the number of UMIs derived from mi-
tochondrial genes and the relationship between the number
of UMIs and number of detected genes. In stage 3, valiDrops
removed barcodes without distinct biological signals using a
data-adaptive clustering approach and differential expression
testing. After stage 1, most transferred cell type labels are well
separated in the UMAP space (Figure 2 A, left panel). How-
ever, major clusters of monocytes and T cells are connected by
putative erythrocytes, which are also found in several places
across the embedded space (black arrows). After stage 2, the
cell types are clustered more tightly. Most erythrocytes con-
necting major clusters of monocytes and T cells have been re-
moved, although a tail in both clusters is retained (Figure 2 A,
middle panel). Finally, after stage 3, the cell types are more well
separated in the UMAP space, and the tails of erythrocytes are
removed leaving one distinct cluster of putative erythrocytes
(Figure 2 A, right panel). 

To quantify the extent to which each of the stages improved
the quality of the dataset, we used a large and diverse panel
of measures related to labelling, cell type separability, tran-
scriptome similarity and cell type clusterability (i.e. the pre-
cision at which clustering can separate cell type labels) (Fig-
ure 2 B–K; see the ‘Materials and methods’ section). We find
that labelling scores and the accuracy of the label hierarchy
improved for each stage and that the removed barcodes have
much lower scores than the retained barcodes (Figure 2 B–D).
To determine the accuracy of the label hierarchy, we labelled 

the barcodes with both coarse-grained and fine-grained labels 
and asked how large a fraction of barcodes was assigned to a 
fine-grained label, which was a child of the assigned coarse- 
grained label. We found a similar trend across all metrics; clus- 
ter separability increased across filtering stages and removed 

barcodes have low separability (Figure 2 E and F). Transcrip- 
tomic similarity, correlation to bulk RNA-seq expression us- 
ing bulk RNA-seq data from sorted cells of the same cell type 
( 39 ) and the fraction of markers that were discriminatory also 

increased across filtering stages (Figure 2 G–I), and so did the 
ability to cluster barcodes into cell types (Figure 2 J and K).
Collectively, this strongly indicates that valiDrops filtering im- 
proves the quality of the dataset. 

valiDrops compares favourably to existing tools 

To compare valiDrops to existing methods, we ran all meth- 
ods, except CellBender, using default parameters. CellBender 
does not have a default parameter set, as it requires users to 

specify the number of expected cells, as well as the number of 
total cells. In this benchmark, we derived these numbers from 

the automatically determined thresholds set by valiDrops. Fi- 
nally, one of the key distinguishing features of valiDrops is 
that it is automated, does not require post-filtering and does 
not require user input. In contrast, EmptyDrops, scCB2 and 

EmptyNN all require post-filtering to remove barcodes con- 
taining low-quality cells or nuclei. To ensure that these tools 
did not artificially underperform due to a lack of post-filtering,
we applied miQC ( 31 ) to automatically filter barcodes based 

on mitochondrial content for the scRNA-seq samples and set 
a data-driven mitochondrial threshold at three times the me- 
dian absolute deviation above the median for single-nucleus 
RNA-seq samples. 

Initially, we evaluated a single PBMC dataset from 10X 

Genomics containing 8000 PBMCs (Figure 3 A). All methods 
detected ∼8000 high-quality barcodes, except dropkick and 

EmptyNN, both of which detected > 9000 barcodes (Figure 
3 B). Across the labelling metrics, valiDrops achieved the high- 
est mapping score, but scores were overall similar (Figure 3 C–
E). However, barcodes identified by valiDrops had the highest 
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ranscriptome similarity within cell types, as measured by en-
ropy (Figure 3 F). For cell type cohesion and clusterability (see
he ‘Materials and methods’ section), valiDrops achieved the
est scores for the silhouette width, for the LISI (Figure 3 G
nd H) and for all clustering metrics (Figure 3 I–K). Thus, in
his dataset, valiDrops exhibited the best performance across
ll metrics. 

We expanded this benchmark by analysing a total of 47
xRNA-seq samples from five datasets. Each method was
anked based on the set of nine metrics (the overall rank), as
ell as on subsets of metrics that were used to evaluate label
apping, expression similarity, label cohesion and label clus-

