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Abstract v

Abstract

In this thesis, we present numerical results1 from planet-particle simulations
within extrasolar planetary systems. Orbital stability properties of hypothetic ter-
restrial planets (modelled as test particles) within the habitable zone of the Solar like
stars HD70642 and HD4208 are investigated. The three-body problem is considered
as the fundamental model and the effect of giant planet gravitational perturbations
on orbital Kepler elements of a terrestrial planet are studied within a giant planet
orbit parameter survey. Short- and long-term integration (106 − 109 years) of the
equation of motion are considered in simulations.

The habitable zone for each system is determined from a one-dimensional at-
mosphere model for an Earth-mass planet in thermal equillibrium (Kasting et al.,
1993). Zonal habitable boundaries provide constraints on Kepler parameters within
(a, e)-space.

Independent numerical methods using symplectic and interpolation algorithms
are used to study dynamical characteristics of the system. The MEGNO indicator is
used to measure the chaotic nature of the time evolution of Kepler orbital elements.
Stability properties of terrestrial planets are inferred by directly considering the
dynamics of 2 × 103 test particles. A dynamically cold (i.e e = 0) distribution of
particles with random mean anomalies is used as initial conditions. For the giant
planet, we consider orbit eccentricity and planet mass as the variable parameters
within a parameter survey.

Orbital mean-motion resonances are identified to cause eccentricity excitations
of particles. For some choices of giant planet orbital elements, numerical simulations
shows particle removal by either ejections or accretion as a result of close encounters.
This is a dynamical consequence of repeated resonance perturbations and global
chaotic dynamics, resulting in gap formation within the initial particle population.
Numerical results allow a general conclusion on the possibility of habitable terrestrial
like planets within the current population of observed giant planets. Upper bounds
on giant planet orbit eccentricity (emax = 0.16) are determined for both systems.
Results suggest that giant planets are best located in the outer region on circular
orbits in a planetary system in order to render terrestrial habitable planets on a
stable orbit. However, giant planets on circular orbits with semi-major axis a '
1.7 AU exhibit a stable configuration for the terrestrial planet, in order to be confined
to within the habitable zone.

This kind of numerical dynamical stability analysis will help future satellite
search missions for habitable terrestrial planets, by providing a mission targeting
list of exosystems with a high probability in harboring terrestrial planets on dynam-
ically stable orbits within the habitable zone.

1Results of this work has been presented as a poster (cf. appendix B) at the annual DPS/AAS
conference in Cambridge (UK), September 2005 (Hinse & Jørgensen, BAAS, vol. 37, p.3, 2006).
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Introduction, thesis outline and units

One of the most exciting astronomical advances in the last few years has been
the discovery of planets around other stars - known as extrasolar planetary systems.
The recent discoveries of planets outside the Solar System have opened a hole new
branch within the field of observational and theoretical astrophysics. The search
for other planets is motivated by our deep interest to understand their formation
mechanisms and, by analogy, to gain an improved understanding of the formation
of our own Solar System.

For many centuries, philosophers and scientist have theorised about the forma-
tion of planets and the existence of planets outside the Solar System, including
possible habitable planets. Kant (1755) and Laplace (1796) hypothesised that the
planets of the Solar System formed from a flattend gaseous disk in differential ro-
tation about the Sun. In De l‘Infinito, Universo e Mondi, Giordano Bruno (1584)
argued that the universe was infinite and that it contained an infinite number of
worlds, all inhabited by intelligent beings.

Only in modern times, with the revolutionary discovery of planets around other
stars can we now test their hypothesis and quantify it. In particular, the most
exciting question is the quest to discover life beyond Earth: does there exist a
planet, habitating biological lifeforms, in orbit within a life-supporting envirmon-
ment around a Sun-like star?

Some of the extrasolar planetary systems (EPS), nearly similar to the orbital
structure of the Solar System, have been observed and studied for the existence of
possible Earth like planets. Promissing candidates are 47 Ursae Majoris, 51 Pegasi
and 55 Cancri. All are multi-planetary systems containing 2-3 giant Jupiter-like
planets in different orbits around their central host star. Whether life could have
emerged on a extrasolar Earth within any of these systems depends on several dy-
namical factors (in evolutionary order): 1) planetary embryo interactions with an
initial gas disk 2) formation of giant planets 3) gravitational interactions between
planets and protoplanetary embryos on timescales comparable to the lifetime of the
systems hoststar and 4) the spin-stability of extrasolar Earths will depend on the
masses and proximity of neighboring satellites or moons. To first order, a key ingre-
dient is whether extrasolar terrestrial planetary orbits dynamically remain confined
long enough within the habitable zone in order for life to form and develop.

Recently, a few planets have been confirmed observed at comparable large orbital
distances. 14Herb, HD30177b, HD33636b, HD39091b, Gl777Ab and HD 72659 are
all systems with a single massive planet orbiting their central host beyond 3 AU
with moderate large eccentricities (e = 0.5). An interesting candidate is HD70642,
containing a single giant planet orbiting a solar-like star on a near-circular orbit
(e = 0.1), with a mean distance of 3.3 AU. This system resembles our Solar System
more closely and it is natural to ask whether this system can harbor terrestrial



viii Introduction, thesis outline and units

planets in its inner regions.
At present, we cannot give a definitive answer to this question since the detection

of terrestrial planets is beyond the resolving capabilities of current telescope tech-
nology. However, future space missions like COROT (CSNR, ESA), DARWIN and
GAIA (ESA), the Terrestrial Planet Finder (NASA) mission or SIM (NASA), will be
able to explore remote star systems through either astrometric and/or transit effects
(COROT, SIM, GAIA), direct imaging (DARWIN, TPF) or even spectroscopy of
planets that might show evidence of biological activity in their atmosphere (CH4, O3

and O2).
Within this thesis I outline fundamental aspects of planetary dynamics and

present a dynamical analysis of initial conditions on orbit parameters for the ex-
istence of a possible Earth like planet within the habitbale zone of the HD70642 ex-
trasolar planetary system. Basically, the three-body equation of motion (expressed
in inertial coordinates η)

miη̈i = k2

3
∑

j=1,j 6=i

mimj

ηj − ηi

|ηj − ηi|3
i, j = 1, 2, 3 (1)

is studied within the parameter space of observed orbital elements using the over-
all principle: what happens, if ... ? The full 3-body planetary and the restricted
n-particle problem is considered. Stability and the chaotic nature of terrestrial
planetary orbits in the habitable zone after the dissipation of a gas-dust disk is
investigated numerically evaluating only gravitational interactions. Theoretical in-
vestigations of this kind will help future search missions for habitable planets by
providing a mission targeting list of potential terrestrial planets on dynamical sta-
ble orbits.

Thesis outline, notation and units

This thesis is structured into 8 chapters, reflecting the main natural approach
during the thesis period.

Chapter 1

The first chapter presents a review of a literature study within the field of the
detection, observation and properties of extrasolar planets, formation of terrestrial
planets; their habitability and stability within the terrestrial region in extrasolar
planetary systems.
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Chapter 2

In this chapter, we introduce basic concepts within astrodynamics and celestial
mechanics. Properties of the two-body problem are discussed and basic terms and
notations are defined. The geometrical content of Kepler’s orbital elements are
explained. In particular, we introduce Gauss’s f and g function and discuss the
numerical solution of Kepler’s equation and introduce the Delauney variables.

Chapter 3

This chapter concerns aspects of perturbation theory. The three-body problem is
introduced and properties of it are discussed. The concept of Jacobi coordinates are
reviewed. They are of most importance in the development of numerical algorithms.
The perturbation function is analysed and classes of perturbations occuring within
planetary interactions are discussed. For analytic purposes the Lagrange equations
represents the foundation for further analysis and represents differential equations
for the time evolution of the Kepler elements. Finally, we introduce Gauss’s form of
perturbations and study the origin of changes in orbital parameters by considering
a small perturbing force.

Chapter 4

Methods of numerical integration of the equations of motion are presented and
discussed. This chapter reviews the basic theory of symplectic integration widely
used within numerical celestial mechanics and planet dynamics. Numerical tests are
performed and presented for the accuracy and reliability of the adopted numerical
algorithms.

Chapter 5

In order to study the chaotic aspects within the three-body problem with application
to stability studies of terrestrial planets within extrasolar planetary systems, the
MEGNO indicator is introduced as a fast numerical method to test the presence
of chaotic dynamics. The concept of Lyapunov stable orbits are discussed and
introduced leading to the maximum Lyapunov exponent. The numerical code for
calculating the MEGNO is outlined and tested against known results within the
literature.

Chapter 6

Orbital parameters for the systems under study are presented based on observa-
tions using the radial velocity technique. The one-planet Kepler fitting technique
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to observations is outlined. In addition, the concept of the habitable zone and the
corresponding boundaries within (a, e)-space is introduced and explained.

Chapter 7

Results are presented obtained from numerical simulations. MEGNO stability maps
are derived for the systems HD70642 and HD4208. Initial conditions for a parameter
survey are given. The dynamical evolution of 2× 103 particles under the presenece
of giant planet perturbations are obtained by direct integration of the equations of
motion. Particles are initially distributed within the habitable zone of the systems.
Results from both short-term and long-term simulations are presented. Dynamical
aspects between the systems are compared and discussed.

Chapter 8

This final chapter concludes the thesis.

Notation and units

The notation within the thesis follows the classic notation employed within the field
of celestial mechanics. Vector quantities are denoted by boldsymbols (i.e ri, for the
heliocentric position vector of the ith body). The time rate of change of a quantity
ri, is denoted by ṙi. References are quoted in the format (author(s), (publ. year))
and are listed in within the bibliography section at the end of the thesis.

Numerical simulations are performed using the Gaussian system of units tradi-
tionally used within planetary dynamics and celestial mechanics. Within this system
masses2 are measured in units of solar masses (M�), distances are measured in as-
tronomical units (AU) and time is measured in Julian days (d). This convention
forces the Newtonian gravitational constant to be

√
G = k, where k is the Gaussian

gravitational unit with numerical value k = 0.01720209895 (AU3d−2)
1/2

(Danby,
1988, p.146). For numerical reasons, we set k = 1 by using a modified unit of time
within the calculations.

2Frequently, masses of observed extrasolar planets are given in units of Jupiters mass (Mjup ∼
300 M⊕, where M⊕ is one Earth mass.



Chapter 1

Extrasolar and terrestrial planets

1.1 Detection and properties of extrasolar planets

At the time of writing, the discovery of about 107 extrasolar planetary systems has
been announced1, and there are several systems containing more than one known
planet. The first planet to be discovered being the 51 Pegasi system (Mayor and
Queloz (1995)) and the first multi-planetary system being the υ Andromedae system,
where three planets have currently been detected (Lissauer (1999)). Compared to
the planets within the Solar System, these new planets were discovered to be in
very different orbit configurations. Fig. 1.2 shows the range in semi-major axis of
the known extrasolar planets. We discuss briefly the current detection techniques
of these planets, and their properties.

1.1.1 Detection techniques

Although the existence of extrasolar planets have been reported, no planets have
yet been directly imaged. All the detections so far have been by indirect methods,
which infer the presence of the planet by either the dynamical or photometric effects
caused by the orbiting planet on the host star (cf. Perryman (2000)).

The majority of the presently known extrasolar planets have been detected by
the ’radial velocity ’ technique. The gravitational effect of a planet in orbit causes a
small velocity signature wobble in the motion of the star in the center-of-mass frame.
Accurate Doppler shift spectroscopic measurements (today, sensitive to measure ra-
dial wobble-motions as small as 1ms−1) can detect this wobbling motion along the
line-of-sight velocity component. A time series of a sufficiently amount of observa-
tions enable the planetary orbit to be determined by the process of Keplerian orbit

1see for example http://exoplanets.org/ or http://www.obspm.fr/encycl/encycl.html for
monthly updates and news

1
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fitting. In the case for multi-planet systems the mutual gravitational interactions
must be included into the fitting procedure (Chambers and Laughlin, 2001). In this
way spectroscopic analysis can determine the orbital period P , the semi-major axis
a and eccentricity e of a planet. As the Doppler shift only is a measure of the line-
of-sight velocity component, the radial velocity method is unable of determining the
orbital inclination to the observers line of sight i, and hence the actual mass mpl

is not determined. Only the minimum (’projected’) planetary mass mpl sin i can be

measured. Geometric arguments leads to a statistical average value of sin i =
√

1/2
with i = ±π/4, which gives an average estimate of the real value of mpl for ran-
dom orientations of the orbital plane. In addition, the apsidal longitude2 ω of the
orbit can also be determined. This method is affected by observational bias, a sys-
tematic selection effect that favours the detection of giant planets in small-distance
orbits. Extended periods of observation time will enable more distant planets to
be detected, as is the case for the present occurence of giant planets on(in) distant
orbits.

Figure 1.1: Induced velocity signature on a Sun-like star as a function of planetary mass
(where MEarth and Mjup is the mass of Earth and Jupiter) and distance for circular (e = 0) or-
bits and i = π/4, where i measures the inclination of the orbital planet with the line-of-sight.
Left panel: Induced signature profiles of sub- to super-Earths at various distances. Right panel:
Induced signature profiles of giant Jovian planets at various distances.

If the inclination of the orbital plane of the planet coincides with the observers
line of sight, the planet will periodically pass in front of the star. These planetary
transits cause a small but observable dip (of about 1%) in the intensity of light
emitted from the star for a moderate giant planet. This is the ’photometric transit ’
method. Currently, extrasolar transits have been confirmed in only two systems.

2geometrical interpretations of orbital elements will be discussed in chapter 2
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The first transiting planets was found in orbit around HD209458 by Charbonneau
et al. (2000), a planet previously detected by the radial velocity technique. More re-
cently, a planet around the star OGLE-TR-56 was discovered by the transit method,
and subsequently confirmed by Konacki et al. (2003) using the radial velocity tech-
nique. Lightcurve analysis of photometric time series observations can determine
the orbital period P , the semi-major axis a, the radius of the planet Rpl and the
orbital inclination to the observers line of sight i. Combined with radial velocity
measurements, the absolute planetary mass mpl, can be extracted with this method.

The detection of terrestrial planets in extrasolar planetary systems with these
techniques is beyond the current sensitivity limit for both spectroscopic and photo-
metric measurements. Fig. 1.1 shows the velocity signature of a star as a function
of planet mass and distance for cicular planetary orbits. In order to detect a second
Earth radial velocity measurements should be accurate to as small as 0.1 ms−1,
which is beyond the current sensitivity and which also impose additional detection
problems, because of stellar surface movements with this velocity.

A third and very promising technique for the detection of Earth sized planets
from ground based observations is the gravitational microlensing method. Its quan-
tification is based on the general relativistic effects of light within a gravitational
field. A gravitational field bends light and acts like a lens. If the lens star is orbited
by a planet (lensing object), it cause an asymmetric amplification in the intensity
profile of the background star (the lensed object or source), as a function of time.
Again, by a fitting procedure and an appropiate lens model, absolute values of plan-
etary mass mpl, semi-major axis a and orbital period P , can be measured. Very
recently, Bond et al. (2004) reported on an asymmetric microlensing event that
can be best understood as the lens being an M-dwarf star orbited by a 1.5 Jupiter
mass planet at an orbital distance of 3 AU. A major problem with this method is
that detections are based on random alignments of stars with planets. Microlens-
ing is a one-time event only, and follow-up observations are not possible. However,
data acquisition by this method will contribute to a statistical analysis of extrasolar
planetary properties.

1.1.2 Properties

The orbits of many extrasolar planets differ significantly from the orbits of the
planets of the Solar System. With the exception of the low mass planets Mercury
and Pluto, planets of the Solar System are all in near circular orbits (e < 0.1)
around the Sun. Again with the exception of Pluto, the planets of the Solar System
are almost co-planar, with orbital inclinations of less than 7 degrees relative to the
orbital plane of Earth. Additionally, the terrestrial planets are located nearer the
Sun at distances between 0.39 AU and 1.5 AU, and the large gaseous planets are
placed further out at distances in the range 5.2 AU to 30 AU.
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Many extrasolar planets detected so far are in significantly non-circular orbits
around a Solar like G-star, with eccentricities in the range 0.01 < e < 0.9 (e = 0.93
for HD80606b; Naef et al. (2001) and see Fig. 1.2). The projected minimum masses
are in the range 0.1 Mjup < mpl sin i < 12.0 Mjup. Jorissen et al. (2001) presents
a statistical mass distribution, which shows that most of the planets have mpl <
12 Mjup.

Unexpectedly, some planets of near Jupiter mass have been observed to be in
very small circular orbits with (a = 0.04 AU for HD83443b; Mayor et al. (2000)).
These ’hot Jupiters’ are in low eccentric orbits circularized by tidal interaction with
the host star and could not possibly have formed in situ at their observed locations
(see Lin et al. (1996) for a discussion of the case of 51 Pegb).

Figure 1.2: Population and global statistics of orbital parameters and minimum masses for
observed extrasolar giant planets. Data are taken from http://vo.obspm.fr/exoplanetes/encyclo/-
encycl.html.

Today, the most accepted mechanism for close-in hot Jupiters is orbital migration,
a proces first proposed by Goldreich and Tremaine (1980). In general, gas giant
planets are believed to form at distances much further from the star (around 5 AU
for a Solar like star) and then have since migrated to their present positions via tidal
interaction with the gaseous nebula from which they formed.

The large scatter of planets in high eccentric orbits, could be explained by dynam-
ical interactions of mean motion resonances3. Two planets are in a mean motion
resonance, if there exist a rational relation between their mean orbital velocities.
The smaller the fraction the larger the dynamical interactions. One consequence
of a mean motion resonance is the dynamical excitation of the eccentricities of the
protoplanetary orbits (Chiang et al. (2001)), which may explain the observations of
extrasolar planets in non-circular orbits. In fact, several systems have been observed

3to be discussed in a further section and formaly defined in chapter 2.



1.2. PLANET FORMATION THEORY 5

in a mean motion resonance: GJ876b and GJ876c (2:1), HD82943b and HD82943c
(2:1), 55Cancrib and 55Cancric (3:1) and the 47 Ursae Majoris system (7:3). Eccen-
tricity excitation over a long period of time could result in a break-up of the system
with the ejection of a planet on a hyperbolic orbit. On the contrary, mean motion
resonances can act as a stabilizing mechanism as it is the case for the Neptune-Pluto
(3:2) mean motion resonance or the Floras-Jupiter (7:2) asteroid familiy within the
Solar System.

1.2 Planet formation theory

The standard scenario for the formation of planets is that planets form in an ac-
cretion disk around the star called the protoplanetary disk. Modelling the struc-
ture and evolution of the disk is a highly complex matter and at present only con-
strained by observations of the Solar System, supplemented by recent observations
of star-forming regions and circumstellar disks. The building-blocks of planets are
kilometer-sized bodies called planetesimals. Planetesimals are formed by accretion
of the surrounded material in the disk. This proces of planetary accretion controls
the basic structure of a planetary system and the formation timescale of planets.
The main question is, how likely is the formation of terrestrial planets? What is
the effect on terrestrial planet formation in the presence of a giant planet? In the
following, we present a brief overview of recent results (spanning the last 5-6 years)
of our current understanding on how the terrestrial planet and cores of gas giants
can be built up over many stages starting from condensates and dust grains within
the protoplanetary disk.

1.2.1 Four stages of planet formation

Four stages for the formation of planets are currently distincted (see Lissauer (1993),
for a review on general planet formation theory). Each stage, or evolutionary pro-
cess, differentiates and the dynamical evolution is characterised by different physical
properties in the disk environment and its subsequent evolution.

1. Initial stage - cloud contraction: Protoplanetary disks form from the grav-
itational collapse of cold rotating molecular clouds, containing the high angular
momentum material not able to collapse into the star. Conservation of angular
momentum requires the increase of the rotation rate as the cloud becomes smaller.
The rotation naturally leads to the flattening of the rest of the cloud material into
a disk configuration around the protostar. The initial temperature- and pressure
gradient determines the chemical composition of the disk, as a function of radial
distance from the star. Different species of gaseous elements start to condense at
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various distances, along the mid-plane of the disk. Volatile elements condense in
cold distant regions. The timescale for cloud contraction and nebula disk formation
can be estimated from the free-fall time: tff ∼ 105yrs.

2. Early stage - grain growth and runaway accretion: The stirring of the turbu-
lent disk materials results in sub-collisions. The growth of sub-micron dust grains to
larger agglomerates (cm-sized), is believed to occur via the hit-and-stick mechanism
(Blum and Wurm (2000)). The collisional evolution of the growing aggregates is de-
termined by the interaction of the particles with the disk gas, as long as the internal
gravity is negligible. Thus, the growth process is highly dependent on the velocity
dispersion induced by the turbulent disk. Large dispersions result in collisional frag-
mentation with no effective netgrowth of cm-sized particles. Relative velocities less
than 1ms−1 are needed to form cm-sized particles. Unfortunately, higher relative
velocities arise from chaotic laminar motions within the disk, preventing the sticking
formation of larger grain agglomerates. Recently, a possible solution to reduce the
relative velocity is the formation and presence of rotating dust-trapping disk vor-
tices (Johansen et al. (2004)). Within a local disk vortice, relative velocities between
grains are small since they all rotate in the same direction. Eventually, km-sized
planetesimals form by the accretion of cm- and m-sized bodies. Some planetesimals
grows faster than others, initiating a runaway process due to an increased gravita-
tional focusing (see for example Kokubo and Ida (2002) and backtracing references
therein). As planetesimals grow, they start to gravitationally interact with each
other. The subsequent evolution is now determined by gravitational interactions
and collisional processes. The material density profile determines the amount of
planetesimals formed at various distances.

3. Middle stage - oligarchic growth of protoplanets: The dynamical evolution
of the protoplanetary disk is mainly determined by the presence of several tenth
of planetary embryos (Moon- to Mars-sized protoplanets) ranging from the inner
regions (1 AU) to the outer regions (5 AU). Collisions causes an equipartition of or-
bital energy and leads to a polarization of mass distribution: a few large bodies on
low eccentric and low-inclined orbits in a swarm of much smaller planetesimals with
high eccentricity and inclination. In addition, gas drag acts as a damping mechanism
and results in a decrease of the velocity dispersion of km-sized planetesimals. This
reduces the relative velocities between protoplanets and planetesimals, favouring the
further growth of planetary embryos. The accretion of planetesimals to protoplanets
takes place all over the disk. Because of an enhanced material density beyond the
ice-condensation line (5 AU for the proto Solar System), protoplanets with several
Earth-masses start to accrete the surrounding gas and form gasgiant planets (Pol-
lack et al. (1996)). The gravitational effect of the giant planet perturbations on the
inner region terrestrial protoplanets causes the orbits to become crossing orbits on
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a timescale of 105 − 106 years.