erability (Supplementary Table S1). In addition, we integrated
he samples from each dataset using Seurat and evaluated
he integration in terms of marker gene conservation, cross-
ample gene-rank correlation, integration metrics and bio-
ogical conservation metrics (Supplementary Table S2). Each
ethod was ranked based on the full set of 12 metrics (the
overall rank) and on subsets of metrics, which were used to
evaluate expression similarity, label cohesion, label cluster-
ability, batch cohesion and batch clusterability (see the ‘Ma-
terials and methods’ section). For all five datasets and inte-
gration tasks, valiDrops achieved the best overall rank (Fig-
ure 4 A). For filtering individual samples, valiDrops achieved
the best overall rank for 35 of the 47 samples, rank in the
top 2 for 44 of the 47 samples and never ranks worse than
4. This high performance was consistent across all metrics
(Figure 4 B). For batch integration after filtering, valiDrops
achieved the best overall rank for all tasks, but notably did
not consistently achieve a high rank for expression similar-
ity. However, looking at the individual metrics that compose
this rank, we found that all methods perform approximately
similarly (Figure 4 C and D). Thus, valiDrops achieves state-
of-the-art performance in terms of barcode filtering improving
data quality and retaining true biological signals, and dissec-
tion of each step in valiDrops revealed that all three stages are
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required to achieve the best performance across all datasets
(Figure 4 E). 

valiDrops can detect dead cells with high accuracy 

Recent literature suggests that a subset of dead cells can
pass regular quality control and confound the transcriptomic
signatures of cell types or states in the sxRNA-seq dataset
( 3 ,35 ). This issue may be especially prevalent in certain dis-
eases associated with the induction of cell death, or when
storing tissues for later processing, where cell types within 

the tissue may have a differential sensitivity to the storage 
conditions. 

Re-analysis of these datasets with valiDrops revealed that 
valiDrops removes a large fraction of dead cells through reg- 
ular quality control (Figure 5 A), but that there are dead cells 
that pass quality control. The dead cells that pass quality con- 
trol are characterized by a higher number of UMIs and higher 
coding fraction than live cells passing quality control, but they 
are not easily distinguishable based on quality control metrics 
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Figure 4. Benchmarking valiDrops and alternative quality control methods. Barcodes were quality filtered using valiDrops, EmptyDrops ( 14 ), DIEM ( 16 ), 
scCB2 ( 15 ), dropkick ( 19 ), CellBender ( 18 ) or EmptyNN ( 17 ), and labels were transferred with Azimuth ( 25 ) with associated reference atlases. The value 
in each table is the o v erall rank of the method based on individual dataset metrics, where lo w er is better (see the ‘Materials and methods’ section for a 
detailed description of the metrics). For the integration rank, each sample was quality controlled individually and integrated using the RPCA method in 
Seurat ( 25 ) with default parameters. The value in each table is the overall rank of the method based on integration metrics, where lower is better (see 
the ‘Materials and methods’ section for a detailed description of the metrics). ( A ) Heatmap for ranks for all datasets, as well as an overall rank across all 
datasets. ( B ) Bar plot showing the fraction of datasets that achieved the best rank for each metric and for each method. ( C ) Bar plot showing the fraction 
of conserved marker genes across the five integration datasets for each method. ( D ) Bar plot showing the median Spearman’s rank coefficient of 
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showing the average of the indicated metrics (see the ‘Materials and methods’ section for details on their calculation) for the indicated datasets 
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Figure 5. Identification of dead cells using v aliDrops. ( A ) B ar plot showing the number of cells passing (green) or failing (red) quality filtering by valiDrops 
for dead and live cells from the O’Flanagan datasets ( 3 ) and the Ordoñez-Rueda datasets ( 35 ), respectively. ( B ) Box plots showing the indicated metric 
for barcodes that either pass or fail quality control (QC) and that are either dead or live for the indicated datasets. ( C , D ) Barcodes that pass quality 
control for the indicated datasets were embedded in the UMAP space (left: true labels; right: predicted labels) using Seurat ( 25 ) based on 20 PCs 
calculated from 500 HVGs. The bar plots show the MCC for the initial labels, for a baseline model using logistic regression on the initial labels (LR) and 
f or v aliDrops. ( E ) Scatter plot sho wing the log 10 combined score f or the indicated datasets of pathw a y s significantly enriched f or genes with high feature 
importance in dead cell prediction. ( F ) B o x plots showing MCC for dead cell prediction in the indicated dataset after removal of the indicated fraction of 
truly dead cells. ( G ) Scatter plot of the MCC and the fraction of truly dead cells that were correctly labelled. ( H ) Scatter plot of the MCC and the fraction 
of truly live cells that were correctly labelled. ( I ) UMAP embedding (left: sorted datasets with true labels; right: unsorted datasets with predicted labels) 
using Seurat ( 25 ) based on 10 PCs calculated from 100 HVGs of an unsorted sample from the Ordoñez-Rueda dataset ( 35 ) after quality filtering and dead 
cell prediction. ( J ) The fraction of 10 nearest neighbours derived from truly live (first three bars) or truly dead (last three bars) cells computed on the 20 
first PCs calculated from 100 HVGs for predicted live, predicted dead or truly live cells. ( K ) The NRMSE between pseudo-bulk expression levels for top 
100 most highly expressed genes in truly live cells and either predicted live or predicted dead cells, and between the pseudo-bulk expression levels for 
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lone (Figure 5 B). To overcome potential confounding from
ead cells, we designed an optional module in valiDrops to
redict dead and live cells. To create this module, we lever-
ged two datasets with ground truth, where the authors had
nduced cell death, sorted cells into live and dead populations,
nd performed scRNA-seq on both groups ( 3 ,35 ). Based on
hese labels, we created a module with three steps. Initially,
very cell is assigned a score based on arcsine-transformed
ractions of UMIs derived from mitochondrial genes, riboso-
al genes and coding genes, as well as the standardized num-
er of total UMIs and detected genes. Second, the cells are
abelled using a data-adaptive thresholding approach to sepa-
ate the cells into a group enriched for dead cells and a mixed
roup containing both live and dead cells. Finally, the labels
re optimized using ridge regression and a modified version of
daptive resampling ( 40 ). 