4. Late stage - perturbations and crossing orbits: The final stage follows the
paradigm - survival of the biggest. Cumulative gravitational perturbations leads to
radial mixing of protoplanets. Crossing orbits enhances the chance of giant impacts
to form the final survivors within a newly formed Solar System. The size, number
and type of giant impacts which a protoplanet experiences can have a profound
effect on the final characteristics of a planet. The subsequent evolution of possible
stable orbits is now determined by pure gravitational n-body interactions and by
secular resonant perturbations among possible gas giant planets. A highly chaotic
process. A left-over remnant gasdisk could damp the excited eccentricities of the
final planets. The timescale for the formation of terrestrial planets is on the order
107 − 108 years.

1.2.2 Terrestrial planet formation

In the following we focus on the middle- and late-stage scenarios for the formation
of terrestrial planets within the Solar System. Numerical n-body simulations on
the final accretion stage of terrestrial planets has been investigated intensively the
last few years. With the increased availability of computational resources and the
invention of fast and accurate n-body algorithms, a qualitative dynamical picture
of planetary late stage evolution can be obtained spanning over time scales of up
to 108 years. Investigation on orbital stability of Earth like planets within selected
extrasolar systems have been performed, and a discussion will be postponed to a
later section. For now, we ask the question on the possibility and conditions that
terrestrial planets actually can form and the question of the origin of water on Earth.

Among the first to investigate terrestrial planet formation were Wetherill (1996)
and Chambers and Wetherill (1998). The latter considered a three dimensional
model of a late stage disk, populated with 56 planetary embryos initially spaced at
1.2 AU < a < 2.0 AU. Mutual gravitational interactions, inelastic collisions, exter-
nal giant planet perturbations and various disk surface densities have been included
into the model. Various combinations of initial conditions have been investigated.
The simulations typically produce several terrestrial planets on isolated orbits in-
terior to 2 AU, with eccentricities and inclinations substantially larger than the
present observed time-averaged values (see A-series simulations in Fig. 1.3) within
the Solar System.

This result was reproduced by Agnor et al. (1999), using roughly the same initial
conditions. In these simulations, several sub-Earth planets were formed within the
terrestrial region. One possible explanation for the eccentricity excess of the final
simulated planets, is the low number of initial planetary embryos. A larger number
will result in a higher collision frequency acting as a dynamical friction effect result-
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Figure 1.3: Final orbits of surviving terrestrial planets after 108 years (reproduced from (Cham-
bers and Wetherill, 1998, Fig. 17,18)). Upper panel (A-series): Jupiter and Saturn are not
included in the simulations. Parameterrange: 4A: 0.10 < e4A < 0.49, 0.52 AU < a4A < 2.57 AU,
2◦ < i4A < 34◦ and 0.08M⊕ < m4A < 2.2M⊕. 5A: 0.06 < e5A < 0.08, 0.61 AU < a5A < 2.28 AU,
2◦ < i5A < 5◦ and 0.35M⊕ < m5A < 0.96M⊕. 6A: 0.05 < e6A < 0.06, 0.58 AU < a6A < 2.25 AU,
3◦ < i6A < 8◦ and 0.41M⊕ < m6A < 1.29m⊕. Lower panel (B-series): Jupiter and Saturn are
included after 107 years with present orbital parameters. Parameterrange: 4B: 0.09 < e4B < 0.13,
0.68 AU < a4B < 1.27 AU, 2◦ < i4B < 6◦ and 1.01 M⊕ < m4B < 1.85 M⊕. 5B: 0.09 < e5B < 0.12,
0.31 AU < a5B < 1.27 AU, 15◦ < i5B < 17◦ and 0.51 M⊕ < m5B < 1.59 M⊕. 6B: 0.17 < e6B <
0.29, 0.60 AU < a6B < 1.29 AU, 2◦ < i6B < 6◦ and 0.51 M⊕ < m6B < 1.59 M⊕.

ing in a damping of orbital eccentricity and inclination. By increasing the number
of initial planetary embryos by a factor of two, Chambers (2001) managed to lower
the final eccentricity and inclination of the final planets.

A second mechanism for the damping of orbital parameters is gas drag. By
following the evolution of 4000 particles Kokubo and Ida (2000) demonstrated the
formation of circular Earth like planets at 1 AU, within 105 years (see Fig. 1.4). In
their simulations they included the effect of gas drag due to the disk nebula.

More realistic simulations need to include the gravitational influence of the giant
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Figure 1.4: Formation of terrestrial planets (reproduced from (Kokubo and Ida, 2000, Fig.
7)). Simulation snapshots of a swarm of planetesimals at different times. Filled circles represent
protoplanets with mass larger than 2 × 1024kg. Horizontal lines represents the perihelion- and
aphelion distance.

planets (Jupiter and Saturn) on planetesimals accretion. By adding the giant planets
after 107 years, Chambers and Wetherill (1998) simulated the dynamical evolution
of planetesimals over 108 years (see B-series simulations in Fig. 1.3). Kominami
and Ida (2002, 2004) simulated the combined effect of giant planet perturbation
and gas drag on the formation of terrestrial planets. Different mass distributions
for the initial surface density profile where investigated and the disspation of the
gas modelled by a damping parameter, measuring the strength of the damping as a
function of time. In the majority of all simulations, they formed Earth planets in
circular orbits at distances between ∼ 0.5 AU and ∼ 1.5 AU, although numerous
Mars-sized planets remain uncollided in the final configurations.

The effect of giant planet eccentricity and migration, on planetary accretion in
the terrestrial region where studied by Chambers and Cassen (2002); Chambers
(2003) and Sleep (2001). The larger the eccentricity the smaller the perihelion dis-
tance, leading to a stronger gravitational interaction within the inner Solar System
region. High-mass giant planets (two times Jupiter mass) on e = 0.2 eccentric orbits
(i.e., four times Jupiters eccentricity) could account for a strong enough perturbation
on terrestrial protoplanets, leading to a higher collision rate. In particular, eccentric
giant-planet orbits leads to a significant excitation of terrestrial planetesimals on hy-
perbolic orbits, prohibiting the formation of Earth like planets. Numerical studies
of the effect of giant-planet eccentricities in observed extrasolar systems has been
performed by Thébault et al. (2002). For example, the terrestrial region within the
ε Eridani system (see Appendix C for a list on orbital elements) turns out to be a
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highly dynamical hostile region for the formation of protoplanets. In general, high
eccentric giant planet orbits, tends to increase the planetesimal velocity dispersion,
leading to fragmentation rather than accretion after collisions. A key parameter for
a succesful accretion and formation of terrestrial planets is the timing of the forma-
tion of giant planets. According to the ’core-accretion’ model (Pollack et al., 1996),
the formation of giant planets requires about 107 years, in observational agreement
with inferred lifetimes of gaseous disks around young stars (Briceño et al., 2001).
Within that timespan, planetesimal accretion in the unperturbed inner region of
a planetary system must form protoplanetary embryos, before the giant planets
gravitational influence counteracts the accretion process.

1.2.3 Water worlds

According to current models of the early solar nebula environment, volatile elements
like H2O could not condense within the terrestrial regions to eventually form water,
to be incorporated into the early Earth. This is attributable to a higher temperature
at smaller heliocentric distances (initial stage). Therefore, the local building blocks
of Earth were devoid of water. This raises the question of the source(s) of Earth’s
water and a possible delivery mechanism. A conservative estimate of Earth’s present
total water content is ∼ 5 · 10−4M⊕.

Until recently, the cometary late veneer scenario were generally accepted for the
delivery of H2O on Earth (Owen and Bar-Nun, 1995). Planetesimals which formed in
cooler regions within the solar nebula, accreted H2O in its solid form. Perturbations
by the giant planets excited the orbit eccentricity serving as a transport carrier
mechanism to the inner terrestrial region of the early Solar System. At present,
the remnants of these planetesimals are classified as comets, characterised by their
high eccentric orbits. Linking the origin of H2O on Earth to its source, is quantified
by the ratio of the two stable isotopes of hydrogen - D/H (2H/1H). Spectroscopic
measurements of the D/H ratio for three different comets, indicates that cometary
water contain roughly twice as much deuterium relative to hydrogen as the Earth’s
mean ocean value. Therefore, it appears that H2O delivery by cometary impacts
could not have been the dominant source of Earth’s water. It is estimated that,
around 10% of the present amount of H2O could have been delivered by cometary
impacts.

Morbidelli et al. (2000) performed dynamical simulations of planet accretion to
estimate the delivery efficiency and timescale for water bearing planetesimals. They
present an alternative model for the origin of water on Earth based on different water
reservoirs within the protoplanetary nebula disk. On the basis of their simulations,
they showed that the main contributers of Earth’s water content, is delivered by
planetary embryo collisions in the middle and late stage of planet accretion process.
Protoplanetary embryos originally formed in more hydrated (”wet”) distant regions
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at a location of the outer part of the asteroid belt, subsequently excited to crossing
orbits leading to collisions with terrestrial planetary embryos. In the extreme, this
scenario could be as efficient as delivering 10× the current amount of water.

(2:1)

(5:3)

(3:2)

resonant excitations

radial mixing accretion and diffusion of planetesimals

(5:3)
(2:1)

dry wet

Figure 1.5: Simulation snapshots of the time evolution of planetesimals under the gravitational
influence of a Jupiter mass planet (reproduced from Raymond et al. (2004, Fig. 3, p.7)). The
initial radial distribution were divided into three regions according to the fractional water content
(hydration). Dry: planetesimals at a < 2AU have a water content of 0.001% by mass. Wet: plan-
etesimals at a > 2.5 AU, have a water content of 5% by mass and the intermediate planetesimals
have a water content of 0.1%. Note: the radius of objects represents not the physical size. The
final terrestrial planets at 1 AU have masses 0.4M⊕ and 1M⊕ and for reference the (log10) water
mass fraction for Earth is -3.3 (green-yellow).

Recently, Raymond et al. (2004) presented simulations of the delivery of volatile
elements to the terrestrial region as a function of Jupiters mass, eccentricity, semi-
major axis and the density profile of solids within the protoplanetary disk. In
particular, Fig. 1.5 shows the time evolution of a swarm of accreting hydrated plan-
etesimals under the gravitational influence of a Jupiter mass planet. The distance
of solid water condensation is called the snow line, and is in this simulation chosen
to be located at a ∼ 5AU for the initial stage solar nebula environment. Within
the first 107 years, the main dynamical characteristics of resonant excitation, ra-
dial mixing and diffusion of planetesimals are exhibited during the middle and final
stage of planetary evolution. Clearly, the 2:1 and 5:3 mean motion resonances with
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Jupiter, are dominant in exciting the eccentricity within 105 years. In between 107

years and 3 × 107 years, hydrated planetesimals start to radially diffuse into the
inner region, resulting into collisions with terrestrial planetary embryos. The end
state water content of final terrestrial planets, are somewhat ”wetter” compared to
Earth (see figure caption for details). After ∼ 108 years the evolution produces
2 - 3 Earth like water worlds on nearly circular orbits. In addition, Raymond et
al. demonstrated that the efficiency of terrestrial planet formation decreases as the
eccentricity of Jupiter increases. For eccentricities eJup = 0.2, the number of plan-
etesimals decreases substantially by either collisions with the Sun or ejections on
hyperbolic orbits. Again, large eccentricities of Jupiter’s orbit acts as an effective
depletion mechanism, preventing planet formation by planetesimal accretion.

It must be stressed, that constraints on model parameters adopted in these simu-
lations are poorly determined by observations. An exact replica of the current Solar
System configuration, or at least the terrestrial region, is almost not produced in
any of the numerical simulations. The physical nature of the simulated accretion
process is highly stochastic, involving chaos as the random variable. Identical ini-
tial conditions of disk- and protoplanet parameters results in different end states of
a planetary system. In general, numerical models described here can predict only
qualitatively the dynamics and the detailed endstates of planetary configurations
is a matter of chance and not of deterministic and predictable physics. In order
to get quantitatively statistical valid results on terrestrial planet formation, many
numerical simulations must be done. Future studies will establish a deeper foun-
dation on this topic. However, present day experiments by numerical simulations
of planetary accretion process, indicates that terrestrial planets actually can form,
although depending on orbit- and mass-parameters of possible giant planet(s).

1.3 Orbital resonances and chaotic motion

The geometry of the Solar System and some of its subsystems is highly structured
by the presence of resonances. A detailed review of resonance phenomena within
the Solar System is given by Peale (1976) and most recently by Malhotra (1998).
The phenomenon of resonance is very efficient in changing orbit characteristic. The
timescale involved for such changes is on the order of millions of years. The un-
derlying kinematics of resonant orbits have interesting dynamical characteristics,
exhibiting a source of both long term stability, transition to instability and chaotic
diffusion. The forces characterising the dynamics are mainly of gravitational or tidal
nature. For resonant orbits, the forces involved acts periodically at specific inter-
vals of time. Hence small repetetive resonant perturbations accumulate over long
timescales producing interesting and complex dynamical features of orbital evolution
over long periods of time.
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In general, resonances occurs if there exist a small numbered rational relationship
or commensurability between frequencies or periods. The periods involved are due
to either sidereal planetary or orbital rotation. Following Malhotra (1998) there
exist three general types of resonance phenomena within the Solar System. The
most simple case is the single body spin-orbit resonance for which two examples
within the Solar System are: 1) the Moon wich has a rotational period equal to its
orbital period and 2) Mercury being in a 3:2 spin-orbit resonance state. In addition,
satellite moons of Jupiter and Saturn are observed to be in orbital resonances. If
the periods involved are associated to orbital parameters only, then there exist an
orbit-orbit resonance. Orbit-orbit resonances differentiate into two main types of
resonances: a) mean motion resonance and b) secular resonance.

Mean motion resonances occurs if there exist a commensurability of the mean
orbital angular velocities (or mean motions) between Solar System objects. If n1

and n2 measures the mean motion of two bodies, then they are said to be in a (near)
n1 : n2 mean motion resonance if

n1

n2
' p + q

p
for p, q ∈ Z. (1.1)

The rational number p is called the order of the resonance. As will be discussed
later the mean motion is related to the spatial location of the body by Keplers third
law of planetary motion. For a given orbiting body: the larger the mean orbital
angular velocity the closer is its location to the central force field. High order mean
motion resonances implicate therefore large mutual separation between two bodies
in resonance. Fig. 1.6 represents some examples of known mean motion resonances
within the Solar System and the satellite subsystem of Saturn.

Secular resonances involves commensurabilities between the time rate of change
of the apsidal longitudes (precession rates of the orbits) of two planets (or a planet
and an asteroid.). The timescales involved for the occurance of orbital changes are
much larger compared to mean motion resonances, and within the Solar System there
is a separation between the secular precession and orbital mean motion timescales.

Exceptions are observed within the asteroid belt where there exist a coupling
between secular and mean motion resonances inducing chaotic dynamics for the
motion of the asteroids. Such couplings are called resonance overlap and over large
timescales acts as a destabilizing mechanism of the orbit (Lecar et al., 2001). In
particular, the structure of the asteroid belt within the Solar System is characterised
by gaps devoid of asteroids, known as Kirkwood gaps (see Fig. 1.9). The locations
of the gaps are associated with mean motion commensurabilities with Jupiter. The
most famous locations are the 4:1, 3:1, 5:2 and 7:3 mean motion resonances, located
at 2.1 AU, 2.5 AU, 2.82 AU and 2.95 AU, respectively.

The presently accepted explanation of these gaps is based on the appearance of
chaos induced by resonant overlaps between mean motion and secular resonances
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Figure 1.6: Mean motion resonances within the Solar System and the Saturnian satellite system.
Exact resonances are indicated with solid lines and near resonances by dotted lines.Orbital Spacings
are relative distances. The 5:2 near mean motion resonance between Jupiter and Saturn is called
the great inequality and causes a modulation of the planets orbital elements on a ∼ 900 year
timescale. The figure is extracted and reproduced from (Malhotra, 1998, Figure 4).

(Morbidelli and Moons, 1993b,a). Mean motion resonances have the characteristic
to increase the eccentricity of the asteroid over a long period of time, also known
as chaotic diffusion within the systems phase space. Excursions of the eccentricity
have the effect of reaching the inner part of the Solar System, resulting in collisions
or close encounters with Mars. Possible close encounter with Mars change the aster-
oids orbital parameters away from the 3:1 resonant location or completely remove
it by impact absorbtion. The presence of secular resonances within mean motion
resonances increase the effect of eccentricity pumping further. Thus, the combined
effect of secular and mean-motion resonances provides a more efficient transport
mechanism by which asteroids are capable of reaching the orbits of Earth and Venus
resulting in a higher depletion rate of asteroids by either collisions or close encoun-
ters. This scenario could in addition explain the nessecary impactors for the late
heavy bombardment phase of the early Solar System.

1.4 Habitability and the habitable zone

The ability of a planet for supporting life, or habitability 4, is based on our knowl-
edge of life on Earth and on Earth’s location within the Solar System. With the

4for a good introduction into the field of astrobiology, see the recent monograph by Gilmour
and Sephton (2004)
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general consensus among biologists that carbon-based life requires water for its self-
sustaining chemical reactions, the search for habitable planets has therefore focused
on identifying environments in which liquid water is stable over billions of years
(Rampino and Caldeira, 1994). In particular, a strong argument that biological
activity requires an aqueous environment, is that water is the major component of
living tissues, accounting for 70% of their mass.

The presence of liquid water itself is not sufficient to produce and support life.
The building blocks of life can be grouped into four different types: lipids (fats and
oils), carbohydrates (carbon-compounds, sugars), proteins (enzymes) and nucleic
acids (DNA, RNA). In addition, energy is required to synthesise molecules capable
of generating organic compounds that may be biologically useful. The role played
by liquid water, is to act as a solvent. It’s polar chemical character enables differ-
ent organic molecules to perform specific functions, due to their hydrophobic and
hydrophilic nature - a profound property in the construction of the cell. Details
on the emergence of simple prebiological organisms and the process of replication
and subsequent evolution will not be discussed here. Instead we conclude that in
general, liquid water appears to be an essential requirement for the formation of life
on a habitable planet and the evolution of a Earth like biosphere (Kasting et al.,
1993).

The long-term occurence of liquid water on a planet is mainly determined by the
following key factors: a) the luminosity and surface temperature of the host star and
b) geological and atmospheric properties of the terrestrial planet. In combination
they determine a unique range from the host star for a planet to sustain liquid water.
In the following, we focus on the circumstellar region known as the habitable zone.

The concept of the habitable zone (HZ), or the radial distance around a star
in which planets might be able to maintain liquid water to eventual initiate and
support life, has been discussed in the scientific literature for many years (Huang,
1959; Hart, 1979; Kasting et al., 1993). In order for liquid water to exist, the av-
erage temperature of the planetary surface must remain between 273 K and 373
K (if the surface pressure is ∼ 1 atm), at a sufficiently high atmospheric pressure
to prevent sublimation of water to water vapour. The planets surface temperature
is determined by the balance between a) incoming solar radiation and b) thermal
emission from the planet’s surface/atmosphere. To a first order, the recieved energy
is strongly dependent on the stellar surface temperature and luminosity at a given
time of the star’s main-sequence phase. The amount of absorbed energy is depen-
dent on physical properties and chemical composition of the planetary atmosphere.
For example, the Earth upper atmosphere ozon layer absorbes high energy solar
radiation at ultra violet wavelengths. Other possible environmental constraints that
affect the habitability of a planet are the fractional covering ratio of water/land
surface areas, planetary rotation/inclination and atmospheric circulation currents
for the distribution of heat. Changes in planetary atmospheric properties, such as
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escape of volatile gases into interplanetary space and chemical reactions with surface
materials (plate tectonics and waethering), regulates the planetary surface temper-
ature in a highly complex interaction mechanism. Establishing limits to the extent
of a HZ requires a considerable understanding of the interaction processes on the
planet in order for models to be accurate.

a)

b)

c)

Figure 1.7: Concepts of the habitable zone: a) initial habitable zone at zero age main sequence
(ZAMS), b) final or current habitable zone and c) the continouse habitable zone.

An additional constraint on the definition of the HZ is of temporal character.
Variation in stellar luminosity associated with the stellar evolution of main sequence
stars, introduces the concept of a continously habitable zone (CHZ). With time
the stellar luminosity and surface temperature increases, resulting in a shift of the
habitable zone radially outwards. The overlap between the initial habitable annulus
and the final habitable annulus, is defined as the continuos habitable zone (gray
area in Fig. 1.7). In order for a planet to be habitable during the star’s entire
main-sequence life time, it needs to be located and confined to within the CHZ.
Again, Kasting et al. (1993) calculated the CHZ for various main sequence stars by
using their climate model in combination with stellar evolution models in order to
determine changes in stellar luminosity and effective temperature for different stellar
spectral classes.

The existence of possible life bearing planets is limited to stars of spectral type
F, G, K and M. The timescale for the developement of a biosphere is estimated to be
109 years. Stars with spectral type G and mid-to-early K are optimal candidates for
harboring terrestrial planets, since the main sequence duration time is sufficiently
long enough (∼ 1010 years) for developing biological activity. A planet initially
located outside (frozen) the HZ could become habitable as the outer boundary moves
outwards with increasing luminosity.
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1.5 Terrestrial planets in extrasolar planetary sys-

tems

Since the discovery of multiple-planetary systems, two questions became apparent
for the orbital nature of these systems. First, the question regarding global dynam-
ics and stability in order to constrain observed (fitted) orbital parameters as derived
from radial velocity data of the observed giant planets and secondly, the possibility
of the long-term existence of stable terrestrial planetary orbits, within the HZ. Cur-
rently, 12 multiple-planetary systems have been observed with planet configurations
for potentially harboring Earth like planets. In the following, we discuss briefly on
the possibility of the existence of terrestrial planets within 47 Ursae Majoris. This
system gained much attention regarding dynamical stability simulations of terrestic
planets, and stable orbits within the HZ could be well estabilished considering only
the inner most planet in the model. However, by the recent discovery of a secondary
outer planet, the previously confirmed stable regions were now delimited due to the
additional gravitational influence of the secondary outer planet.

1.5.1 A case study review: 47 Ursae Majoris

The existence of a planet orbiting the G1V main sequence Solar-type star 47 Ur-
sae Majoris (47 UMa), have been reported by Butler and Marcy (1996), by using
the radial velocity technique. Subsequent observations of velocity measurements
exhibited the existence of a second planet (Fischer et al., 2002). The HZ and orbital
elements for the planets are listed in Table 1.1. The study of hypothetical terrestrial
planets within 47 UMa is particular interesting, since it resembles the Solar System
most closely among the known extrasolar planetary systems. The orbital period
ratios for both systems are quite similar (Pc/Pb ∼ 2.39 for 47 UMa vs. 2.49 for
Jupiter-Saturn), and to within radial velocity measurement errors, the mass ratios
are identical (Mb/Mc ∼ 3.34 for 47 UMa vs. 3.34 for Jupiter-Saturn). The major
differences between these two systems are the orbital periods and nominal masses
of 47 UMa(b) and Jupiter. The orbital period of Jupiter is less than one-fourth
that of Jupiter, and the nominal mass is ∼ 2.5 times greater. The effects on orbital
elements due to mutual perturbations are therefore expected to occure on shorter
time scales.

The first attempt to estimate stability by introducing the concept of the HZ
were done by Gehman et al. (1996), by considering the circular restricted three-body
problem analytically (at that time only one planet, 47 UMa(b) was known to exist).
They concluded that terrestrial planets could survive within an outer boundary of
a ≤ 1.6 AU, assuming circular orbits. Although, Gehman et al. proofed stable
orbits within the HZ, analytic investigations neglects long-term dynamical effects
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47 Ursae Majoris
Parameters b-component c-component Range of HZ

a (AU) 2.09 3.73 -
e 0.061 0.005 -
ω (◦) 172 127 -
mpl sin i (MJup) 2.54 0.76 -
P (days) 1089 2594 -
RZAMS

inner (AU) - - 0.76
RZAMS

outer (AU) - - 1.43
Rnow

inner (AU) - - 1.00
Rnow

outer (AU) - - 1.90

Table 1.1: Orbital parameters for planets and the extend of the habitable zone within 47 Ursae
Majoris. Data are reproduced from (Fischer et al., 2002, table 2, p.1031) and (Jones and Sleep,
2002, Fig. 1, p.1017). The estimated age of 47 UMa is ∼ 7× 109 years. Rnow and RZAMS refers
to the current and zero age main sequence boundary of the habitable zone.

such as resonant interactions and secular perturbations.

A more precise picture of the qualitative dynamics within the HZ, is obtained by
solving the equations of motion using direct numerical integrations over long time
scales. Jones et al. (2001) numerically studied the dynamical evolution of terrestrial
planets as a function of the giant planet mass and eccentricity over 108 years. As
a stability measure they used the Hill stability concept: a planetary system is Hill
stable, if a pair of planets are forbidden to undergo close approaches for all time
(at least within the simulation time). The outcome of a close encounter is almost
always a hyperbolic or high eccentric orbit, ejecting the planet into interstellar space
or producing collisions with the host star. The Hill sphere of a planet corresponds to
the volume centered on the planet in which the gravitational attraction is larger than
the star’s tidal attraction; and therefore, the perturbations to the orbital elements
are more significant. In addition, they require that the terrestrial orbit is confined
to the HZ of the system, that is, confinement is taken to mean that the semimajor
axis remain in the HZ at all times during a given integration. Although not adopted,
they point out that an even tighter criterion is to additionally restrict the orbits in
the HZ to some upper limit of the eccentricity. Their results are as follows: Regions
located around the 2:1 (a = 1.3 AU) and 3:1 (a = 1.0 AU) mean motion resonance as
well as for the outer boundary of the HZ were found to be unstable. Stable circular
orbits at the inner (a < 1.0 AU) habitable region were found, for a minimum giant
planet mass, considering only the dynamical effects of the inner giant planet as
observed at that time.

Several stability investigations have been performed after the discovery of the
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second outer giant planet. Noble et al. (2002b) noted that the gravitational effect of
the outer planet on the stability of terrestrial planets at the inner edge of the hab-
itable zone is negligible. However, they only considered dynamical simulations with
short integration times (∼ 102 years), therefore not considering long-term orbital
instabilities. Dynamical simulations over an extended period of time (∼ 109 years)
have been done by Jones and Sleep (2002). Because of the evolved main sequence
age of 47 UMa (estimated to ∼ 7×109 years), they searched for stable orbits within
the CHZ (0.43 AU in width) as calculated by Kasting et al. (1993) and shown in
Table 1.1. Their simulations show that gravitational perturbations by the outer
planet, causes significant excursions in the variation of the inner giant planet’s ec-
centricity, leading to larger instability regions within the CHZ. They found unstable
orbits (the case of a close encounter) of terrestrial planets at the inner (∼ 1.0 AU)
and outer (∼ 1.43 AU) boundary of the CHZ, where the inner unstable region is
associated with the 3:1 mean motion resonance.

The presence of the secondary outer component also introduces, as we have seen,
secular resonances involving the commensurabilities of the apsidal frequency between
the inner giant and a terrestrial planet. Goździewski (2002) performed a stability
analysis of the two planets within 47 UMa and studied the stability of Earth like
planets within the HZ with emphasize on secular dynamics. In combination with
the MEGNO chaos indicator, a straight forward stability criterion were adopted for
different initial conditions, in which the maximum variation of the eccentricity and
semi-major axis of the terrestrial planet were monitored during the time evolution
of a simulation. The amount of chaoticity, for a given initial condition, is a mea-
sure of how erratic the system response to small changes in the initial conditions;
thereby inferring a measure of stability. The analysis confirmed the unstable re-
gions around the 2:1 and 3:1 mean motion resonances as determined by Jones et al..
In addition, the presence of the secular resonance narrows the stability region at
the inner HZ(ZAMS), as were previously claimed stable by Jones et al.. Numerical
simulations shows a large instability region between a = 0.8 − 0.9 AU at the 4:1
mean motion resonance, as a result of secular resonances. In addition, the outer
edge of the HZ(now) becomes unstable from 1.35 AU, due to the close proximty of
the inner giant planet. Recently, Ashgari et al. (2004) confirmed this result using
a similar approach of stability analysis and determines stable orbits in the regions
1.05 AU < a < 1.3 AU and 0.65 AU < a < 0.8 AU.

In general, Goździewsky points out, that the dynamical structure of the HZ in 47
UMa recalls the analogy of the Asteroid belt in the Solar System were the combined
effect of mean motion and secular resonances are responsible for the formation of
prominent gaps in the distribution of asteroid orbital elements. The fact that no
planet is observed within the asteroid belt, makes it reasonable to assume that
the combination of mean motion and secular resonances counter acts the accretion
process in order to form proto planets in the late stage accretion phase. Although,
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Figure 1.8: Main characteristics of 47 Ursae Majoris including the continouse habitable zone.
The 4:1, 3:1 and 2:1 mean motion resonances with 47 UMa(b) are indicated.

an extended region of stability were found to harbor a possible Earth like planet,
other regions of the HZ of 47 UMa seems to be dynamically hostile. Accretion
simulations have been performed by Laughlin et al. (2002), addressing the question
of how likely terrestrial planets could be formed within 47 UMa. Considering the
time evolution of accreting proto-planet embryos embedded in a low- and high-
mass disk, they concluded that final planets could only form within a < 0.7 AU,
assuming the existence of the giant planets during the simulations. The depletion of
planetesimals within the HZ, were dominated by the presence of secular resonances
causing an excitation of orbit eccentricities. However, future space missions should
certainly not avoid 47 Ursae Majoris for the search of possible Earth like planets
due to the large extend of dynamically quiscent orbits of possible terrestrial planets
within the CHZ.

1.6 Motivating question and problem statement

My motivation

The most interesting question, since the discovery of the first extrasolar planet, has
been the speculation on the possibility of the existence of a second Earth like planet
in orbit around a distant Sun like star. Current telescope technology is not capable
of resolving a distant second Earth, thereby leaving us the option to theorise about
the existence of Earth like planets within known extrasolar planetary systems using
numerical techniques. For a given system, the question then is: given the orbital
parameters of an observed extrasolar giant planet, is it possible for an Earth like
planet to maintain a stable orbit within the HZ over the main sequence lifetime of
the host star?

Numerical experiments, as we have seen, suggested in general that the dynamical
evolution of particles initially located within the terrestrial region, were mainly dic-
tatet by the orbital parameters of the external giant planet. External giant planets in
eccentric orbits have the effect of 1) counteracting planetesimal accumulation and
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2) destabilizing terrestrial orbits. In addition, multiplanetary systems containing
two giant planets have the effect of inducing secular resonances, rendering specific
regions to be dynamically unstable.

In order to fullfill the dynamical constraints for the selection of an extrasolar
planetary system, I have adopted two selection criteria: 1) a giant planet in a suffi-
ciently circular orbit and 2) with a sufficiently large orbital distance. Following these
criteria the most promising candidate is the HD70642 planetary system. Within ob-
servation uncertainties, this system contains a m sin i = 2 Mjup planet, orbiting a
Solar like G5 star in a six year circular orbit with semimajor axis a = 3.3 AU. It
was observed over a five year period by the Anglo-Australian Planet Search Group
and reported by Carter et al. (2003).

The search for possible stable orbits within the HZ is furthermore motivated by
comparing the orbital parameters of HD 70642b with a histogram distribution of the
Solar System asteroid families (see Fig. 1.9). In addition to the Kirkwood gaps, the
asteroid belt is characterised by three major locations with an enhanced density of
asteroids (ex. at 2.3 AU, 2.6 AU and 3.1 AU). These regions matches mean motion
resonances with Jupiter and are dynamically stable on time scales comparable to the
Solar System age. The stabilizing mechanism is poorly understood and currently an
active research field within Solar System dynamics. However, inferring the location
of HD 70643b at 3.3 AU, we are enabled to calculate the orbits of some high order
mean motion resonances within the HZ. Comparing the radial extent from Jupiter
to the major asteroid families with HD70642 the following question is apparent: Is
it possible that there exist dynamically quiscent regions within HD70642’s habitable
zone, maintained by high order mean motion resonances?

Problem statement

In order to fully understand whether or not there exist stable niches for a hypo-
thetical Earth like planet within the habitbale zone of HD70642, we need to perform
a parameter survey using a numerical n-body particle simulation algorithm. To a
first approximation, we employ the following assumptions to represent the dynamics
of an Earth like planet within HD70642:

i) The planets are considered as spherically symmetrical and non-rotating bodies
(i.e each body can be considered as a point-mass object).

ii) The dynamics are based on Newtonian mechanics, i.e planets (point-masses)
moves in the gravitational field of a central star, perturbing each other due to
mutual gravitational interactions.

iii) Relativistic corrections are not included.
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Figure 1.9: Histogram of asteroid distribution taken from data available from the Minor Planet
Center (http://cfa-www.harvard.edu/iau/plot/OrbEls01.gif). Asteroids in mean motion resonance
with Jupiter are labeled in red. Orbital distances in mean motion resonances with HD 70642b are
labeled in blue.

iv) Any external perturbations (galactic potential, potential of nearby stars and
the potential of possible asteroid rings and moons) of the system are assumed
to be neglectible. No observations of such structures are currently evident.

v) The central star is considered to be a spherically symmetric, non-rotating (i.e
no quadrupole moment, J2) body.

vi) Neglection of massloss in any object (i.e isotropic massloss of the central star
due to electromagnetic radiation and solar wind is neglected.

The simulation timespan should cover a substantial part of the main sequence
lifetime of the host star. A statistical approach to the complex dynamical three-
body problem is needed, since three-body dynamics is expected to exhibit chaotic
behavior. Such a survey should scan over a large range of initial conditions within
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the systems phase space. Although specific particle trajectories cannot be predicted
over long times, average values based on many particle trajectories are in fact repro-
ducible. This will enable us to make statements on the future evolution of particle
trajectories. In general, the time evolution of orbital parameters should be moni-
tored during the complete integration time for an analysis of the orbital behavior.
By performing this study, we should be able to ascertain whether or not HD70642
could harbor an Earth like planet on a dynamically stable orbit within the habitable
zone.
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Chapter 2

Basic Concepts in Astrodynamics

2.1 Introduction

The most fundamental model within planetary dynamics is the two-body model or
the two-body Kepler problem. A possible statement of the problem would be: given
two mutual attracting massive objects m1 and m2, determine the future state in
space at any time for a given set of initial conditions. Two important aspects of the
two-body problem are 1) the existence of a complete analytic solution describing the
general possibilities of motion and 2) its application to general perturbation theory,
which can be treated as approximate two-body models. These approximations has
been the starting point in obtaining theories for the motion of planets within the
Solar System.

In this section, we will consider fundamental properties of the two-body problem
and introduce basic astrodynamical concepts and terms necessary for an under-
standing of our further analysis. The orbital Kepler elements are introduced. They
are convenient to characterize the relative two-body motion by quantities that de-
scribe the geometrical properties of the possible orbital motion. Some emphasis has
been given on the analysis and exploration of numerical algorithms for the solution
of Kepler’s equation, as this topic became a first lesson within this thesis project.
Limitations in their range of applications to orbital dynamics problems have been
considered at the same time providing a deeper understanding of the machinery
at play. They will be necessary for our numerical analysis of habitable planetary
motion.

There exists various books for an introduction to the field of astrodynamics and
celestial mechanics. The authors Danby (1988),Roy (1988), Boulet (1991),Prussing
and Conway (1993) and Murray and Dermott (1999) are found to give the most
complete picture of classic concepts. Modern celestial mechanics is introduced by
the book of Morbidelli (2002a).

25
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2.2 Properties of Keplerian motion

In the following, we consider the motion of two homogeneous spherically symmetric
masses m0 and m1. Denoting the relative heliocentric position of m1 from m0 with r,
then by Newton’s law of gravitation the equation of relative motion can be written
as

d2r

dt2
= −µ

r

r3
, (2.1)

where µ = k2(m0 + m1) is the mass parameter and k2 is the Gaussian gravitational
constant. In the following, we will treat planets as point masses, but most of the
discussion will apply to a planet in orbit around a dynamical center given by a
central massive star.

Constants of motion are useful to derive basic properties of the motion. Con-
sidering the motion in phase space geometrically, a constant of motion restricts the
time evolution of the system onto a sub space, limiting the available phase space
to a confined region. The first constant of motion for the two-body system is the
orbital angular momentum h. From eq. (2.1), we have

dh

dt
=

d(r × ṙ)

dt
= 0, (2.2)

where ṙ is the relative velocity of m2. The angular momentum points in the same
direction for all time and constrains the motion of m2 to an orbital plane in inertial
space.

Introducing polar coordinates (r, θ) within the orbital plane coordinate system
of m2, eq.(2.1) of relative motion can be written as

r̈ − rθ̇2 = − µ

r2
. (2.3)

A complete solution of this second-order differential equation (2.1), requires the
determination of six constants of motion1. Detailes on their derivation is found in
Danby (1988), and in the following we only review the most important properties
of two-body Keplerian motion. A general solution of the relative motion of m1 (i.e
of Eq. 2.1, is given by the following parametric representation of the orbit

r(θ) =
h2/µ

1 + e cos
(

θ(t)− ω
) with 0 ≤ θ < 2π, (2.4)

where h measures the magnitude of orbital angular momentum and the quantities e
and ω are constants of integration, measuring the orbital eccentricity (amplitude or
shape) and argument of pericenter (phase), respectively. The latter is interpreted as

1sometimes also called integrals of motion
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an orbital phaseshift measured from a given reference direction at some initial epoch,
and it plays a major role in the determination of the orbit within three dimensional
space.

Referring to Fig. 2.1 and considering the case of elliptic motion, we have h2/µ =
a(1− e2) and we introduce the semimajor axis a (orbital size) and the true anomaly
f(t), defined by f(t) ≡ θ(t) − ω as the independent variable. The variable θ(t), is
referred to as the true longitude and sometimes denoted as the argument of latitude.
Within the language of celestial mechanics, an anomaly angle is measured with
respect to the apsidal line or semimajor axis, and longitudes are referred to an
arbitrary fixed direction. Three points in the elliptic orbit are of special interest.
The minimum (pericenter) q = a(1 − e) and maximum (apocenter) Q = a(1 + e)
distance of the orbital radius and p = h2/µ the semilatus rectum when f(t) = ±π/2.
Furthermore, we define the orbital mean motion or mean orbital angular velocity

n ≡ 2π

T
=

√

µ

a3
, (2.5)

where T is the orbital period. The mean motion of the point mass is related to the
orbit geometry, through Kepler’s third law of planetary motion.

A second constant of motion is the orbital energy C of the point mass m2 and is
given by

v2(t)

2
− µ

r(t)
= C. (2.6)

Here, v is the orbital velocity of m2 relative to m1 and the constant is called the
vis-viva integral. We note that the orbital energy is independent of eccentricity and
depends only on the semimajor axis.

Within gravitational orbit theory the vis-viva enery integral determines the na-
ture of the orbit. Three possible types of planetary orbits are generally known and
we classify orbits into either a anomalyorbit, parabola or hyperbola. Table 2.1 sum-
marizes the characteristics of the orbit by either the energy constant, eccentricity
parameter, orbital velocity or semimajor axis. These quantities are useful in de-
termining a possible planet escape case. For elliptic motion the orbital energy is
negative, implying that the point mass is bound to the attracting center. For a hy-
perbolic orbit the orbital energy is positive for r →∞, and the point mass proceeds
infinitly away from the attracting center. For a parabolic orbit the point mass has
enough energy to escape from the attracting center to infinite radius.

Considering the elliptic case, the velocity of m2 is a maximum at pericenter
(f = 0) and a minimum at apocenter (f = π). From eq. 2.6, we have for r = q and
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type of orbit e C v2 a

ellipse 0 ≤ e < 1 C = − µ
2a

v2 = µ
(

2
r
− 1

a

)

a > 0
parabola e = 1 C = 0 v2 = 2µ

r
1/a > 0

hyperbola e > 1 C = µ
2a

v2 = µ
(

2
r

+ 1
a

)

a < 0

Table 2.1: Four possible conics for orbital motion. Circular motion is a special case of the ellipse
when e = 0 and r = a. Bounded motion attracted to m1 is indicated by a negative orbital energy
of m2, which is a function of semimajor axis.

r = Q the pericentric vp and apocentric va velocity

vp =
µ

a

√

1 + e

1− e
and va =

µ

a

√

1− e

1 + e
. (2.7)

We will use these relations later for the determination of proper initial conditions of
an orbit with given eccentricity and unit semimajor axis.

2.2.1 The mean and eccentric anomalies

Although the solution given by eq. (2.4) is a closed-form solution, it only gives a
parametric representation of the geometry of the orbit. The time parameter is not
explicitly available for the determination of a position at a given time. In the general
case (e 6= 0), the functions ḟ(t) and ṙ(t) are nonlinear in time and therefore of no
practical use for a solution of our problem at hand. By introducing an auxiliary
angle, linear in time and 2π-periodic, we are able to determine the position of a
point mass at a given instant of time. Fig. 2.1 shows the geometry of the following
discussion.

Considering the motion of a point mass within the orbit plane coordinate system
with ω = 0, we have the following relations

x(t) = a(cos E(t)− e) and y(t) = a
√

1− e2 sin E(t). (2.8)

Here, we introduce the eccentric anomaly E, measuring the angle obtained by a line
intersecting a point P located on an auxiliary circle with radius a. The apparent
position P is the vertical projection of m2 onto the circle. By this construction,
the eccentric anomaly is 2π periodic and linear in time. From eq. (2.8) and using
trigonometric identities, we obtain the following expression relating E to f

tan
f

2
=

√

1 + e

1− e
tan

E

2
. (2.9)
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This equation is very convenient in the use of coordinate conversion procedures. It
avoids quadrant ambiguities for the angles involved, and is numerically stable even
for small values of the eccentricity. The final equation of time evolution is given by
Keplers equation

M ≡ n(t− τ) = E − e sin E, (2.10)

where τ is the time of pericenter passage (or periastron date, if we consider planets
in exoplanetary systems) and M the mean anomaly and have the interpretation of
the angular displacement of a fictitious point mass moving at the mean angular rate
n.

To summarize, the position at a particular time for a given orbit with semimajor
axis a and eccentricity e is calculated as follows. Knowing M for the time t, and
the eccentric anomaly E from solving Keplers equation, the position r(t) and f(t)
are given by equations (2.8) and (2.9). Keplers equation is transcendental in the
unknown variable E and obtaining a closed-form expression for E as a function
of time, is impossible. Many attempts for its solution have been given over the
past many years (Colwell, 1993) leading to modern developments of mathematics
as a spin-off effect. Today, the solution is trivial using modern computers. In a
later section, I consider a numerical solution based on the method of successive
approximations by solving Kepler’s equation iteratively using e and M(t) as input
parameters.

O

ref. direction

P

m1

r(t)

f(t)

S
ω

m0

E(t)

ȳ

x̄

Figure 2.1: Geometric introduction of the eccentric anomaly. The fundamental reference system,
is the orbit plane coordinate system Ō(x̄, ȳ).
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2.2.2 Closed f and g expressions

In order to analytically determine the orbital position and velocity of a planet at
a given time from initial coordinates and velocity components, we utilize the so-
called closed f - and g-series, as originally invented by C. F. Gauss (originally, Gauss
used the so-called f - and g-functions and for practical calculations these functions
were truncated up to a desired order of accuracy). For any set of initial conditions,
the f - and g-series represents an analytic closed solution to the two-body Kepler
problem at any instant of time. Since these closed forms do not suffer from series
truncation error, they maintain their accuracy when the computed position and
velocities are separated by long intervals of time. The use of these functions needs
a knowledge of the semimajor axis a, eccentricity e and the eccentric anomaly E,
which can be provided by appropiate coordinate transformations and the numerical
solution of Kepler’s equation. Within this thesis, an important application of the
f - and g- functions, is the testing of the accuracy of my numercial integration
algorithm against known analytic solutions. The following algorithm is implemented
as a subroutine within FORTRAN90 and I list the source code in appendix A.1. A
discussion of the equations of the f - and g- series and their derivation is given in
nearly any book on celestial mechanics. The following treatment is based on Boulet
(1991) and any details are referred within it.