In the two datasets, initial labels made by valiDrops were
eak predictors of the true class, whereas the labels optimized
sing adaptive resampling and ridge regression were highly
ccurate (MCC ≥ 0.86), and significantly better than base-
ine models using logistic regression on the initial labels (Fig-
re 5 C and D). For both models, we derived feature impor-
ance scores and found that the genes important for predic-
ion are associated with translational processes, stress-related
rotein kinases and tau-protein kinases, and apoptotic pro-
esses (Figure 5 E). To evaluate the sensitivity of valiDrops,
e used a stratified subsampling approach to approximate

he distribution of initial scores but reduce the number of
rue dead cells by between 10% and 50%. In one dataset,
aliDrops maintained a median MCC above 0.9 across the
ubsampled datasets, while in the other the MCC decreased
o a median of ∼0.66 after the removal of 50% of the truly
ead cells. Although the MCC decreases, this still represented
 strong predictive performance (Figure 5 F). The difference in
CC between the datasets was likely explained by the abso-

ute numbers of truly dead cells present after subsampling, as
he dataset with the lowest MCC only contained a median of
 truly dead cells, whereas the dataset with the highest MCC
ontained a median of 50 truly dead cells. The decrease in

CC observed at small numbers of truly dead cells was driven
y a decrease in the ability to correctly label dead cells (Fig-
re 5 G), not in the ability to correctly label live cells (Figure
 H). Reassuringly, this highlights that valiDrops does not spu-
iously flag live cells for removal. 

To test the module on unseen data, we processed and pre-
icted dead cells in an additional sample included in one of
he ground truth datasets ( 35 ), where cell death had been in-
uced, but the cells had not been sorted. To evaluate the pre-
icted labels, we integrated the unsorted and sorted datasets.
he predicted dead cells in the unsorted dataset are more of-

en neighbours to truly dead cells than to truly live cells in
he integrated reduced dimensional space. Similarly, the pre-
icted live cells are more often neighbours to truly live cells
han to truly dead cells (Figure 5 I and J). Comparison of the
seudo-bulk transcriptomic profile of predicted live and pre-
icted dead cells to that of truly live and truly dead cells re-
ealed that the predicted live cells are transcriptionally more
ike truly live cells, while predicted dead cells are more like
ruly dead cells (Figure 5 K). This suggests that in silico dead
ell labelling can rescue samples that are contaminated with
ead cells or serve as a basis for studying mechanisms of cell

eath. 

 

To test the module in more biologically relevant systems, we
re-analysed data from a study that assessed the effects of cold
storage of up to 72 h on healthy human spleen, oesophagus
and lungs ( 36 ). The original authors showed using TUNEL
staining that on the tissue level especially the spleen and oe-
sophagus had increased numbers of dead cells after 72 h of
cold storage. The spleen and lung samples were processed with
a dead cell removal kit, and all three tissues were analysed
by scRNA-seq. In the initial quality control using valiDrops,
we found that a decreased fraction of barcodes passed qual-
ity control after 72 h of storage, and that this was especially
pronounced in the spleen (Figure 6 A). This observation was
also reported in the original paper based on manual quality
control. Across the datasets, cell labelling by valiDrops pre-
dicts low numbers of dead cells (Figure 6 B), consistent with
the oesophagus samples having high viability and the lung
and spleen samples being filtered using a dead cell removal kit
prior to sample preparation. However, valiDrops did predict
an increased number of dead cells in the spleen and oesoph-
agus samples after 72 h consistent with the TUNEL staining.
The fraction and the total number of predicted dead cells vary
across cell types (Figure 6 C and D) suggesting that different
cell types have different susceptibilities to dying during cold
storage. In cell types marked by high rates of predicted dead
cells, the cells predicted to be live are transcriptionally more
like cells from the same cell type in the fresh samples compared
to cells predicted to be dead (Figure 6 E and F). Taken together,
these results show how valiDrops can accurately identify dead
cells from complex tissues and that removing these cells re-
stores the accuracy of aggregated transcriptomic profiles. 