Let r0 = r0(t0) and v0 = v0(t0) denote the Cartesian position and velocity
vectors at time t0 of a point mass in Keplerian motion. Then if r(t) and v(t) are
the position and velocity vectors at any time t, there exists unique scalars f and g
such that

r(t) = f(t, t0) r(t0) + g(t, t0) v(t0), (2.11)

v(t) =
∂f(t, t0)

∂t
r(t0) +

∂g(t, t0)

∂t
v(t0). (2.12)

The f -function have the property of being dimensionless, whereas g has the dimen-
sion of time. Both scalars plays the role of mapping a point mass’s initial orbital
state at time t0, into a final state in the future at time t. A physical or geometrical
interpretations for these functions does not exists and their introduction is of pure
mathematical interest.

By splitting the problem into two parts, we first consider the position equation
from which the velocity equation is easly obtained by time differentiation. Consid-
ering equation 2.11 in its component form,

x(t) = f(t, t0) x0 + g(t, t0) ẋ0, (2.13)

y(t) = f(t, t0) y0 + g(t, t0) ẏ0, (2.14)
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where we have taken r0 = (x0, y0) and v0 = (ẋ0, ẏ0), we can solve this set of two
simultanious linear equation for the scalar functions f and g and have

f(t, t0) =
1

h

(

x(t) ẋ(t0)− y(t) ẋ(t0)
)

, (2.15)

g(t, t0) =
1

h

(

y(t) x(t0)− x(t) y(t0)
)

, (2.16)

where h = x(t0) ẏ(t0) − y(t0) ẋ(t0) measures the magnitude of the orbital angu-
lar momentum and is assumed to be non-zero. By the geometry and kinematical
aspects of a particle in an elliptic orbit, as discussed in previous sections, the quan-
tities x(t), y(t), x(t0), y(t0) and ẋ(t0), ẏ(t0) can be expressed in terms of the eccentric
anomaly E = E(t) and E0 = E(t0) and we have the final closed form for the f - and
g-functions and its time-derivative by the following relations

f(t, t0) =
a

|r0|
(

cos(E − E0)− 1
)

+ 1, (2.17)

g(t, t0) = (t− t0) +
1

n

(

sin(E − E0)− (E − E0)
)

, (2.18)

∂f(t, t0)

∂t
= − a2n

|r||r0|
sin(E − E0), (2.19)

∂g(t, t0)

∂t
=

a

|r|
(

cos(E − E0)− 1
)

+ 1. (2.20)

In addition, the f - and g-functions and their derivatives can also be expressed in
terms of the true anomaly by using eq. (2.8).

In practice, the computation of a future position and velocity at time t requires
the knowledge of the initial conditions in terms of the elements a, e, ω, M(t0) at time
t0. If the initial conditions are given in Cartesian coordinates, it will be necessary to
transform then into Kepler elements. From equations (2.17)-(2.20), again we see that
the main task is the computation of the eccentric anomaly from Kepler’s equation.
In addition, the initial timestep ∆t = t− t0, can be chosen arbitrary large without a
reduction of accuracy (Mikkola, private communication, 2004). This completes the
statement of the two-body problem having an analytic closed-form solution.

2.2.3 The orbit in space

Planetary motion is not confined to a fixed plane and the general motion of a point
mass in three-dimensional space must be considered. The orientation of the orbit
with respect to some reference plane, is determined by three angular elements. We
refer to Fig.2.2 for a graphical representation of these elements.
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Figure 2.2: Graphical representation of the orbit in space. The line of intersection OA, is the
direction of the ascending node or line of nodes. P denotes the pericenter and the line segment
OP , is called the apsidal line. The point A is denoted as the ascending node.

Introducing a general coordinate system, the orbital inclination2 i, is measured with
respect to the (x, y)-plane and is defined within 0 ≤ i ≤ π in radian measure. The 2π
periodic angle Ω, measured clockwise from the positive x−direction is the longitude
of ascending node. Finally, we have the argument of pericenter ω, measured from
the line called ascending node representing a line of intersection between the two
planes involved. To fix ideas, the reference plane is defined as the orbital ecliptic
plane of the Earth. The reference direction is then taken as the vernal equinox. As
a result of precession and nutation the reference plane and direction is changing over
time. Planetary motion is then referred to the mean ecliptic and equinox at a given
epoch (usually taken as J1950 or J2000).

For reasons of avoiding singularities3 within the classic set of elements, we intro-
duce non-singular variables defined by (Murray and Dermott, 1999)

$ = Ω + ω (2.21)

λ(t) = M(t) + ω + Ω. (2.22)

While the former is called longitude of perihelion or apsidal longitude the latter is
called the mean longitude. From this definition, the set (a, e, i, $, Ω, λ(t)) equally
determines the position and velocity of a point mass.

In summary, the instantanouse position and velocity of a celestial point mass in
space is determined by the following sets of orbital elements: (a, e, i, ω, Ω, M(t, τ)) or
(a, e, i, $, Ω, λ(t)). These elements are known as osculating classic Kepler elements
or non-singular elements and reflects the phase space state of a point mass at an

2not to be confused with the line-of-sight inclination mentioned within chapter 1
3example: if i = 0, ω and M are not defined.
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osculating time t. In chapter 3, we will consider the time variation of these elements
under the action of a perturbating force. The osculating orbit is represented by the
Kepler orbit of a point mass, if all perturbations were suddenly dissapearing.

2.3 Numerical solution of Kepler’s equation

In the following, we return to a discussion on the solution of Kepler’s equation us-
ing an iterative approach based on a Taylor series approximation. Our motivation
for solving Kepler’s equation is explained by the fact that general orbital dynamics
require a large number of solutions to be calculated within numerical integrations.
Procedures for coordinate transformation and the use of f - and g-functions are de-
pending on a solution of Kepler’s equation. The following algorithms are based on
Danby (1988), urging the reader to perform numerical experiments as an exercise
for the development of intuition and a necessary insight for possible numerical lim-
itations for applications within orbital dynamics. We will take his word for good
and conduct numerical experiments in the following discussion.

For a point mass in orbit with eccentricity e, and mean anomaly M , Keplers
eq. (2.10) can be rewritten as

f(x) = x− e sin(x)−M = 0, (2.23)

and is identified as beeing nonlinear in x, i.e. no closed-form solution exists for
which E = E(M) can be written. Methods of numerical analysis provides iterative
techniques for which a solution E = x is determined by generating a sequence of
approximations {xn}, n = 0, 1, 2, . . .. Three iterative methods will be considered
and investigated for various input parameters. In general, we are interested in an
algorithm which 1) converge to a solution and 2) is fast converging. This raises the
following questions: for which values of (M, e) is convergence established, and how
is the initial guess x0 = E0 to be chosen?

Let εn denote the error of the approximation xn to the actual solution E, then
εn + xn = E and we generate a Taylor series expansion for f(x) by

f(x) = f(xn) + εnf
′

(xn) +
1

2
ε2
nf

′′

(xn) +
1

6
ε3
nf

′′′

(xn) + · · · = 0. (2.24)

Finding iterative procedures using a Taylor series approach is practical, since high
order derivatives of f(x) are easily obtained from Kepler’s equation. Retaining terms
upto O(εn), we have the first well known Newton-Raphson iterative procedure for
n = 0, 1, 2, · · ·

xn+1 = xn + δn, with δn,1 ≡ xn −
f(xn)

f ′(xn)
. (2.25)
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Retaining terms upto O(ε2
n) and using the symbolic notation f(xn) = fn, we get

Halley’s method defined as

xn+1 = xn + δn,2, with δn,2 ≡ −
fn

f ′

n + 1
2
δnf ′′

n

. (2.26)

Finally, considering terms upto O(ε3
n), we get a fourth order extension of Newtons

method known as improved Halley’s method and defined as

xn+1 = xn + δn,3, with δn,3 ≡ −
fn

f ′

n + 1
2
δn,2f

′′

n + 1
6
δ2
n,2f

′′′

n

. (2.27)

Instructions for the algorithms 2.25-2.27, have been implemented within the IDL
programming language and a complete program listing can be found within appendix
A.4.

Each iteration algorithm have been investigated for convergence by considering
the number of iterations N = N(M, e) on a 70 × 70 grid of the (M, e) parameter
space, where 0 ≤ e < 1 and 0 ≤ M < 2π. Each iteration procedure is repeated,
until a solution is determined to a given desired accuracy given by ABS(fn+1−fn) <
eps = 10−12 using double precision4 arithmetic or, terminated if a maximum number
of iteration of N = 20 have been exceeded. The general tactics of choosing initial

Figure 2.3: Plots showing the number of iterations required by solving Keplers equation, de-
pending on the (M, e) plane for (α, β) = (0.0, 1.0); (0.0, 1.3); (0.0; 1.6) using the Newton-Raphson
iteration algorithm (upper panel) and for (α, β) = (1.0, 0.0); (1.3, 0.0); (1.6, 0.0) (lower panel).

4Choosing eps larger than the machine precision
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guesses of x0 = E0, is of the form

Ei,j
0 = αMi + βej for i, j = 1, · · · , 70, (2.28)

where α, β are arbitrary real valued scalars to be determined experimentally for best
convergence/performance.

A large range of the set (α, β) has been investigated for each algorithm, by
plotting the iteration number N as a function of initial starting guess E i,j

0 . The best
combination of (α, β) is then used to compare the different methods. In order to
demonstrate the dependence of the number of iteration on α, β, a selection of surface
plots for Newton’s and the improved Halley’s method are shown in Fig.2.3 and 2.4.
Within these plots the range of M has been extended to 3π to demonstrate the 2π
periodic nature of the problem. In general, my numerical trials for each iteration
algorithm are much more extensive than those shown.

Figure 2.4: Plots showing the number of iterations required by solving Keplers equation, de-
pending on the (M, e) plane for (α, β) = (0.0, 1.0); (0.0, 1.3); (0.0; 1.6) using the improved Halley’s
iteration algorithm (upper panel) and for (α, β) = (1.0, 0.0); (1.3, 0.0); (1.6, 0.0) (lower panel).

Considering Newton’s algorithm for α = 0, from Fig.2.3 it is seen that a larger area of
the (M, e) plane begins to converge for increasing values of β. Conversely, for β = 0
and increasing α, we observe the effect of increasing the number of iterations around
the ”large-e, large-M” region. On average the Newton-Raphson method reaches
convergence within 12 iterations. For the improved Halley’s algorithm, convergence
is also observed to be dependent on the initial choice of (α, β). For α = 0 and
increasing β, Fig.2.4 (upper panel) shows a dissapearing of a divergent area within
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(M = 2π, high − e). Conversely, for β = 0 and increasing α, we observe a clear
decrease in the number of converging iterations (lower panel). On average this
method reaches convergence within 5 iterations. This is explained by the fact, that
higher order terms from the Taylor series approximation have been included into the
algorithm. For both algorithms, diverging sequences have been observed for large
values of the eccentricity and mean anomaly (M = 0 or M = 2π).

Since the improved Halley’s method is clearly outperforming Newton’s method,
we focused on the determination of a best choice of the (α, β) parameters for the
Halley’s method. Several trials have found α = 1.0, β = 1.0 to be the best combina-
tion for the initial starting value of the eccentric anomaly, in order to ensure a fast
convergence for the ABSf < eps criterion. Fig.2.5 shows the corresponding surface-
and iso-iteration contour plot. Convergence within 5 iterations is established almost
all over the (M, e) space. For some large-e, small-M , no convergence is established
and divergent iterations are possible leading to no solution of Kepler’s equation at
all.

We conclude this section by stating that Halley’s method is our method of choice
for solving Kepler’s equation. It is the fastest method and almost applicable for most
of the (M, e) parameter region for a determination of a solution. A limitation of the
algorithm is observed only for the high eccentric, low-M parameter region. Since
we are only considering low eccentric (e < 0.5) orbits, this will have no effect and
convergence is guaranteed within this range.

Figure 2.5: Left: iteration surface plot. Right: ”iso-iteration” contour plot. Total number of
gridpoints is 70 × 70 = 1400, where M ∈ [0.0, 3π] and e ∈ [0.0, 1.0]. The maximum number of
iterations has been set to 20 and the accuracy parameter has been chosen to be eps = 10−12.

2.4 Delaunay variables

Modern aspects of celestial mechanics uses the Hamiltonian formulation (Goldstein,
1980) for the motion of a point mass within a gravitational potential. Within this
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formulation the independent variables of the problem are canonical variables. A
special class of canonical variables for an integrable problem are action-angle vari-
ables. For the two-body problem such a set of canonical action-angle variables are
the so-called Delaunay variables. Expressed in terms of the classic elements they
are (Morbidelli, 2002a) given by

L =
√

µa l = M

G = L
√

1− e2 g = ω
H = G cos i h = Ω .

(2.29)

The physical information within the action variables are: orbital energy (L ↔ a),
magnitude of orbital angular momentum (G ↔ a, e) and magnitude of the z-
component of orbital ang. momentum (H ↔ a, e, cos i).

Using Delaunay’s variables the two-body Hamiltonian is then only a function of
the action variables and given by

H = −k2(m0 + m1)
2

2L2
. (2.30)

The corresponding Hamiltonian two-body equation of motion are then given by

dL

dt
= −∂H

∂l
;

dG

dt
= −∂H

∂g
;

dH

dt
= −∂H

∂h
(2.31a)

dl

dt
=

∂H
∂L

;
dg

dt
=

∂H
∂G

;
dh

dt
=

∂H
∂H

. (2.31b)

Since H = H(L), the only quantity changing linearly in time is the mean anomaly
l̇ = n =

√

µ/a3. The remaining angle and action variables for the two-body problem
are constants of motion.

2.5 Summary

In this chapter, we have introduced basic concepts of the two-body Kepler model.
Different types of possible orbits have been reviewed and some aspects regarding
their kinematics considered. The osculating classic elements are introduced reflect-
ing fundamental geometric properties of the motion in space. Numerical methods
for a solution of Keplers equation have been discussed and analysed with the result
that only high eccentric orbits could lead to numerical instabilities. The solution
of Keplers equation enables the calculation of an analytic solution of the two-body
problem using the closed-form f - and g-functions.
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Chapter 3

Aspects of Planetary Perturbation

Theory

3.1 Introduction

Historically, celestial mechanics is one of the oldest fields within the physical sci-
ences and has originally emerged from a pure mathematical community. The quest
to understand the motion of the planets and their future evolution within the Solar
System, was initiated by the formulation of the 1/r2-force law introduced by New-
ton in 1766. Since then, famous mathematician like Laplace, Lagrange, Gauss and
Poincaré1 contributed to the development of celestial mechanics and in particular
to the theory of planetary perturbation. Consequently, much of the present day lit-
terature on celestial mechanics is formulated in an extensive mathematical language
hard to penetrate for a less mathematical oriented physicist, who frequently finds
himself in a Definition - Proposition - Lemma - Theorem - Proof enviroment, when
performing a litterature survey. Today, the equations of motion appearing within
celestial mechanics problems, are generally treated within the field of non-linear
dynamical systems leading to the ultimate consequence of chaotic motion.

In modern times planetary perturbation theory has developed into two distinct
branches: classic perturbation theory and canonical perturbation theory. Both for-
mulations aims to find approximate analytic solutions (future phase state) of the
planetary problem. According to perturbation techniques, the solution is repre-
sented by the first few terms of an asymptotic expansion. In general, the expansion

1To my opinion, Poincaré marks the transition of one school to another by his publication of
Les Méthodes nouvelles de la Mécanique céleste at the turn of the 19th century. While Laplace,
Lagrange, Gauss were the dominating figures in the 19th century shool of celestial mechanics,
famous modern contributers like Birkhoff, Smale, Hénon and Kolmogorov marked the first half of
the 20th cenury. The monograph by (Barrow-Green, 1996) is interesting reading for an illustration
of the work contributed by Poincaré who revolutionized the science within non-linear dynamics.

39
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is carried out in terms of a small parameter which appears natural for the problem
at hand. For example, planetary problems involving small masses on circular or-
bits, the expansion parameters are usually taken to be µ or e. Thus, perturbation
methods are series solutions in a small parameter. A major difficulty in both for-
mulations, is the problem of convergence of the series involved. Following Poincaré
and his expansion theorem, these series solutions do not converge for t →∞. This
non-uniform convergent nature of the series solutions limits the predictive ability of
the analytic theory. Series solutions are only valid within a limited range of time.
At this point modern celestial mechanics applies numerical methods in order to ex-
plore the long-term behavior of a given planetary problem. However, for a complete
understanding of a given dynamical system analytic and numerical methods should
follow each other hand in hand on a complementary basis. Long term numerical
simulations opens the phenomenological questions and analytic theory attempts to
give answers based on the underlying dynamics of the problem.

Although the emphasis within this thesis is on the numerical exploration of the
equation of motion of the three-body problem, I outline some basic aspects of the
analytic theory of planetary perturbations. No attempts will be made to develop an
analytic or semi-analytic theory of planetary motion. This would involve a laborious
work, which could form the basis of a distinct thesis of its own. Instead, we consider
the perturbed two-body problem, which forms the basic step in developing a pertur-
bation theory and introducing fundamental concepts. Perturbed two-body motion
is formulated using the three-body model using Jacobi coordinates. The mutual
gravitational interactions are described by the perturbation function Rij, and we
will consider some of its properties. The time evolution of the classic Kepler ele-
ments of a given planet are introduced by the Lagrange equations using Delaunay’s
canonical elements. Finally, we discuss the time variation of the Kepler elements by
applying a disturbing force.

3.2 The three-body problem

3.2.1 Formulation of the problem

The basic model is the three-body problem. Within the classic formulation of New-
tonian mechanics, we consider N = 3 point masses Pi, where 1 ≤ i ≤ N with masses
mi at position ρi = (xi, yi, zi) ∈ R

3 in an inertial (barycentric) reference frame with
origin O.

The gravitational force of attraction of body Pi acting upon body Pj (1 ≤ j ≤
N : i 6= j) is given by

F j = − k2 mimj

|ρj − ρi|3
(ρj − ρi). (3.1)
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Figure 3.1: Inertial (ρ) and heliocentric (r) coordinates of the three-body problem. For our
purpose P1 is identified as the central host star.

In general, the total force acting upon Pj by the N − 1 other masses is

F j = − k2

N
∑

i=1
i6=j

mimj

|ρj − ρi|3
(ρj − ρi) (3.2)

If no other forces are present the barycentric equation of motion of Pj can be written
in vector form

d2ρj

dt2
= − k2

N
∑

i=1
i6=j

mi

|ρj − ρi|3
(ρj − ρi), (3.3)

which forms a set of 9 non-linear second order differential equations defining the
three-body dynamical system (within the classical Hamiltonian formulation, the
system is said to be of order 18). To determine the future evolution of Pj is equivalent
to finding a solution ρj for a given set of initial conditions. The behavior of a given
solution of equation 3.3 constitutes the main problem within this thesis which is to
study the dynamical structure for a given range of initial conditions. Any attempt
to solve this equation requires a method of numerical integration: the equation
of motion must be discretized, that is, continuous variables are replaced by those
calculated at discrete intervals in time and with finite time steps as opposed to the
infinitesimal limit. For now, we postpone this discussion to chapter 4, and proceed
our basic treatment of the three-body problem.

3.2.2 Integrals of motion and integrability

Historically, any attempt to find a solution to equation 3.3 were commonly ap-
proached by obtaining a sufficient rich set of first integrals, which are real-valued
functions constant along any solutions in (ρj, ρ̇j)-phase space. The formulation of a
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closed analytic solution for a 3N -degree of freedom system requires the existence of
6N -integrals of motion. First integrals imposes algebraic constraints on the motion
of the system. Each constant of motion eliminates a phase-space coordinate and re-
duces the dimension of the problem by one. From a geometric point of view, a first
integral foliates phase space into a (3N −1) hyperplane. For any initial condition at
time t = t0, the motion is restricted to stay on the hyperplane for all times t > t0.
In the case of the existence of multiple first integrals the motion takes place on the
locus of points defined by the intersections of the hyperplanes embedded in phase
space.

In the previous section, it was shown that the (reduced) two body problem is a
completely integrable dynamical system, for which we could find a complete ana-
lytical solution of the orbit in time. The non-existence of a closed analytic solution
(or the non-integrability) of the three body problem has been shown by Poincaré
and others2 using reduction techniques based on canonical transformations. They
showed that only 10 first integrals (algebraic independent of each other or sometimes
called 10 involutive integrals) exist (Danby, 1988). Further studies within dynam-
ical systems theory (involving the Ziglin theorem) showed that nonintegrability is
intimately related to the appearance of chaotic dynamics (Morbidelli, 2002a, p.88)
- a property to be discussed later.

Center of mass integral: For a N = 3-body system the center of mass can be
written as

N
∑

i=1

miρi = at + b, (3.4)

where a, b are constants of motion. Thus, the center of mass of the three-body
system either remains at rest or moves uniformly within inertial space.

Integral of areas: By Kepler’s 2nd law of planetary motion the conservation
of angular momentum can be written as

N
∑

i=1

miρi × ρ̇i = h, (3.5)

where h is the total angular momentum and the quantity (ρi× ρ̇i) is the projection
of the areal velocity of the ith body on the orbit planes.

Energy integral: The final and 10th constant of motion is the total energy of
the three-body problem (conservative system) given by

2sometimes the credit is given to H. Bruns, (Whittaker, 1999, chap.XIV)
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E =
1

2

N
∑

i=1

miρ̇
2
i − k2

N
∑

i<j

mimj

ρij

, (3.6)

where k2 is the Gaussian gravitational constant. Both the angular momentum and
energy integral are important diagnostic parameters, to test the numerical accu-
racy/validity of a given numerical solution.

3.2.3 Jacobi coordinates

When considering an hierarchical few-body problem like the three-body problem or
a general n-body planetary problem, the most natural coordinates to use are the
Jacobian coordinates. This set of coordinates is especially useful for the construc-
tion of numerical solution algorithms of the planetary problem. In chapter 6, we
consider numerical integration algorithms mainly formulated on the basis of Jacobi
coordinates.

The Jacobian coordinates are defined recursively with respect to the center of
mass of the hierarchical subsystem. Considering the general case, the Jacobian
position of the ith planet is defined relative to the center of mass of the remaining
i−1 subsystem. Fig. 3.2 shows the Jacobian coordinates of a four-planet hierarichal
planetary configuration.

m0

m1 m2

cm2

cm1

m3

j1

j2

j3

Figure 3.2: Jacobi coordinates (j1, j2, j3) for the four-body planetary problem. A given Jacobi
position (velocity) is measured with respect to the center of mass of the subsystem. cm1 and cm2

denotes the position of the center of mass of m0, m1 and m0, m1, m2, respectively. The figure is
partially reproduced from Murray and Dermott (1999, p.442).

Murray and Dermott (1999) gives relations between the Jacobian and heliocen-
tric coordinates and velocities of a given n-body planetary system. Denoting the
heliocentric coordinates as (r, v), we have the following transformation equations
for the ith planet
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ri =
(ηi−1

ηi

)

ji −
n−1
∑

j=i+1

(mj

ηj

)

jj (0 < i < n− 1), (3.7)

vimi = jimi −
n−1
∑

j=i+1

( mi

ηj−1

)

jj (0 < i < n− 1), (3.8)

where ηi =
∑

mi is the total mass of the system. A special case in which the two sets
of coordinates are identical is the two-body motion. The reason to denote Jacobi
coordinates as a more natural set of independent variables, is based on the fact that
the natural motion is the common motion about the center of mass within an intertial
reference system. In Fig. 3.2, m2 is not orbiting the star with mass m0, but the
center of mass of the combined masses m0+m1. In that respect, perturbation theory
expressed in Jacobian variables approximates the real planetary motion better than
heliocentric coordinates.

3.3 Planetary perturbations

3.3.1 Rij - the perturbation function

Although no closed form analytic solution for the three-body problem exist, we can
approach the problem by using the techniques of perturbation theory. The main
idea is the treatment of the three-body problem as a perturbed two-body problem.
By changing coordinates (ρ, ρ̇) → (r, v) to heliocentric coordinates the relative
equation of motion of Pj is (Murray and Dermott, 1999, p.227)

d2rj

dt2
= ∇j

(

Uj +Rij

)

, (3.9)

where

Uj = k2 (m0 + mj)

|rj|
and Rij =

k2mi

|ri − rj|
− k2mi

ri · rj

|r3
i |

. (3.10)

Here, Uj denotes the two-body Kepler potential and Rij = Rij(mi) denotes the
perturbation potential or perturbation function. The first term in Rij measures the
direct perturbation potential of mj due to the presence of mi. The second indirect
term, measures the back-reaction of the point masses on the central mass. It takes
into account the motion of m0 around the center of mass of the system due to the
presence of the other masses within the non-inertial heliocentric reference system.

Following Murray and Dermott (1999, p.232), Rij is periodic in the non-singular
variables ($i, Ωi, λi, $j, Ωj, λj) and can be expanded in a six-dimensional Fourier
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series involving only cosine terms reflecting the periodic nature of planetary pertur-
bations. Formally, this is written as

Rij = µi

∞
∑

k,l,m

Cklm cos(kiλi + kjλj + li$i + lj$j + miΩi + mjΩj), (3.11)

where the summation3 extends over all integer values of the indices (k, l, m) =
(ki, . . . , mj) and µi denotes the mass parameter of the outer planet. The expansion
is known as the Kaula-type development involving the ratio α = aj/ai as the small
parameter to describe the perturbation by an outer planet on an inner one. The
Cklm = Cklm(α, ei, ej, ii, ij)-coefficients are evaluated in terms of power series of the
eccentricity, semi-major axis and inclinations. If several point mass perturbations
are necessary to be included, Rij is replaced by a sum over all pairs of point masses.
In practical problems the power series development of Rij is complicated and best
solved using symbolic computer algebra systems (Maple or Mathematica) in order
to evaluate the Cklm-coefficients to any desired order.

Equation (3.10) allows an estimate of Rij/Uj for our problem at hand. Consid-
ering the case of an Earth mass planet within HD70642 (at a mean distance 3 AU)
the ratio of the perturbing potential to the two-body point mass potential is

Rij

Uj
∼ 7

18

mi

1 + mj
∼ 4 · 10−4, (3.12)

and thus, the two-body orbital elements are expected to be slowly periodic varying
quantities.

3.3.2 Lagrange planetary equations

The time variation of the orbital elements of the perturbed body are formulated
within Lagrange planetary equations. Together with a series expansion of Rij, they
form the basic foundation of developing analytic theories within planetary dynamics.
Recalling the canonical element of Delaunay G = L

√

(1− e2), and omitting any
subscripts they are given by (Taff, 1985, p.308)

3mi, mj are not to be confused with mass parameters
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ȧ = −2a2

µ

∂R
∂M

(3.13)

ė = − G2

µ2e

∂R
∂M
− (1− e2)

eG

∂R
∂ω

(3.14)

i̇ =
csc i

G

(

cos i
∂R
∂ω
− ∂R

∂Ω

)

(3.15)

ω̇ =
(1− e2)

eG

(∂R
∂e
− e cot i

(1− e2)

∂R
∂i

)

(3.16)

Ω̇ =
csc i

G

∂R
∂i

(3.17)

Ṁ =
2a2

µ

∂R
∂a

+
G2

µ2e

∂R
∂e

. (3.18)

A careful examination of these equation reveals a certain symmetry and allows a
division of the equations into two groups. While the first three equations (ȧ, ė, i̇)
contain derivatives of the remaining elements (ω, Ω, M), the last equations (ω̇, Ω̇, Ṁ)
contain derivatives only of the first elements (a, e, i). This symmetry property is even
more transparent within the canonical formulation of Hamiltonian dynamics.

3.3.3 Classes of perturbations

The solution of Lagrange equations requires an integration of the right hand side
of eq. (3.13-3.18). Let ηj denote any orbital element, then the integration process
produces an infinte series solution containing terms of the form

ηj(t) = η0
j +

∑

(

Aijt +
Bij

(kini + kjnj)
sin

(

(kini + kjnj)t + Cij

)

)

, (3.19)

where η0
j is determined by the initial conditions, Aij, Bij, Cij are constants and ni, nj

are the mean motions. The survival of the constants Aij, Bij depends on the order of
the truncation of the series solution, which again depends on the required accuracy
needed for a given problem. In general, high order corrections of the perturbed two-
body orbit are reflected in large values of the summation indices. For the amplitude,
we have Bij → 0 as (k, l, m)→∞.

Several classes of perturbation are generally distinguished and associated to a
particular term within eq. (3.19). The action of each class of perturbation mani-
fest itself in the time evolution of a given orbital element by modulating the initial
ηj.Terms containing the sine-function are called periodic, where κij = kini + kjnj

measures the frequency of the perturbation and 2π/κ is the corresponding per-
turbation period. If 2π/κ � 2π/n perturbations are called long-periodic, and if
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2π/κ ∼ 2π/n the perturbations are called short-periodic for a given planet with
mean motion n. Terms linear in time are called secular perturbations lineary mod-
ulating the time evolution of ηj causing the element to change without limit4. A
special class of long-periodic perturbations are resonant perturbations. In the case
when the mean motions of two planets are nearly commensurable with a ratio ni/nj

expressible in small integers, then the corresponding frequency κij = 0 and the
period of the corresponding term becomes very large.

The designation of a specific class of perturbation does not imply the existence of
several physical sources of perturbation potentials, rather it is a way to break down
the total perturbation according to their variability in time (cf. Fig. 3.3). Only
terms within the series solution of a Kepler element are attributed names according
to a specific oscillatory property.

Considering the case of a near mean motion resonance two problems lead to dif-
ficulties. If κ ∼ 0, then firstly the corresponding perturbation period term becomes
large. Following the time evolution of ηj over a finite time, these super-long per-
turbation terms can hardly be distinguished from secular perturbations. Secondly,
the amplitude Bij/κ becomes undefined resulting in a small divisors problem for
the convergence of the series solution in eq. (3.19), leading to difficulties for the
development of analytic theories.

t

ηj(t)

ηj(t = 0)

Figure 3.3: Illustration of the effects of the different types of perturbation terms. Three different
periodic variations are shown: 1) a short-period, 2) a long-period and an intermediate periodic
oscillatory variation, modulating the unperturbed ηj at time t = 0. The timescale of the short-
periodic oscillation, is comparable to the orbital period. A secular effect is also added. Whether
this is a true secular effect or a part originating from a long-period term within the expansion
series is not decisive, and one needs to prolong the time interval for a further analysis.

4the presence or absence of a secular term lead Laplace to the first definition of stability and
the stability of the Solar System in general.
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3.3.4 Averaging principle

By introducing a perturbation into the two-body potential, i.e U → U + R, the
Kepler elements are no longer constants of motion. They start to change with
time at different frequencies according to the class of perturbation terms occuring
in the series expansion of a given Kepler element. Very often and in particular
within this thesis, we are mainly interested in long-periodic and secular features
within the long-term solutions of a perturbed planet. Any contribution from short-
periodic perturbations (or equivalently high-frequency perturbations) involving the
mean anomaly M (or the mean longitudes λ) contains no information about the
qualitative long-term dynamics. A common used technique (Wisdom, 1982, sec.II,
for a historical review) to eliminate the unimportant short-period perturbations
(associated to the fast angles) is to average the perturbation function over the mean
anomaly. Using non-singular Kepler elements, this is formally written as (Murray
and Dermott, 1999)

〈R〉(a, e, i, $, Ω) =
1

2π

∫ 2π

0

R(a, e, i, $, Ω, λ) dλ, (3.20)

and is known as the averaging principle in which 〈R〉 only depends on the slow
elements (a, e, i, $, Ω). This principle assumes that perturbation effects of short-
period terms will average to zero over long periods of time. Perturbations with
periods longer than the characteristic orbital period of the system (longest orbital
period) remain and forms the major dynamical features to investigate.

The averaging principle forms the starting point in developing analytic and semi-
analytic theories of planetary motion. An important property of the averaging prin-
ciple is the following (Gurzadyan, 2002, p.32): Averaging the the original equations
(Lagrange planetary equations) of motion is equivalent to averaging the perturba-
tion function. This leads to the historically important Laplace-Lagrange stability
theorem, to be discussed in chap.5. However, within this thesis we consider solutions
obtained by numercial integration of the full equations of motion. Necessarily, such
a solution includes all the infinite number of short-period terms in the expansion
of the perturbation function. Any secular trends within the solutions (displayed by
a frequently sampled timeseries of Kepler elements) are likely to ’hide’ within the
short periods (cf. Fig. 3.3) and a Fourier analysis of the timeseries enables one to
filter out the short-period contributions in order to detect secular variations.

3.3.5 Gauss’s form of perturbations

The time variation of the elements (a(t), e(t), i(t), ω(t), Ω(t), M(t)) of a perturbed
Kepler orbit are also obtained by considering the effect caused by the action of a
small disturbing force
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dF = ReR + TeT + NeN , (3.21)

where R, T, N are the radial, transverse and normal components of the applied
perturbation force and R, T are embedded within the orbital plane and N normal
to the orbital plane. The set (eR, eT , eN) represents unit vectors centered within
the orbit plane reference system. The applied force is assumed to be arbitrary
(but small) and by definition includes more complex sources of perturbations. This
formulation, known as Gauss form, is more general comparing to the Lagrange
equations, which are valid only for perturbation forces derived from a conservative
Rij. The decomposition of the action allows the identification of force components
responsible for the change in a given orbital element. The resulting time variational
equations are derived from first principles (Murray and Dermott, 1999, p.54 and
references therein) and are given by

ȧ =
2 a3/2

√

µ(1− e2)

(

Re sin(f) + T (1 + e cos(f)
)

(3.22)

ė =
√

aµ−1(1− e2)
(

R sin(f) + T (cos(f) + cos(E))
)

(3.23)

i̇ =
rN cos(ω + f)

h
(3.24)

ω̇ =
1

e

√

aµ−1(1− e2)
(

− R cos(f) + T
(2 + e cos(f)

1 + e cos(f)

)

sin(f)
)

(3.25)

Ω̇ =
rN sin(ω + f)

h
(3.26)

Ṁ =

√
a(1− e2)

eµ(1 + e cos f)

(

R(2e− cos f − e cos2 f) + T sin f(2 + e cos f)
)

.(3.27)

Only forces embedded within the orbit plane can change a, e, ω, M and forces normal
to the orbit plane can change i, Ω.

3.4 Summary

We have introduced the three-body problem and some of its properties regarding
integrability and the exsistence of constants of motion. Fundamental concepts of
perturbation theory were discussed leading to the construction of a solution of the
perturbed two-body problem by series approximations. The corresponding time
evolution equations are determined by Lagrange planetary equations. A formal
integration of these equations enabled the identification of perturbation terms, nat-
urally leading to the formulation of the averaging principle. Finally, we introduced a
general small perturbation force and considered the effects of the force components
on the time variation of the Kepler elements.
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Chapter 4

Symplectic integration and

numerical aspects

4.1 Introduction

In order to determine the time evolution of the planetary three-body system the
equations of motion are solved using a numerical integration algorithm or a numerical
map. The basic principle is to discretice time and advance the system state (ri, vi) at
some time ti, to a future state (ri+1, vi+1) at time ti+1 using some solution operator
Φ, representing the integration algorithm

(ri+1, vi+1) = Φτ (ri, vi), (4.1)

with τ = ti+1 − ti measuring the discretisation step size.
Early numerical simulations of Solar System dynamics (roughly before 1990)

used classical integration techniques such as the Bulirsch-Stoer or Runge-Kutta al-
gorithms (Press et al., 1996; Hiroshi and Hiroshi, 1989) characterised by their high
accuracy performance but slow simulation speeds, since they require a small step
size (and hence more iterations) to capture the relevant dynamics. Thus, the total
integration time, using traditional techniques for the long-term integration of the
Solar System, were constrained to a few percent of the total Solar System age.

Since then, research in numerical analysis and planetary dynamics has taken
great advantage of increasing computer efficiency and of recent development of new
integration techniques known as symplectic integration algorithms (SIAs) (see Mor-
bidelli (2002b) for a historical review). These algorithms have the important prop-
erty of global stability, by preserving fundamental geometric structures of Hamilto-
nian dynamical systems. In particular, SIAs have usually only oscillatory and not
secular errors in the constants of motion. This allows the choice of a larger step
size (reducing the number of iterations), enabling the extension of the total integra-

51
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tion timespan and minimizing the long-term qualitative errors within the dynamical
evolution.

Historically, the most famous results employing symplectic algorithms were ob-
tained within Solar System dynamics at the beginning of the 1990s. An example
is the study of the motion of the outer planets over a time period of 109 years
performed by Sussman and Wisdom (1992), demonstrating the chaotic motion of
Pluto. In addition, symplectic algorithms are widely used within stability analysis
of multiple planet extrasolar planetary systems (Jones and Sleep, 2002).

Within this thesis two symplectic algorithms have been used for dynamical sim-
ulations of test particle stability. The first code, MERCURY6, is a user friendly multi-
purpose orbital integration software package. The code contains several integration
algorithms, symplectic as well as non-symplectic (or hybrids) to perform n-body in-
tegrations to simulate planetary dynamics. Within the package the main symplectic
integration algorithm is based on the Wisdom-Holman map (or Dirac δ-formulation).
The code is well documented and contact (by mail) has been established to the au-
thor during the thesis period.

In addition, a second symplectic algorithm have been applied for long term nu-
merical simulations of planetary dynamics. This code has been made kindly available
to me by Seppo Mikkola1 at the Turku University Observatory, Finland. The algo-
rithm belongs to a class known as composit methods and special properties of this
algorithm is the adaptive time-step ability and the fast execution speed at a high
degree of accuracy. Although the details of the algorithm implemented within the
code are considered as being ’within a black box’, some elements on the theory of
symplectic integration are discussed. The construction of the algorithm is based on
a general Lie series formulation, and we will consider some of its aspects.

Kepler Cartesian

’black box’

Symplectic Integrator
Transformation of
input coordinates

Transformation of
output coordinates

Cartesian Keplerusing Jacobian coordinates

’internal transformation’

Figure 4.1: Flowchart of data during a single integration.

In addition, I have extended the code by developing and implementing routines for
the transformation of coordinates (Kepler ↔ Cartesian) as outlined in Fig. 4.1.

1Upon an initial request by e-mail in december 2004, Seppo Mikkola provided me the algorithm
named g3.f written within the Fortran77 programming language, together with the relevant
literature reference and lecture notes on numerical celestial mechanics.
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These routines represents an interface for the dataflow into and from the integra-
tion algorithm and are presented at the end of this chapter. The integrator itself
uses internal Jacobian coordinates only. The necessary transformation from Carte-
sian to Jacobian (and the inverse transformation) are internal within the integrator
environment using roughly the transformation equations within section 3.2.3.

4.2 Numerical symplectic integration

4.2.1 Phase space properties and symplecticity

The time evolution operator Φτ , or solution flow within phase space of a three body
Hamiltonian system, is characterised by certain geometric properties forming the
foundation for the construction of symplectic algorithms. In its basic formulation,
the phase space solution flow is a canonical transformation constrained by conser-
vation laws associated to certain symmetry principles. Like conservation of angular
momentum is associated to a rotation symmetry, conservation of oriented differen-
tial area is associated to symplecticness (or symplecticity) symmetry. Traditional
non-symplectic algorithms have the disadvantage of having no knowledge of these ge-
ometric constraints or symmetry properties with the effect of computing inaccurate
numerical solutions. This effect is often recognized as numerical dissipation intro-
ducing non-physical phenomena. Therefore, it is desirable that a numerical method
preserves as much of a systems underlying geometric principles. In the following, we
list some basic properties of which the conservation of symplectic differential area is
the most important one.

1. Liouvilles Volume Theorem. The most well known phase space property is
the conservation of volume elements along the solution flow (Goldstein, 1980)
within phase space, and forms the content of Liouvilles theorem. Formally, for
a small differential volume element δVn within a phase space region Ω of an n
degree of freedom system, this is written as

dδVn

dt
=

d

dt

∫

Ω

dq · dp = 0, (4.2)

where (q, p) are the canonical phase space coordinates of the system. A for-
mal interpretation of Liuovilles result is, that conservation of phase space
volume for a region enclosed by Ω. Along any solution curve this volume is a
constant of motion for Hamiltons equation of motion. We call a volume pre-
serving system as conservative system. An important property of conservative
dynamical systems is, that no dissipation of energy occurs (determined by vol-
ume contraction or expansion) where the solution curve asymptotically evolves
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to bounded regions of limit cycles known as attractors. Such dynamical re-
gions are non-existent within the phase space of a conservative Hamiltonian
dynamical system.

2. Conservation of Energy. The total energy of a time independent Hamiltonian
system is conserved. This is a reformulation of the energy integral as discussed
in section 3.2.2. Consider the Hamiltonian function H = H(q(t), p(t)), then
the total time derivative of H is

dH

dt
=

∂H

∂q
q̇ +

∂H

∂p
ṗ =

∂H

∂q

(

− ∂H

∂p

)

+
∂H

∂p

(∂H

∂q

)

= 0. (4.3)

Thus, the Hamiltonian itself is a constant of motion and measures the total
energy of the system. Considering the motion of a system in phase space the
conservation of energy constrains the exact trajectory to a hypersurface due
to the time translational symmetry of the Hamiltonian itself. The energy of
a numerically computed trajectory will deviate from the initial Hamiltonian
and the difference can be used as a measure of numerical accuracy.

3. Conservation of the Symplectic Differential Area. A more general result than
Liouvilles theorem is the conservation of oriented differential area (Sanz-Serna
and Calvo, 1994; Ott, 1993)

d

dt

(

δp δq′ − δq δp′
)

= 0, (4.4)

where (δq, δp) and (δq′, δp′) are infinitesimal displacements from (q, p) form-
ing an n-parallelogram within phase space. Symplectic symmetry is a measure
of an oriented phase space volume element, projected onto the n coordinate
planes (qi, pi).

4.2.2 A short review on composit methods

Following Goldstein (1980) the solution operator can be expressed using a Taylor
series expansion about the initial conditions. This representation is known as the
Lie series form for the exact time evolution of the three body Hamiltons equations
of motion (canonical form of Lagrange equations), and is given by

η(t0 + τ) = eτH̃









t=t0

η(t0) (4.5)

where η = (q, p) are the phase space coordinates (or the solution flow), τ the
integration time step and H̃ = HKepler +Hint is the system Hamiltonian separated
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into a Keplerian part and an interaction part. From the discussion within chapter 3,
the interaction Hamiltonian is identified with the perturbation function. In general,
the series representation of eτ(HKepler+Hint) leads to practical difficulties and one needs
to find an approximation for the computation of the solution operator.

Using the technique of operator splitting (Sanz-Serna and Calvo, 1994) the in-
tegration from t0 to τ is given by the approximate operator

eτ(HKepler+Hint) ≈
k

∏

i=1

eciτHintediτHKepler , (4.6)

where the numerical coefficients (ci, di) are determined by some strategy using the
Baker-Campbell-Hausdorff2 identity. This approximation for a numerical solution
is known as a composit method of order O(τ k+1). The total solution flow is deter-
mined by the composition of different solution flows concatenated to one another.
The numerical calculated solution flow differs from the true solution by an error
introduced from the truncation of the BCH identity. This error is quantified by an
error Hamiltonian Herr expressed by a formal power series in τ (Mikkola, 2004). It
will be important when discussing error analysis and symplectic corrections.

Composit methods are also called general leapfrog methods and have some ad-
ditional advantages beside being symplectic: 1) Small number of force evaluations
per step. This considerably reduces the amount of CPU load, if the total number
of planets (N) is large, as CPU time ∼ N 2. 2) They are explicit methods, i.e no
”warm-up” methods are needed. 3) No use of mixed variables, this reduces roundoff
errors. 4) No intermediate variables needs to be stored, leading to a minimization
of hardware memory.

A serious limitations of most composit methods is, that they are only valid for a
constant timestep. This problem can be overcome by introducing a technique known
as time regularisation involving the concept of extending phase space (Goldstein,
1980).