Discussion 

Quality control and filtering are the most important pre-
processing steps in analysing sxRNA-seq datasets. The most
widely used workflows rely on tools to identify barcodes hav-
ing transcriptomic profiles that do not resemble the aggre-
gated signal from barcodes with low coverage. These bar-
codes are then filtered to define high-quality barcodes based
on global and user-defined thresholds for the number of de-
tected genes, the UMI count and / or the fraction of UMIs de-
rived from mitochondrial genes. The individual researcher can
bias this process, it can be very time-consuming and there
can be identification biases against the most prevalent cell
types whose transcriptome has the strongest resemblance to
the ambient profile. To overcome these issues, we have devel-
oped valiDrops, which is an automated software that identifies
high-quality barcodes from raw sxRNA-seq count matrices. 

In valiDrops, barcodes are automatically filtered by using
data-adaptive thresholds on the number of detected genes, the
number of UMIs, their association with each other, the frac-
tion of UMIs derived from mitochondrial genes and the frac-
tion of UMIs derived from coding genes. Next, valiDrops used
an overclustering-based approach to identify small groups of
barcodes that have a distinct signal compared to the other
barcodes passing initial filtering. Thus, unlike existing meth-
ods, valiDrops does not rely on comparison between high-
quality barcodes and low-coverage barcodes, thereby avoid-
ing biases from differences in how cell types contribute to the
profile of low-coverage barcodes. The overclustering-based
approach uses a combination of clustering resolutions to en-
sure that barcodes containing cells or nuclei from the same or
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closely related cell types and states are not compared, thereby
avoiding potential biases against, for example, differentiat-
ing cells. However, since valiDrops looks for distinct signals,
valiDrops can only accurately identify high-quality droplets in
datasets with biological heterogeneity. Therefore, we do not
advise users to apply the quality control and filtering mod-
ule of valiDrops to datasets derived from, for example, a sin-
gle, pure cell line. However, in complex samples, such as tis-
sues or whole organisms, valiDrops is a valuable method for
the automatic and unbiased identification of high-quality bar-
codes and achieves better barcode filtering than existing meth-
ods. We based our benchmark on labels obtained through la-
bel transfer using reference atlases. This has the advantage of
removing any biases towards mainstream methods the orig-
inal authors used to filter the datasets in the original pub-
lications but may potentially introduce a new bias from the
label transfer procedure itself, as cells might be wrongly clas-
sified or scored. However, this new potential bias equally af-
fects all methods reducing the overall bias affecting method
comparison. 

Prediction of dead cells by valiDrops has the potential to
improve data quality by removing technical biases and to un-
lock the study of cell death-inducing mechanisms, which is rel-
evant in multiple diseases ranging from cancers to metabolic
diseases. To assess the ability of valiDrops to improve data
quality when faced with dead cells, valiDrops was used to pre-
dict dead cell samples with low or high rates of dead cells prior
to dead cell removal and scRNA-seq. Consistently, valiDrops
detected more dead cells in samples with a priori high rates of
cell death, and computational removal of the predicted dead
cells improved the transcriptomic similarity between the sam-
ple in question and control samples with low rates of dead
cells. The sensitivity of dead cell prediction in valiDrops is
high, as valiDrops achieves a median MCC ≥ 0.75 in sam-
ples with as little as 0.1% dead cells. Below this threshold,
valiDrops increasingly misclassifies dead cells as live, but not 
live cells as dead. Thus, valiDrops does not spuriously remove 
truly live cells even in the absence of truly dead cells. We 
have not tested the ability of valiDrops to flag dead cells in 

single-nucleus RNA-sequencing datasets, but due to system- 
atic differences in the metrics used to initially flag dead cells,
we do not advise users to attempt using single-nucleus RNA- 
seq datasets as input for dead cell removal. 

valiDrops is available as an R package that is available 
from GitHub ( www.github.com/ madsen-lab/ valiDrops ) and 

requires a single line of code to automatically identify bar- 
codes containing high-quality nuclei or (live) cells. 

Data availability 

This work uses only publicly available datasets, and all acces- 
sion numbers are listed in the ‘Materials and methods’ sec- 
tion. The code underlying valiDrops is available as an instal- 
lable R package from GitHub at www.github.com/madsen- 
lab/valiDrops and is permanent hosted at Zenodo (DOI: 
10.5281 / zenodo.10057279). 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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