4.2.3 Mikkola’s variable step Leap-Frog method

The integrator implementet within the g3.f code is a generalized leapfrog method
of second order (Mikkola, 1997) with numerical coefficients (c1 = 0, d1 = 1/2) and
(c2 = 1, d2 = 1/2) and given by the following concatenated solution operator

eτ(HKepler+Hint) ≈ eτ/2HKeplereτHinteτ/2HKepler . (4.7)

The leapfrog algorithm over a single step of length τ , consists of three substeps
representing the numerical solution flow. Using the index notation to indicate the

2Considering two operators A, B the BCH identity says that eAeB = eA+B+ 1

2
{A,B}+··· where

{, } are Poisson brackets.
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time τ -change of the phase space coordinates, the solution operator stated in eq. (4.7)
is interpreted as the following sequence of steps (Mikkola, 1997; Preto and Tremaine,
1999)

eτ/2HKepler : (qi, pi, t0)→
(

qi +
τ

2

∂HKepler

∂p









pi

, pi, t0 +
τ

2

)

eτHint : (qi+τ/2, pi, t0)→
(

qi+τ/2, pi − τ
∂Hint

∂q









qi+τ/2

, t0 + τ

)

eτ/2HKepler : (qi+τ/2, pi+τ , t0 +
τ

2
)→

(

qi+τ/2 +
τ

2

∂HKepler

∂p









pi+τ

, pi+h, t0 + τ

)

,

where the (q, p)−variables are considered to be Jacobi coordinates. The upper
equation is referred to as step 1, the middle as step 2 and the lower equation as step
3. A graphical outline of the algorithm is shown in Fig. 4.2, where the stipulated
line indicates the use of endpoints calculated from the preceeding subflow, as initial
conditions to the following subflow.

First, the algorithm starts by moving the system along the osculating Keplerian
ellipse under the action of the Kepler Hamiltonian HKepler, over a half time step
using the initial conditions at time t = t0 (step1). Then, followed by a whole time
step, the system is propagated under the action of the perturbation HamiltonianHint

(step 2), proceeded by another half step along the Kepler ellipse (step3), ending at
time t = τ , with updated positions and velocities.

t = t0 t = τ t = 2τ

1

2

3 4

5

6
HKepler

Hint · · · · · ·

· · · · · ·

Figure 4.2: Graphical representation of the Leapfrog algorithm over two time steps. The numer-
ical solution or the osculating variables of the Kepler ellipse are available at the indicated times
separated at time step τ .

In practice, the future coordinates along the Keplerian ellipse (step1→ 3→ 4→ 6)
generated under the action of HKepler, are calculated using the universal formulation
(Mikkola, 2004, p.26) of Gauss’ f− and g−functions involving Stumpff’s c−functions
for the solution of Kepler’s equation.

The error of the method introduced at each step is of order O(τ 3) and given by
(Mikkola, 2004)
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Herr =
τ 2

12
{{HKepler,Hint},Hint +

1

2
HKepler}+O(τ 4), (4.9)

where {, } are Poisson brackets. This error gives rise to the approximate solution
operator represented in eq. (4.7) and the leapfrog algorithm calculates a numerical
solution generated by a ’near-by’ Hamiltonian given by H = HKepler +Hint +Herr.
In particular, the leapfrog method conserves the near-by Hamiltonian exactly (upto
computer roundoff errors). The accuracy of our symplectic leapfrog method is im-
proved by using the technique of symplectic correctors introduced by Wisdom, Hol-
man and Touma (Mikkola, 1997, and references therein). A symplectic corrector is
a mapping (actually a canonical transformation) between the numerically computed
solution orbit (including the error) and the true ’zero-error’ corrected orbit. Within
the algorithm the true orbit is only corrected for the O(τ 2) term given in eq. (4.9).
The extend of error effect on the accuracy of the corrected orbit, depends on the
nature of close encounters between pairs of planets. During close encounters higher
order terms within the error Hamiltonian will become dominant and contribute sig-
nificantly to the total error budget. This will be demonstrated in sec. 4.2.5.

In order to capture the correct physics of the problem, the ability of a numerical
integrator to allow an adaptive time step during the integration is in some situa-
tions indispensable if close encounters or eccentric orbits are encountered. Although
composit general leapfrog methods require the use of a constant integration stepsize
to maintain the symplectic properties, Mikkola (1997) circumvented this problem
by applying a Poincaré transformation and considering the system within extended
phase space denoted by the ’transformed system’. Following (Mikkola, 1997), the
physical independent time t−variable is transformed to a new ficticious independent
coordinate like s−variable by introducing a time transformation function g(q, t)
given by

ds = g(q, t)dt =

(

A1

q1
+

A2

q2

)

dt, (4.10)

where A1, A2 are adjustable constants determined by numerical experiments and
q1, q2 denote the generalized coordinates. The number of degrees of freedom of the
system has consequently increased by one. The corresponding transformed Hamil-
tonian generating the orbit within extended phase space (or the conjugate momenta
to s) is given by

Γ = g(q, t)
(

H(q, p, t) + p0

)

, (4.11)

where p0 is the initial conjugate momentum with numerical value given by p0 =
−H(t0) and, by analogy to eq. (4.3), Γ = 0 and is constant along the orbit. In order
to apply the generalized leapfrog method to the ’transformed problem’, the new
Hamiltonian is separated into two individually integrable components Γ = Γ0 + Γ1

and the algorithm proceeds by attempting Γ = 0 along the orbit. The neccesary
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constant stepsize is transformed to a constant s−step within the ’transformed prob-
lem’ maintaining the symplectic conservation properties. The variable time adaptive
character is then given by eq. (4.10) for a suitable choice of the adjustable constants.
In practice, the initial stepsize is measured in terms of the initial number of steps
per inner planet orbital period (ns = Pinner/τ within the code). In the case of close
encounters the ns-parameter is adjusted in order to maintain the Γ = 0 condition.

4.2.4 Tests and demonstrations

In order to establish the validity of the algorithm, we need to perform some nu-
merical tests. Following a standard procedure, the numerical obtained solution is
compared to an analytic problem for which exact solutions exist. The most obvious
testcase to use is the 2-dimensional Kepler problem. However, the g3.f integrator
is designed and implemented to numerically calculate the orbits of a three-body
system. Considering only two bodies (i.e a Sun and a planet) is not possible. This
excludes the use of the 2D Kepler problem as a test case.
A second method to establish the validity of the algorithm, is to reproduce published
data within the literature. Testing by data reproduction assures the validity of the
numerical method at least as accurate as the published data.

Assuming the published data are accurate enough, I decided to reproduce the
time evolution of orbital parameters of the planets within the 47UMa extrasolar
planetary system published within Jones and Sleep (2002, Fig.3) using the sym-
plectic method and the high-accurate Bulirsch-Stoer3 extrapolation method (Press
et al., 1996) for a comparison. The Bulirsch-Stoer extrapolation method takes an
ε-accuracy parameter as an input variable to estimate the maximum size of the local
truncation error at each integration step. This error estimate is then used to ad-
just the current stepsize to accomplish the required ε-accuracy. Adopting equivalent
initial conditions specified by Jones and Sleep the reproduced orbital time evolu-
tions of the eccentricities and semi-major axis are shown in Fig. 4.3, using the the
symplectic and non-symplectic (BS) method.

By comparison, no exact quantitative reproduction is obtained. However, since
we are not interested in accurate ephemeris data, our numerical method matches
the right order of magnitude for the time evolution of the orbital elements of the
two planets considered within 47UMa. We conclude that our numerical method
reproduces qualitative characteristics of the 47 UMa dynamical planetary system,
confirming the validity of the symplectic numerical method. This conclusion is based
on a series of questions, which will be outlined and discussed in the following.

3This method is commonly trusted and widely used within the literature for a variaty of celestial
dynamics problems (Laughlin and Adams, 1999; Rivera, 2000). A working version is implemented
within the mercury6 integration package (Chambers and Migliorini, 1997; Chambers, 1999) avail-
able at http://www.arm.ac.uk/∼jec/home.html
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Figure 4.3: Time evolution of orbital parameters (a, e) for the two planets (G1 and G2) within
47 Ursae Majoris during a simulation time of 2×106 years. The sampling rate is ∼ 104 years. Both
the Bulirsch-Stoer (right panel) and symplectic method (left panel) have been used to reproduce
data using initial conditions from Jones and Sleep (2002). For the BS-runs the ε = 10−14 have
been chosen and the maximum relative energy error for the symplectic method was ∼ 10−10. Con-
sidering the e-evolution using the symplectic method, an apparent periodicity for the inner planet
is observed with period ∼ 5×105 years. Whether this periodicity is a true dynamical phenomenon
or originating due to the numerical approximation is not clear. Note the anti-correlation in the
eccentricity, which is explained by the angular momentum conservation.

Another measure to test the validity of a numerical result, is the ability of the
numerical method to conserve energy and angular momentum. We will use the
concept of relative error and define the relative energy error as ∆E/E = E(t)−E(t0)

E(t0)
.

Here, E(t) is the systems energy at time t and E(t0) is the initial energy of the
system. Equivalently, the relative error in angular momentum is defined as ∆L/L.
Using double precision arithmetics within our computations this concept limits the
measurement to machine precision of order 10−15. In the ideal case, the relative
energy (or angular momentum) error should be 0 and constant. To demonstrate the
property of symplecticity and its effect on the long-term conservation of energy, I
have compared the relative energy error for the symplectic and the extrapolation
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method for the 47 UMa simulation.
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Figure 4.4: Left panel: Plot of the time evolution of relative energy error for the symplectic
(dashed line) and non-symplectic (solid line) method. Right panel: Comparing the sensitivity of
conserved quantities (∆E/E and ∆L/L). The time evolution of the energy error is the same as
shown in the left panel figure. In general, the total integration time is 2× 106 years.

The result is shown in Fig. 4.4 (left panel) and reveals the superior advance of
the symplectic method for long-term simulations. The symplectic method shows
a steady random walk of the relative error which is mainly explained by round-
off errors (Gladman et al., 1991). Using the non-symplectic Bulirsch-Stoer method
the relative energy error shows a secular trend over time, indicating a numerically
induced pumping of energy into the system. Assuming a consistent linear accumu-
lation rate growth the relative energy error after 2 × 109 years is estimated to be
∼ 10−7.

During the test period of Mikkola’s symplectic numerical method the following
question became apparent: which of the conserved quantities ∆E/E, ∆L/L, should
I use for benchmark testings? Should both be used, or is there any preference?
Comparing the relative energy and angular momentum errors by considering dif-
ferent numerical experiments, revealed that the energy error is the most sensitive
quantity. Fig. 4.4 (right panel) shows angular momentum and energy measurements
during a numerical integration of the 47 UMa system. A comparison suggests the use
of the relative energy error to quantify accuracy for a given numerical experiment.
The improved conservation of the angular momentum within machine precision is
unclear and in the following no attempts will be made to find an explanation.

A final but important question is to ask: how much precision is needed in the
conservation of energy in order to calculate a correct orbit? Is 10−3 accurate enough
or minimum 10−7 or should it be no more less than 10−10 in terms of relative error
measurements? At this point a second question needs to be considered: does the
conservation of energy to a given degree of accuracy imply the correct calculation
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of all planetary orbits within the system?
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Figure 4.5: Demonstrating the process of converging solution for increased conservation of relative
energy. In increasing order from top the stepsize is decreased. This corresponds to a decrease in
the maximum relative energy error are max{dE/E} : 10−5, 10−6, 10−7, 10−10. Left panel plots
represents the inner (G1) and right panel figures the outer (G2) planets eccentricity evolution.

The use of the relative energy error as an indicator for the quality of a numerical
experiment is only a nessecary condition, but not sufficient. As an example, we
consider a planetary three-body system containing a massive and a much smaller
planet (think of the Sun-Earth-Jupiter system). The contribution of the smaller
planet to the total energy is much smaller than for the massive planet. Hence, the
conservation of energy to a given accuracy would indicate the correct calculation
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of the massive planets orbit. The correctness of the smaller planets orbit is left
uncertain, since its contribution to the total energy is much smaller. This problem
of accuracy test has allready been pointed out by (Mikkola and Innanen, 2002,
and references therein), who suggest a solution by means of individual accuracy
checks to test the computations of correct orbits of low-mass bodies. The numerical
use and implementation of the individual accuracy check is beyond the scope of
this project, and only stated here for the purpose of future aspects within planet
dynamics simulations indicating the existence of tools for further improvements of
numerical results. It should be mentioned that this kind of accuracy check is of
importance in the case of frequent close encounters, an issue we will discuss within
the next section.

In order to return to the precision question the principle of convergence of a
true solution is followed. Intuitively, the following aspect is clear. The higher
the resolution of the innermost orbit, that is the smaller the stepsize, the more
accurate is the numerical solution compared to the true solution. Equivalently, the
maximum relative energy error should decrease for τ → 0. Following the principle
of convergence, I examined and studied the eccentricity time evolution over a 2×106

year period for the two planets within 47 UMa. Different stepsizes according to a
given accuracy in energy have been chosen. The result is shown in Fig. 4.5. This
test shows a convergence of the qualitative time evolution as the accuracy of energy
conservation increases. From the e-plots, we observe a change-over at dE/E ∼ 10−7,
suggesting an initial stepsize of > 18 steps per inner orbit. A similar conclusion is
obtained by examining the time evolution of the planets semi-major axis.

4.2.5 Close encounters

The event of a close encounter or close approach between two celestial objects will
almost always result in a catastrophic disruption of the system by either an ejection
(of the less heavier body) or a collision. Although our numerical method is able to
capture the correct physics during a close approach by reducing the current stepsize,
it is almost always worthless to follow the subsequent time evolution of the system.
The reason for this is twofold. First, the energy integral of the system may not
be well conserved during a close approach passage introducing an artificial source
or sink of energy. Secondly, the chance for a second close approach in the remote
future is high with the consequence of a possible ejection.

Initial conditions leading to artificial close encounters have been extensively stud-
ied by numerical experiments, in order to learn about the subsequent dynamical
evolution. To be as realistic as possible, we considered close encounters between an
Earth mass object and HD70642b. Fig. 4.6 demonstrates the resulting outcome of
two encounter events at apoastron position for the terrestrial planet. We classify the
encounter events as ’soft’ and ’hard’ for the initial condition within the upper and
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lower panel, respectively. Both planets orbit a central star of one Solar mass and
the time evolution of the orbits are counterclockwise. The initial mean anomaly for
HD70642b have been experimentally determined in order to realise a close encounter
event to take place at the terrestrial planets apocenter distance. The two encounter
event differs only in the mass parameter of HD70642b. For the soft-encounter event,
we consider a 3 Jupiter-mass planet and for the hard-encounter event a 5 Jupiter-
mass planet on a circular orbit.
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Figure 4.6: Snapshots of the time evolution after a close encounter event for two different initial
conditions of the terrestrial inner planet (red orbit, with start point at (x, y) = (0.5, 0)). The orbit
of HD70642b (green orbit, with start point (x, y) = (−0.5, 3)) is circular with a = 3.0 AU and the
terrestrial planet is initially placed on a high-eccentric orbit with (a, e, M) = (1.66 AU, 0.7, 0.0◦).
The apparent elliptic shape of HD70642b in some plots is due to different scales on the axis. Note
the automatic decrease in step size during a close approach.

For both encounter events at t = 2 years, the symplectic method reduces the time
step of the terrestrial inner planet in order to capture the physically correct dynam-
ics under the close approach. The subsequent evolution is then dramatically changed
from the initial elliptic orbit and characterised by several close aproaches. The orbit
of HD70642b is only slightly changed as a result of the close encounters. For the
soft-encounter event at t = 65 years, the inner planet orbit starts to precess coun-
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terclockwise due to several close approaches. The dynamics for the hard-encounter
event are much more ’active’. At time t = 65 years the orbit first circularise then
changing to a high eccentric orbit nearly grazing the host star. The ultimate fate of
both encounter is the ejection of the terrestrial planet into interstellar space after
some 100 years. Fig. 4.7 represents a record of the mutual planetary distance for
the soft-encounter scenario and the corresponding change in the total relative energy
during the numerical integration time. For close encounters less than 0.5 AU the
terrestrial planets experiences a total number of 5 close approaches during 100 years
and the time evolution of the mutual distance is behaving erratic reflecting the over-
all chaotic nature of the post-encounter dynamics. In addition, ’energy-jumps’ with
increasing levels are observed. These jumps correlates exactly with close encounter
events. The smaller the mutual distance the larger the jump in relative energy error.
This kind of behavior reflects the failure of the symplectic corrector (Mikkola, 1997).
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Figure 4.7: Left panel: Change in total relative energy, ∆E/E. Right panel: Time monitoring
of the mutual distance between planets during the 120 year integration time. Cf. text for details.

The event of a close approach can be quantified by the sphere of influence or
sphere of activity (Roy, 1988, p.168). It is the region around a planet within which
the motion of a second planet (or a testparticle) should be considered as planeto-
centric disturbed by the central host star. If m, M measures the mass of the planet
and the host star with m < M , then the radius of the sphere of influence centered
on the massive planet is

rsoi =
( m

M

)2/5

rp, (4.12)

where rp is the massive planets heliocentric distance. Experience obtained by nu-
merical experiments, suggests that a close encounter should be defined whenever 2
objects are within 3− 4 rsoi. Another measure for the detection of a close approach
is quantified in terms of the Hill’s radius (Murray and Dermott, 1999, p.116) and
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is roughly equivalent (in magnitude) to the activity sphere. The Hill’s stability
approach is usually adopted within the literature to detect close encounter.

Within this work the mass ratio will be of order m/M ∼ 10−3 and rp ∼ 3 AU.
Thus the sphere of influence of HD70642b will be of order ∼ 0.1 AU. For an Earth-
mass planet at rp = 1 AU, we have rsoi = 0.01 AU. From Fig. 4.7 the strongest
encounters have mutual distance comparable to the radius of the sphere of influence.
We will use the concept of the sphere of influence in order to detect a possible close
approach between the two planets. Since the evaluation of rsoi is computational
cheap, we test for a possible close encounter at each timestep during a numerical
simulation. In the case of a close encounter event, we decide to terminate the
integration process and classify the corresponding initial condition of the terresial
planet as unstable.

4.3 Coordinate transformation algorithms

Numerical computations within planetary dynamics are in general done using Carte-
sian or Jacobi coordinates. Since these coordinates are counterintuitive for the
geometric representation of a particular orbit, we need to find a relationship be-
tween Keplerian4 and Cartesian coordinates in order to transform from one set to
the other.In the following discussion, we consider two algorithms for the conversion
between Keplerian elements and Cartesian coordinates

(a, e, i, ω, Ω, M(t))←→ (x, y, z, vx, vy, vz), (4.13)

at some given time t. Several methods for constructing transformation algorithms
exists within the literature and the following outline is based on Roy (1988) and
Boulet (1991). Both algorithms are tested against computed ephemeris data for
the major planets and some asteroids, obtained from the JPL Horizons ephemeris
generator. Fig. 4.8 represents the geometric concepts involved for the following dis-
cussion. Both algorithms (car2kep.f90 and kep2car.f90) are implemented within
Fortran90 and listed in appendix A.2 and A.3, respectively.

4.3.1 Cartesian to Kepler coordinate transformation

Considering a general inertial rectangular coordinate system O(x, y, z) with origin
at m1 and basis vectors (u1, u2, u3), the procedure for transforming rectangular co-
ordinates to Kepler elements is:

4the Cartesian � Jacobi transformations are done within the g3.f code, as indicated within
Fig. 4.1
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Figure 4.8: The orbit in space. e denotes the eccentricity vector pointing from the origin to the
pericenter and h is the orbital angular momentum. The ascending node vector N , is constructed
from h and the unit vector u3 along the z-axis. The inclination is also given by the angle between
h and the z-axis.

1. At time t, calculate the quantities v2 = v ·v, rv = r ·v, r =
√

r · r, h =
√

h · h
from r = (x, y, z), v = (vx, vy, vz).

2. Calculate the eccentricity e, from the Laplace vector P (see Goldstein (1980)
for a derivation and a historical discussion)

P = µe = v × h− µ
r

r
, (4.14)

where e is the eccentricity vector (Boulet, 1991), e = |e| and µ is the reduced mass.
The Laplace vector is a constant of motion for the two-body problem and points
from the dynamical center to the pericenter with magnitude µe. The eccentricity is
used to test the type of the orbit. An orbit with |1.0−e| < 10−8 is defined as an un-
bound orbit (parabolic case). Circular orbits are defined with eccentricities e < 10−5.

3. Calculate the inclination angle i, and the longitude of the ascending node Ω,
from

cos(i) =
hz

h
and cos(Ω) =

Nx

N
, (4.15)

where N is the magnitude of the ascending node vector defined as N = u3 × h.
Since (inverse) trigonometric functions are not single valued, some care must be
denoted for the determination of the proper quadrant. Here we have no quadrant
ambiguities for the calculation of the inclination, since the principle values of the
cosine function matches the angular range for which i is defined and no special test
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should be performed here. Difficulties are encountered for the determination of Ω,
since 0 ≤ Ω < 2π and cos(Ω) only returns values within its principle range. How-
ever, it can be shown that if hx < 0, then the range π ≤ Ω < 2π is covered, and if
hx > 0 then 0 ≤ Ω < π. A singularity in Ω is encountered for zero inclinations. In
the case i = 0, we have that Ω is not defined, and we set Ω = 0 for i = 0.

4. Calculate the true longitude θ. We recall that θ = ω + f . In the case of an
inclined orbit i 6= 0, we have the following rotation relations (Roy, 1988)

tan(ω + f) =
z

sin(i)

1

x cos(Ω) + y sin(Ω)
, (4.16)

and for the coplanar case i = 0, we have

tan(ω + f) =
y cos(Ω)− x sin(Ω)

x cos(Ω)− y sin(Ω)
=

y

x
. (4.17)

Using the intrinsic Fortran90 function ATAN2(arg1,arg2) the proper angular quad-
rant for the true longitude is determined without any ambiguities.

5. Calculate the semimajor axis a, using table 2.1 for the eliptic case.

6. Calculate the true anomaly f , from e and r by

cos(f) =
er

e · r . (4.18)

In order to determine the proper quadrant, it can be shown that if rv < 0, then
π < f < 2π for the evaluation of the true anomaly.

7. Calculate the argument of pericenter ω, from 6. and 4. as ω = θ − f .

8. Calculate the eccentric anomaly from eq. 2.8. This relation is particular useful
since the ATAN2 function can be used in order to determine the proper quadrant,
and it is numerically stable for small values of e, an important property as we will
see later.

9. Calculate the mean anomaly M , by using Kepler’s equation 2.10.

4.3.2 Kepler to Cartesian coordinate transformation

We now consider the reverse problem: the derivation of Cartesian coordinates from
a given set of Kepler elements at a given time. Boulet (1991) discusses the general
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case for all possible orbits. In the following, we restrict ourself by discussing the most
important case of elliptic motion. Considering Fig. 2.1, if Ō(x̄, ȳ, z̄) represents the
orbit plane reference system with unit basis vectors (ū1, ū2, ū3), then the position
and velocity of the point mass can be written as

r̄(t) = x̄(t)ū1 + ȳ(t)ū2 + z̄(t)ū3 (4.19)

v̄(t) = ˙̄x(t)ū1 + ˙̄y(t)ū2 + ˙̄z(t)ū3, (4.20)

where the scalar and vector components can be written in terms of (a, e, M) and
(i, ω, Ω), respectively. We have the following two steps.

1. From Fig. 2.1 the scalar components (with ˙̄z = z̄ = 0) are given by

x̄(t) = a(cos(E(t))− e) (4.21)

ȳ(t) = b sin(E(t)) (4.22)

˙̄x(t) = −aĖ(t) sin(E(t)) (4.23)

˙̄y(t) = bĖ(t) cos(E(t)), (4.24)

where b = a
√

1− e2, is the semi-minor axis and Ė =
√

µ/ar2 is the time derivation
of the eccentric anomaly. E is determined by Kepler’s equation from M and e. For
now, we have determined the orbit and position of the point mass, and what remains
is a determination of its spatial orientation.

2. The angular quantities (i, ω, Ω) are measured with respect to the general
coordinate system O(x, y, z). We need the following series of rotations in order to
map Ō(x̄, ȳ, z̄)→ O(x, y, z):

r(t) = R3(ω)R2(i)R1(Ω)r̄(t), (4.25)

where R1, R2, R3 are standard rotation matrices. The vector component in equa-
tions 4.19-4.20 are then given by (with ˙̄z = z̄ = 0)

ū1 =





cos(ω) cos(Ω)− sin(ω) sin(Ω) cos(i)
cos(ω) sin(Ω) + sin(ω) cos(Ω) cos(i)

sin(ω) sin(i)



 (4.26)

ū2 =





− sin(ω) cos(Ω)− cos(ω) sin(Ω) cos(i)
− sin(ω) sin(Ω) + cos(ω) cos(Ω) cos(i)

cos(ω) sin(i)



 (4.27)
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4.3.3 Tests

Several tests have been performed for the algorithms as outlined within the previous
sections using double precision arithmetic. A set of ephemerides expressing the
classic and vector elements have been retrieved from the JPL Horizons ephemeris
generator5 for the major planets within the Solar System, and the minor planets
Pallas and Ceres at epoch JD2453295.0 (corresponding to the civil date 2004-Oct-
16 12:00). These coordinate elements are referred to the mean ecliptic and mean
equinox at epoch J2000.0.

For both algorithms the converted output quantities have been compared with
the exact JPL ephemeris data, inferring a measure of absolute error for the accuracy
of the transformation algorithms. Transforming from classic to vector elements in-
troduces a maximum absolute error of 10−13AU in the positions and 10−15AU/day in
the velocities. Transforming from vector to classic elements introduces a maximum
absolute error of 10−14 in semimajor axis, 10−14 in eccentricities, 10−9 in inclination,
10−6 in the argument of pericenter, 10−13 in the longitude of ascending node and
10−11 in the mean anomaly. The variation of the error is probably explained by
numerical round-off error inherent in the finite precision arithmetics. Since observa-
tional errors for the orbital parameters are several magnitudes larger, we can safely
trust the outlined algorithms for transforming from one set to the other.

4.4 The MERCURY6 orbit integration package

Short term numerical simulations considering multi-particle dynamics have been
done using the MERCURY6 integration package. This package is available at http://star-
.arm.ac.uk/∼jec/home and implemented in FORTRAN77. The code contains some
8000 lines. The package is well documented and developed by Chambers and Miglior-
ini (1997); Chambers (1999). An online manual is available at http://aitken.math.-
auckland.ac.nz/∼ sharp/n-body integrators/mercury/mercury6 man.html. The code
compiles on any UNIX/Linux platform (Intel, AMD or SUN architectures). Com-
pilation of the source code is done using a machine dependent compiler (ifc, g77
or Compaq’s f90 compiler). Depending on hardware architecture different options
in compiler flags may be chosen to enhance computational performance. From ex-
perience, it is not recommended to start simulations over a NFS network connec-
tion since MERCURY6 needs frequent disk access for file writings and maintainance.
MERCURY6 has been installed and compiled on the DCSC6 supercomputer facility

5The JPL Horizon’s system is the source for authoritative Solar System information and
ephemeris data. Its online service provides access to key Solar System data with a flexible produc-
tion of highly accurate ephemerides for Solar System objects. The Horizons On-Line computation
service is accessible via telnet ssd.jpl.nasa.gov 6775

6Danish Center for Scientific Computing, University of Copenhagen.(www.dcsc.ku.dk)
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and on the local AMD Linux cluster at the Astronomical Observatory, Copenhagen.
All numerical simulations presented in this thesis are done using these computer
facilities.

The package contains several input files necessary for execution (see Fig. 4.9
displaying a principle data flowchart). Parameters (initial conditions, names) for
mass-less testparticles and planetary objects are stored within the small.in and
big.in data files, respectively. General integration parameters (algorithm, integra-
tion start and end dates, stepsize, accuracy tolerance, data output frequency etc.)
are stored within the param.in file. The status of integration process (mainly ac-
curacy information) is frequently displayed and at optional intervals dumpfiles are
generated for practical reasons (*.dmp) in case of possible hardware failure. Orbital
data are progressively stored into a (binary format) data file (xv.out) and each
integration is summarized in a info.out file.

Inputfiles : Outputfiles :

Coordinate transformation

param.in

small.in

big.in

mercury.inc

files.in

element.in

xv.out

xv.out

info.out

ce.out

*.dmp

*.aei

element6.for for each object

mercury6 1.for

MERCURY 6

Integration driver

Figure 4.9: Data flowchart of MERCURY6. The additional binary compressed data file ce.out

contains information on possible close enounter events between any two bodies specified within the
small.in and big.in files.

In order to convert the binary orbital data file into a ready-to-read format (ASCII
text) for data visualisation the package provides the element6.for conversion pro-
gram (FORTRAN77). This programme produces single ASCII data files (*.aei) for
each object containing orbital elements. The type of output elements (Cartesian,
Kepler or barycentric) and sampling frequency of the time series are specified within
the element.in file.
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4.5 Summary

In this chapter, we have outlined the basic theory of symplectic integration and
demonstrated the adaptive variable step property of the leap-frog method. For con-
servative Hamiltonian systems (i.e the three-body problem) symplectic integration
algorithms are the choice of method for exploring long-term dynamical characteris-
tics of a given planetary system. The accumulation of energy error shows no secular
growth in time. In general, the symplectic method outperformes traditional numer-
ical methods in both accuracy and CPU speed. We have performed several tests
to highlight these aspects and confirming the general validity of the g3.f integra-
tor. Using the 47 UMa planetary system helped to gain a great understanding of
some key questions, improving the intuition of some of its dynamical characteristics.
In addition, two algorithms for coordinate transformation have been outlined and
succesfully tested.
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Chapter 5

Dynamics Analysis: The MEGNO

Indicator

5.1 Introduction

A fundamental property of the dynamics of a three-body dynamical system, is the
appearance of chaotic motion. Although the three-body equations of motion are
determinstic, the future evolution of the system is not always predictable and well
determined. In that case, we speak of deterministic chaos within a dynamical sys-
tem.

Historically, at the end of the 1900 century, Poincaré1 discovered the possibility of
unpredictable (chaotic) motion within his studies of solving the differential equations
of the restricted three-body problem. A major issue of scientific interest at this
time, was the question of the stability of the Solar System. His results changed the
deterministic view of the motion of the planets as a predictable clock-work orrery
and proved existing stability theorems to be false. Since then, with Poincaré as the
initial founder, sophisticated mathematical techniques have been developed to gain
a qualitative understanding of the dynamical behavior of chaotic dynamical systems.

A formal definition (and as a common manifestation) of the appearance of chaotic
dynamics is sensitive dependence of initial conditions and/or system parameters. In
a quasi-periodic (regular) deterministic dynamical system, almost identical initial
conditions correspond to almost identical solutions for all times. This behavior is
completely different in a chaotic system: A small δ-change in the initial conditions
causes a system response to evolve exponentially away from the original solution.
The emergence of chaotic evolution is not always at the beginning of a given time
series and cases exists in which the onset of chaotic dynamics appears after some
time (Murray and Dermott, 1999, p.412). As a consequence, a chaotic dynamical

1Les Méthodes Nouvelles de la Mécanique Céleste
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system will evolve unpredicatable in time and naturally leads to the question of
stability of a given solution.

Poincaré himself developed a method to test chaotic behavior within the re-
stricted three body problem. This method is known as the Poincaré surface of sec-
tion or Poincaré map, but is only applicable to three-dimensional dynamical systems
(i.e restricted three-body problem (Murray and Dermott, 1999, p.414)). For higher
dimensional systems (i.e full three-body problem) more sophisticated methods are
needed.

In this chapter, we discuss the Lyapunov definition of stable motion and intro-
duce the Lyapunov characteristic exponent (LCE), as a measure of chaotic time
evolution. From the Lyapunov exponent, we define a more powerful measure of
chaoticity known as the MEGNO (Mean Exponential Growth of Nearby Orbits)
indicator, which is closely related to the LCE.

5.2 Measures of chaotic dynamics

5.3 Stability concepts

The concept of stability within Celestial Mechanics and planetary dynamics finds
its origin in the ancient quest of the stability of the Solar System. A straightforward
definition of stable motion within within a planetary system is a state wherein orbits
of bodies remain well separated, and the planets will remain bound to the central
host star for infinite time. However, Szebehely (1984) gives a review of various
stability concepts used within the literature. The first idea in defining a stability
criterion is based on secular perturbation theory (or Lagrange-Laplace theory) in-
volving the averaging principle for the series expansion of the perturbation function
in Lagrange planetary equations. The idea is the following. The absence of secular
terms within the semi-major axis (cf. Fig.3.3) indicate bounded motion, i.e as long
as no secular trend appears the orbital motion of a given planet would be confined.
This idea is ascribed to Laplace and Lagrange and developed in the late 1770 century
(Diacu and Holmes, 1996, chap.4). Formally, considering only the time evolution
of the semi-major axis, the lowest order of the Lagrange planetary equation for the
semi-major axis (from eq. 3.13) can be written (Murray and Dermott, 1999, p.254)

ȧ = −2a2

µ

∂〈R〉
∂λ

, (5.1)

where 〈R〉 is the averaged perturbation function. Since 〈R〉 is not a function of the
mean longitudes λ (i.e 〈R〉 = 〈R〉(a, e, i, $, Ω) by virtue of equation 3.20), we have
that the time rate of change of the planetary semi-major axis is ȧ = 0, and hence
a is constant in time. Historically, Poisson proofed this statement to be true even
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for the case of a second-order expansion. However, as long as no knowledge of the
presence of secular terms in higher order perturbations within the semi-major axis of
planetary orbits exists, nothing can be said on the stability of the Solar System. The
statements of Laplace-Lagrange and Poisson seems to be inadequate to demonstrate
Solar System stability (Gurzadyan, 2002, p.290-291).

In an attemp to settle the question of the stability of the Solar System, King Os-
car II of Sweden announced (in honor of his 60th birthday in 1889) a prize contest2.
The winner to be rewarded was Poincaré in 1890. In his prize winning paper Poincaré
outlines fundamental new ideas to the field of celestial mechanics and founded a new
branch of science today known as dynamical systems theory. Although he was un-
able to give a proof of the stability of the Solar System, he introduced the idea of
qualitatively studying the behavior of solutions to the three-body problem. As a
measure of stability he considered solutions (with different initial conditions) to be
stable, if their orbits, not necessarily the motions themselves, remain close to each
other at later times. This geometrical picture of stability of solutions is originally
ascribed to Poisson (Barrow-Green, 1996, p.179), (Szebehely, 1998, p.243) and gen-
erally known as orbital stability. As such Poisson stability only requires occasional
returns of solutions and does not preclude wild excursions.

Recently, the stability of the Solar System has been investigated using long-
term numerical integrations. Ito and Tanikawa (2002) presents results of the orbital
motions of the planets over 4 × 109−year time-spans. Their results indicate that
the Solar System is stable over this time period with Mercury exhibiting chaotic
variations in its eccentricity. Nowadays, chaotic motion within the Solar System is
quantified and measured in terms of Lyapunov times and current research uses a
modern and more general concept of stability known as Lyapunov stability.

5.3.1 Concept of Lyapunov stability

Following the idea of Lyapunov’s notion of stability an equilibrium solution C1(t, α)
of a system is considered Lyapunov stable, if other δ-near-by solutions C2(t, α + δ)
remain close to the reference solution at later times. Here, α denotes the systems
phase space state vector at some time t. In a more formal notation: Given ε > 0
and δ > 0 at initial time t0 = 0 such that

if |C1(t0, α1)− C2(t0, α2)| < δ then |C1(t, β1)− C2(t, β2)| < ε, (5.2)

for all t > 0 (Barrow-Green, 1996). A geometrical interpretation of Lyapunov’s
concept of stable motion is given in Fig. 5.1. In contrast to Poisson’s definition of

2See the books by J.Barrow-Green and Peterson (1993) for interesting technical and historical
details. Especially the book by Peterson is highly recommended for details in the development of
celestial mechanics from the time of Newton to the discovery of chaotic motion of asteroids and
planets.
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stability, Lyapunov’s concept is more general and stricter demanding nearby solution
to remain bounded for all times. Within Fig. 5.1 the C2−solution illustrates an
example of Lyapunov instability. The solution diverges from the equilibrium solution
at some time in the future. Small changes in the initial conditions can lead to major
divergence at later times.

t

ε

δ

p

q C2

C1

Figure 5.1: Graphical illustration of Lyapunov’s concept of stability of solutions with time, show-
ing the variation of two solution on phase space (q, p). The solution curve C1 is called Lyapunov
stable if nearby solutions stay within a distance δ to it and C2 demonstrates exponential divergence
(Lyapunov instability).

5.3.2 Variational equations

In order to measure exponential divergence from an equilibrium solution the equa-
tions of motion are linearized. Linearization explores the dynamics of the solution
flow locally around a given initial condition. The linearized equations are obtained
by Taylor expanding the equations of motion around a δ−nearby initial condition.
In the following, let η̇i = fi(η1, . . . , ηn) with i = 1, . . . , n represent Hamiltons equa-
tions of motion with η = (η1, . . . , ηn) denoting the phase space variables for a given
planetary problem. A Taylor expansion around the point (ξ1, . . . , ξn) results in the
variational equations (Contopoulos, 2002; Boccaletti and Puccaco, 1998). The vari-
ational equations represents the equation of motion for the separation of two nearby
orbits with initial condition δi(t0) = δi,0 and, in component form, are given by

δ̇i =
n

∑

k=1

∂fi

∂ηk









(ξ1,...,ξn)

δk ≡ Aikδk, (5.3)

with δi ≡ ηi − ξi measuring the initial small deviation and terms of order O(δ2
i )

are omitted. The matrix ∂fi/∂ηk is the Jacobian matrix and describes the possible
exponential propagation of a small change in the initial condition along a given di-
rection (basically, it is the growth-rate). Formally, a complete solution for the ith
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component of the separation within the variational equations (eq. 5.3) is given by
δi(t) = δk,0 expAik(t−t0). In practice, the Jacobian matrix is unknown and its com-
ponents must be computed by numerical methods. However, the Jacobian matrix
suitably quantifies exponential divergence and its components are known as Lya-
punov characteristic exponents. For a n−dimensional dynamical system (n degrees
of freedom) there exists at most a total of n distinct Lyapunov exponents, measur-
ing the rate of change along a given direction in phase space. Details of the theory
of Lyapunov exponents within linear stability theory will be omitted and in the
following we just state, that there exists a unique maximum Lyapunov exponent,
γ = max(Aik), characterising the overall rate of change of arbitrary nearby initial
conditions (Murray and Dermott, 1999; Contopoulos et al., 1978).

5.3.3 The maximum Lyapunov exponent

Within the literature the maximum Lyapunov exponent (MLE) is introduced and
defined (Morbidelli, 2002a) as

γ = lim
t→∞

1

t− t0
ln

( ‖ δ(t) ‖
‖ δ(t0) ‖

)

, (5.4)

where ‖ δ(t) ‖ denotes the norm or phase space distance of two nearby trajectories.
The sign of γ determines the dynamical behavior of trajectories within phase space.
For γ > 0, initial deviations grows exponentially away from each other (indicating
chaotic dynamics) and decays if γ < 0. Moreover, the time rate of change of the
separation vanishes, δ̇i = 0, for the case γ = 0. Since the three-body problem is a
conservative Hamiltonian system the case γ < 0 is never encountered in practical
calculations and would indicate the presence of dissipative forces (asymptotic spiral
orbits).

From the Lyapunov exponent (MLE) the characteristic time scale for exponential
divergence of trajectories is defined as

tL =
1

γ
, (5.5)

and known as the Lyapunov time. It is basically the timescale after which nearby
orbits have separated a distance e ∼ 2.72. It reflects the limit of predictability and
is therefore also known as the e-folding time scale measuring the length of time for
a dynamical system to indicate chaotic behavior.

The numerical computation of γ implies a number of practical difficulties in
real calculations. 1) Computing γ rigorously requires the limit t → ∞, which
involves numerical integration for infinite time. Clearly, this is unfeasible in the real
world. 2) A solution to the variational equations is only valid within the (δi �
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1) linearized regime (i.e solutions are only correct locally around the equilibrium
solution and exponential divergence is a measure of local divergence). 3) Because of
the limited representation of floating-point numbers, exponential divergence could
cause an numerical overflow within the storage architecture during the progress of
computation. These difficulties urgently needs attention in order to avoid unstable
(false conclusive) results, while at the same time exploring any kind of limitations
within the numerical method.

To overcome these problems the concept of renormalisation (or rescaling) is in-
troduced and the following idealized outline for the practical calculation of γ, is
taken from Morbidelli (2002a) (see additional reference therein). In general, this
method is not the exact procedure as implemented within the MEGNO code, which
we will mainly deal with and use in our study of chaotic planetary dynamics. How-
ever, the renormalisation part is an recurrent element in calculating either the LCN
or the MEGNO indicator. In a later section, results of practical numerical tests of
the applied code (cs.f), capable of calculating MEGNO (and from it the derived
LCN), are presented.

The renormalisation procedure is based on a periodical application of normal-
ising the separation vector δ between any two trajectories (cf. Fig. 9.9 (Murray
and Dermott, 1999, p.419) for a geometric interpretation). Starting at time t = 0
with initial conditions δ0 the system is followed up to a fixed time τ , called the
renormalisation time. The choice of length of τ depends on the onset of exponen-
tial divergence and its subsequent character. A too large renormalisation time step,
could possibly lead to numerical overflow and unreliable results due to the O(δ2

i )
truncation in the Taylor expansion around the nearby initial condition. How to find
a proper choice of the renormalisation time step, using a quasi-analytic solution,
will be demonstrated by numerical experiments in a later section. However, after
a time τ , the following quantity is computed, s1 =‖ δ(τ) ‖ / ‖ δ0 ‖ and a ”new”
set of initial conditions are constructed by δ1 = δ(τ)/s1 from which the system is
restarted and followed upto the next renormalisation time step 2τ . Iterating this
procedure generates a series of renormalisation factors s1, s2, . . . , sl. The maximum
Lyapunov exponent can then be determined by

γ = lim
l→∞

∑l
j=1 ln sj

lτ
, (5.6)

where lτ is the total integration time. The renormalisation factors sj = δj/δ0,
can be regarded as the rate of divergence of two neighboring trajectories in the
j’th integration interval of length τ . To overcome the ”t → ∞” problem for real
calculations the quantity

∑l
j=1 ln sj/lτ is plotted against lτ in a log-log graph up to

”some suitable time” corresponding to the integration time. The length of this time
interval depends on the chaotic nature of the dynamical system. By a combination
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of experience and guess work the future evolution (Morbidelli calles this evolution -
asymptotic behavior) of this curve is determined.

In Fig. 5.2, two examples for the calculation of γ, are shown from the literature.
The left panel figure shows the asymptotic behavior of the MLE for Pluto within
the Solar System and is adapted from Sussman and Wisdom (1988). From Fig. 5.2,
it is seen that the motion of Pluto is chaotic with a maximum Lyapunov exponent
γ ' 10−7.2 after ' 108.5 years. Correspondingly, the Lyapunov time of Pluto is
tL ' 107 years. The linear dashed line (with slope -1) would indicate regular or
quasi-periodic3 behavior for given initial conditions of Pluto. This kind of evolution
makes it reasonable to expect, that the limit of γ for t→∞ is 0.

Figure 5.2: Log-log plot of the maximum Lyapunov exponent γ, as a function of time for the
orbital motion of Pluto (left panel) and an asteroid within the 3:1 mean motion resonance with
Jupiter (right panel). See text for additional information. Left panel: the maximum Lyapunov
exponent levels off at γ ≈ 10−7.2 after a 108.5 year integration. The dashed line represents a regular
orbit with γ → 0 and would indicate quasiperiodic motion of Pluto for given initial conditions.
Right panel: again, the maximum Lyapunov exponent levels off at γ ≈ 10−3.5 for initial conditions
resulting in chaotic motion. The figures are reproduced from (Sussman and Wisdom, 1988) (left
panel) and (Wisdom, 1983) (right panel).

The right panel within Fig. 5.2 shows the MLE as a function of time for an aster-
oid (here modelled as a test-particle) located within the 3:1 mean-motion resonance
with Jupiter. This resonance is located at approximately a ≈ 2.5 AU within the
asteroid belt and the total integration time spans 106 years. The figure is from Wis-
dom (1983) who, as the first, demonstrated the dynamical effect of mean-motion

3Quasi-periodic behavior is generally characterised by a linear growth of δ, in contrast to ex-
ponential growth for initial conditions leading to chaotic dynamics.
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resonances producing large eccentricity excursions of asteroid orbits providing a
mechanism for explaining the Kirkwood gaps. Within this paper, Wisdom thor-
oughly studied the effect of numerical precision on the accuracy of the MLE by both
calculating the MLE in single- and double-precision arithmetics for different initial
conditions chosen within and outside the nominal 3:1 mean-motion resonance. Ad-
ditional MLE-graphs within Fig. 5.2 are due to several other numerical testings.
Of particular interest are initial conditions resulting in the flattening of MLE at
γ ≈ 10−3.5 at the simulation end after 106 years. Converting to Lyapunov times
corresponds to tL ≈ 3000 years for the 3:1-asteroid. Comparing Lyapunov times,
asteroids (at least those whithin the 3:1 mean-motion resonance) exhibit chaotic mo-
tion on a shorter time scale than Pluto. We will use data presented in the (Wisdom,
1983) paper, to test against numerical results of the code used in this thesis. Finally,
Fig. 5.2 gives numerical examples of initial conditions resulting in quasi-periodic dy-
namics of the test-particle. The imposed oscillations of γ with time, is explained
by the presence of a nearby resonance ”acting” on the particle occasionally within
phase space (Morbidelli, 2002a, p.96).

5.3.4 MEGNO indicator and its properties

The expression for the MLE in eq. 5.4 can be rewritten in integral form (Goździewski,
2001; Morbidelli, 2002a) as

γ = lim
t→∞

1

t

∫ t

0

δ̇(t′)

δ(t′)
dt′, (5.7)

where δ is the length of δ and δ̇/δ is the relative rate of change of the separation.
The main problem in a proper determination of the MLE, or γ, is the question
of convergence and the choice of the total integration time. For how long should
a numerical integration follow the system in order to compute a γ with sufficient
certainty? It is clear, that if the method to compute γ (applying the classic way, as
outlined previously) is rapidly converging to a limiting value for initial conditions
leading to chaotic dynamics, the integration time over which the system is followed,
can be greatly shortened. This would paramountly benefit practical applications, as
it would lower the overall CPU load for numerical simulations in higher dimensional
problems. Unfortunately, classic methods have poor converging properties and are
by nature ”slow” numerical tools to explore the phase space structure of a dynamical
system. In general, γ converges as ln t/t (Goździewski, 2001).

However, a fast method to study global dynamics has been introduced, with
application to problems in galactic stellar dynamics, by Cincotta and Simó (2000)
and is known as the MEGNO indicator. Subsequently, this technique has been
successfully applied to problems within the field of Celestial Mechanics and stability
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analysis of multiplanet extrasolar planetary systems (Goździewski, 2001, 2002, 2003,
2004).

This MEGNO technique is based on a modified version of the integral form of the
maximum Lyapunov exponent given in eq. 5.7. Instead of following the evolution of
the MLE over time, Cincotta et al. introduced and defined the MEGNO indicator
Y , together with its time-average 〈Y 〉, as

Y (t) =
2

t

∫ t

0

δ̇(t′)

δ(t′)
t′dt′ and 〈Y 〉(t) =

1

t

∫ t

0

Y (t′)dt′. (5.8)

The evolution of Y (t) allows the determination of the dynamical character of the
separation vector δ in time. In the case of quasi-periodic behavior, Y (t) oscillates
about Y (t) = 2, for which δ grows linearly with time. For chaotic behavior, δ
diverges exponentially, and Y (t) oscillates around a linearly divergent line y = γt.

In general, Cincotta and Simó (2000) showed that the limit for t→∞ of 〈Y 〉(t)
is 2, for the case of quasi-periodic (regular) dynamics. In addition, for chaotic
dynamics, we have for t → ∞, 〈Y 〉(t) = γt/2, relating the time-average MEGNO
with MLE. The MLE is recovered from the MEGNO by a linear fit to 〈Y 〉(t) within
the chaotic regime. Determining the slope would yield γ, instantly. Alternatively,
Goździewski (2001) demonstrated that the MLE can be directly expressed by the
time-running evolution law (γ =) 2〈Y 〉/t.

The main advantage of applying the MEGNO technique, is it’s great converging
properties. By construction, MEGNO amplifies any effect originating from chaotic
evolution by introducing the time as a weightfactor in eq. 5.8. As a consequence
MEGNO converges faster compared to standard computations for the calculation
of the MLE. This allows a more rapid exploration of the dynamical structure in
phase space. Following (Goździewski, 2001) this computational efficiency is cher-
ished within higher dimensional dynamical problems dealing with a large number of
initial conditions for simulations.

5.4 Program outline and test runs

The program calculating the MEGNO indicator have been made available to me
by Dr. K. Goździewski, affiliated at the Torun Center for Astronomy, Poland upon
an initial request. Elements of the program (and some details of it) are presented
and described in (Goździewski, 2001). The program source code is written within
the FORTRAN 77 programming language. It is developed and build in modular form
and makes extensively use of libraries4 and routines known from the SWIFT orbital
integration and the linear algebra (Netlib) software package. In its current version

4publically available from www.boulder.swri.edu/∼hal and www.netlib.org
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the MEGNO indicator can be calculated for a planetary system containing 2 planets.
The extension of the program to include more than two planets is a straightforward
implementation process. Two input files exists, necessary for running and execution,
holding planetary parameters together with initial conditions and general integration
and accuracy parameters. The program enables the option to perform a single
orbit integration or an integration scan survey, using initial conditions within a
phase space region of dynamical interest. The scanning option will associate to
each initial condition a calculated 〈Y 〉 producing a scanning map of the underlying
dynamics. During execution notification of the integration process is displayed on-
screen progressively and numerical data are stored in an ASCII-formatted datafile.
For a particular epoch the output data holds information on the MEGNO and its
time average, semimajor axis, eccentricity and orbit inclination of the planets and
values for the relative energy and angular momentum of the system. All numerical
quantities are computed using double-precision arithmetics.

The method of calculating the MEGNO indicator and its time average is based
on the solution of two coupled first-order differential equations, supplemented to the
equations of motion for the planetary problem. The differential form of eq. 5.8 are
given (Goździewski, 2001) by

dz

dt
=

δ̇

δ
t and

dw

dt
= 2

z

t
, (5.9)

respectively, with initial conditions δ̇(t = 0) = δ̇0 and δ(t = 0) = δ0. In order
to determine δ̇ and δ the variational equations are solved by a method introduced
and outlined by Mikkola and Innanen (1999). The MEGNO and its time-average
are recovered from the solutions and given by Y (t) = 2z(t)/t and 〈Y 〉(t) = w(t)/t.
The differential equations are, together with the equations of motion, solved using
the Bulirsch-Stoer-Gragg interpolation method implementet within the ODEX in-
tegrator5.The numerical error on energy and angular momentum are controlled by
accuracy parameters adjusting, if necessary according to a tolerance requirement,
via the step-size during integration.

Tests of the code have been performed and presented thoroughly by Goździewski
(2001) considering numerical stability and accuracy checks on various computer
architectures. For obvious reasons, I conducted additional tests to check on the
reliability of the MEGNO code. Since no analytic solutions exists, to which results
obtained from MEGNO runs can be compared, I decided to use the ”method of
reproducability” of allready published data within the literature. If successfull,
numerical results obtained by the MEGNO code would then be, at least, as correct

5E. Hairer provides several numerical algorithms suitable for work within Solar System dy-
namics including symplectic and geometric algorithms for solving first-order diff. equations. See
www.unige.ch/math/folks/hairer for more details.
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Figure 5.3: Numerical results and demonstration of testruns for the calculation of MLE (γ) in
addition to MEGNO and its time average. Results are compared against published data (Wisdom,
1983) for the choice of two chaotic and one regular trajectory of a test particle (asteroid) within the
3:1 mean-motion resonance with Jupiter (cf. right panel in Fig. 5.2). The maximum integration
time were at most 106 years. Upper left panel: The MLE as a function of time within a log-
log graph for three different initial conditions of the test particle. The MLE is derived from the
MEGNO using the evolution law 2〈Y 〉/t. Top right panel: Plot of Y and 〈Y 〉 for a quasi-periodic
trajectory. The small inlet figure shows the asymptotic functional behavior of 〈Y 〉 for the first
60000 years. Lower panels: Plot of Y and 〈Y 〉 for two initial conditions (denoted by chaotic I+II)
leading to chaotic dynamics of the test particle. From the linear fits the MLE can be determined.
See text for more information.

(or false) as the published data. However, at this time published data, to which
tests are being compared, are known to be well established knowledge within the
astrodynamical community.

The idea is to reproduce results in the field of asteroid dynamics. Two test
cases have been chosen both reflecting qualitative and quantitative aspects of results
obtained by the MEGNO technique. 1) Dynamics of asteroids in mean-motion
resonance and 2) dynamical structure of the asteroid belt within the Solar System.
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The model involves Jupiter and a test particle in quasi-Keplerian orbit around the
Sun.
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Figure 5.4: Time evolution of main orbital elements (a, e) for a test particle initially placed
around the 3:1 mean-motion resonance with Jupiter. Initial conditions have been chosen in order
to reproduce two chaotic (chaotic I+II) and one regular trajectory. The figures should be compared
to Fig. 5.3 for any correlations with the MEGNO factor. Top panel: sudden, eccentricity excursions
are observed with large amplitude variations over short time scales. Middel panel: chaotic time
evolution of a, e for a second initial condition nearby the 3:1 mean-motion resonance. Lower panel:
initial conditions leading to quasi-periodic or regular behavior in a, e.
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Numerical test I: Resonant test-particle dynamics

First, and in particular, I consider the dynamical perturbation of a test particle
initially located within the 3:1 mean-motion resonance with Jupiter. This kind
of study have been allready performed by J. Wisdom in the early 1980 (Wisdom,
1983) and my goal is to reproduce some of his results. Basically, I will reproduce
the Lyapunov time for asteroids within the 3:1 mean-motion resonance, which is
well established and confirmed by other means. Adopting initial conditions for
the test particle and Jupiter from (Wisdom, 1983, p.58), I performed numerical
integrations over a similar period of time using the MEGNO code. In his paper,
Wisdom mainly considers the dynamics for two initial conditions leading to quasi-
periodic and chaotic dynamics (denoted by ”regular” and ”chaotic II” within Fig.
5.4 and 5.3). In addition, for reasons of robustness of obtained results, I changed the
initial semimajor axis within the ”chaotic II”-run considering the dynamics nearby
the 3:1 mean-motinon resonance. This run is denoted by ”chaotic I” within the
figures. The nominal location of the 3:1 mean-motion resonance within the asteroid
belt is a ∼ 2.5 AU and orbit eccentricity for the particles is set to e = 0.15. Orbital
parameters for Jupiter are kept constant during each testrun and numerical values
are adopted from within the Wisdom-paper. In all simulations, the relative energy
were conserved to within the acceptable level of dE/E ∼ 10−12.

Results are shown in Fig. 5.3 and 5.4. The former figure displays properties
of the MLE, as derived from the MEGNO and details of the MEGNO indicator
and its time-average for three different initial conditions (chaotic I+II and regular).
The latter shows the corresponding time evolution of the (a, e) orbital elements.
Comparing the top left panel in Fig. 5.3, displaying the MLE as calculated by
the evolution law 2〈Y 〉/t, with the right panel figure in Fig. 5.2, it is evident that
results obtained by the MEGNO code excellently matches the stated Lyapunov
times given by Wisdom (1983) using initial conditions within and around the 3:1
mean-motion resonance. From the MEGNO runs, I obtain log γ ∼ 10−3.7 yrs−1,
which is quantitatively in agreement and comparable with Wisdom’s announced
log γ ∼ 10−3.5 yrs−1. In addition, the time evolution of 〈Y 〉 and Y (lower panel
in Fig. 5.3) displays the characteristics as described in Cincotta and Simó (2000);
Goździewski (2001) and this behavior is expected from theory. For large times the
t′-weight factor in eq.5.8 for the expression of Y (t), becomes dominating having
the effect of enhancing chaotic properties at later times. In Fig. 5.3, determining
the MLE from the slope of 〈Y 〉 yields comparable results and are also in excellent
agreement with Wisdom’s calculated Lyapunov times. In particular, determining a
linear fit for the ”chaotic II” testrun in Fig. 5.3, I use datapoints within the time
interval 26× 104 ≤ T ≤ 39 × 104 years. Comparing the time evolution of Y (t) for
both chaotic testruns, we observe a difference in the onset of divergence of Y (t). For
the ”chaotic II” run, an initial quasi-periodic transient is visible; while for the other
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run (”chaotic I”) the onset of divergence is almost immediately apparent.
By visual inspection, the maximum Lyapunov exponent for the ”regular” testrun

is expected to asymptotically approach 0, for t → ∞ (top-left panel in Fig. 5.3).
An additional testrun, extending the integration baseline, confirms this assumption.
The corresponding functional behavior for 〈Y 〉 and Y , are shown in the top-right
panel in Fig. 5.3. It is observed that 〈Y 〉 → 2 for t → ∞ and 〈Y 〉 reflects the
running time-average of Y (t) with the latter oscillating around 2.

In Fig.5.4, I display the corresponding time evolution of the orbital elements for
the testruns. It is remarkable to see an exact correlation between the onset of chaos
in one or two Kepler elements with 〈Y 〉 or Y (t). For the case of the ”chaotic II”
testrun the initial quasi-periodic transient is clearly reflected in a steady and calm
variation in both the eccentricity and semimajor axis. In a way to speak, MEGNO
registers any sudden change in one of the orbital elements and quantfies the sum of
these changes in 〈Y 〉 and Y . Of particular interest is the change in eccentricity, over
short time scales, of the test particle within the ”chaotic I” testrun (top-right panel
within Fig. 5.4). This figure should be compared with Fig. 4 in Wisdom (1983) as
shown in Fig. 5.5.

Figure 5.5: Reproduction of Fig. 4 from Wisdom (1983) showing the eccentricity as a function
of time for a test particle initially placed within the 3:1 mean-motion resonance with Jupiter. The
maximum integration time tmax = 2× 105 years.

Although not exact, they share qualitatively similarities to one another. This con-
firms the proper calculation and conversion of orbital elements within the MEGNO
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code. The difference may be explained by the use of different algorithms where Wis-
dom’s results are based on a symplectic mapping algorithm. In the case of the time
evolution of orbital elements for the ”regular” testrun, we observe quasi-periodic
variation in a, e. In particular, the existence of different classes of perturbations are
present with long-period perturbation modulated by several short-periodic pertur-
bations. The origin and nature of the long-periodic perturbation is probably due
to resonance perturbations due to the closeness of the initial conditions to the 3:1
mean-motion resonance (see chapter 3, for my discussion of different classes of per-
turbations). In addition, the change in orbital elements are observed to be different.
As an example, we consider the ”chaotic II” testrun. The percentage change in semi-
major axis is δa% ∼ 0.6 and for the eccentricity δe% ∼ 60. This leaves us with the
question, why it is easier to change the orbital eccentricity (i.e exchange of angular
momentum) by gravitational perturbations, than it is to change the semimajor axis
(i.e orbital energy).

Numerical test II: Dynamical structure of the asteroid belt

In a second test we consider the dynamics of a test particle within the asteroid belt
of the Solar System. The dynamical structure of the asteroid belt is well constrained
by observations. I conducted a parameter survey using the scanning option available
within the MEGNO code. The region of interest for initial conditions is the (a, e)-
space for a test particle. The range in semimajor axis roughly covers the region for
which the asteroid belt is currently defined (cf. Fig.1.9) and given by the interval
a ∈ [1.8; 3.7] AU. The range in orbital eccentricity is chosen to be within the interval
e ∈ [0; 0.2]. The MEGNO computations are done on a (150, 100)-grid, corresponding
to 15× 103 single simulations. Each initial condition is integrated for 30× 104 years
and at the end of each run 〈Y 〉 were computed and assigned to the (ai, ei)-grid point
(actually, 〈Y 〉 is computed during integration).

Comparing Fig. 5.6 with the histogram distribution of asteroids within Fig.1.9,
we observe a remarkable high correlation between the locations of Kirkwood gaps and
mean-motion resonances. Here, we can directly assign a cause-and-effect mechanism
for the depletion of asteroid at certain locations within the asteroid belt. The effect
of mean-motion resonances are eccentricity excitations resulting in orbit-crossers
and eventually in close encounters with planets. Although, mean-motion resonances
have an important dynamical effect, the presence of secular resonances contribute to
Kepler element excitations as well. However, it must be stressed that this result has
been known for long time. In addition, quasi-periodic MEGNO values are computed
at Kirkwood anti-gaps for test particles initially on circular orbits (7:2 and 8:3).
The main conclusion regarding this testrun, must be that the MEGNO technique is
reliable in detecting or discriminating regular as well as chaotic dynamics, for given
initial conditions.
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Figure 5.6: Dynamical map of a MEGNO scan within the asteroid belt region. Numerical values
of 〈Y 〉 are color coded. White colors corresponds to 〈Y 〉 = 2 (i.e quasi-periodic or regular dynamics)
and 〈Y 〉 > 2 corresponds to chaotic dynamics. Prominent mean-motion resonances are indicated
by small arrows. The absence of any chaotic features at the 7:2 and 8:3 mean-motion resonance,
for most eccentricities, is in perfect agreement with observations showing regions populated with
asteroids. The most dominating resonance is the 2:1 commensurability, marking the outer edge of
the asteroid belt. This resonance is also the only one which is independent of initial eccentricity.

Numerical test III: The renormalisation time step

A final concern on the accuracy/reliability of the MEGNO code, is the question
regarding the choice of the renormalisation time step. Should it be chosen at the
order of the integration step size? Or larger? This question is quickly answered
by considering the dynamics of a test particle located within the 3:1 mean-motion
resonance, as discussed previously.

The idea is to repeat the calculation presented in the top-left panel in Fig. 5.3
for different renormalisation time scales, in order to reproduce the particles Lya-
punov time as published by Wisdom (1983). Renormalisation time scales resulting
in deviations from the nominal log γ ∼ 10−3.5, are to be considered as producing
false conclusions, violating the linearisation requirement underlying the variational
equations.

In Fig. 5.7, we plot the MLE given by the evolution law 2〈Y 〉/t, for several
choices of the renormalisation time step τ in units of Jupiter periods. For increasing
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2〈Y 〉/t evolution law. TJup is the orbital period of Jupiter. The range for the variable renormal-
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suggests, that rescaling of the variational equations should be done at the order of 1 − 10 TJup.
For τ = 103 − 104 TJup, the algorithm is no longer stable yielding too high Lyapunov times. The
small inlet figure gives some details on the MLE for low choices of τ .

τ , we observe a deviation of the final MLE from the nominal value. The onset of
the deviation, appears to start for τ > 100 TJup. The reason why only three values
of the MLE are available for τ = 104 TJup (gray crosses), is due to technical details
in the implementation of the MEGNO program. However, we conclude this section
by stating that a proper renormalisation time scale is of the order of ∼ TJup. In the
preceeding testruns and all upcoming simulations, we will use τ ∼ TJup or τ ∼ Tpl,
where Tpl is the orbital period of the planet under consideration.

5.5 Summary

We have introduced and described the maximum Lyapunov exponent (MLE) and
the concept of mean exponential divergence factor of nearby orbits (MEGNO). The
numerical computation of the latter have been thoroughly tested against observed
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and published data. The MEGNO indicator will be used to study the dynamical
structure of (a, e)-space within the terrestrial region of observed extrasolar planetary
systems. Results suggests that MEGNO is adequate to detect the presence (or non-
existence) of mean-motion resonances.



Chapter 6

Observations and the habitable

zone

6.1 Introduction

In the following, we present the orbital parameters for the systems HD4208 and
HD70642 as determined from observations using the radial velocity technique. A
brief outline is given describing the procedure of Keplerian fitting to obtain orbital
parameters for planet companions in extrasolar planetary systems. A discussion
on the techniques of processing and reduction of spectral data is omitted and the
outline starts after radial velocities have been retrieved from observations.

In addition, we consider simple aspects of the habitable zone for both system.
In particular, we will derive the boundaries of the habitable zone within the (a, e)-
orbital parameter space and special attention will be given to the Kasting et al.(1991)
model for their determinations.

6.2 Observations and Kepler elements

6.2.1 Outline of orbit fitting method

Orbital parameters for observed extrasolar planets are determined from spectro-
scopic observations, by measuring a Doppler spectral line shift for the reflex-motion
of the host star. Let (vm(ti), ti) represent a series of measured radial velocities, each
corresponding to a measured spectral line shift at times ti (observation times are
generally measured in Julian date (JD) and velocities in ms−1) with i = 1, . . . , N ;
and N denoting the total number of observations during the survey program period.

A first indication for the presence of a single- or multiplanet system is obtained
by determining the spectral power of periods within the radial velocity data set.

91
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This determination is normally done using the Lomb-Scargle periodogram analysis
(Fischer et al., 2002; Press et al., 1996) in the case of irregular spaced data sets. If the
periodogram exhibits the presence of a single period (indicated by a maximum power
peak associated with a given false-alarm probability), then a single planet Kepler
model is used for a synthetic fit of the observed radial velocity curve (otherwise a
2-planet Kepler model, accounting for short-term perturbations, is used). Since the
radial velocity technique is unable to determine the orbital inclination i, the single-
planet Kepler model is subject to 5 adjustable parameters, related to properties of
the planet’s orbit. The expression for the synthetic (or analytic) radial velocity is
given by (Hilditch, 2001, p.42),

vs = K
(

cos θ(t) + e cos ω
)

+ vs,0 , (6.1)

where K = (2πa sin i)/[P (1− e2)1/2] is the semiamplitude of the velocity curve and
vs,0 is the center of mass velocity or systemic velocity. The angle θ (true longitude)
is related to time by Kepler’s equation, from which the mean anomaly and hence
the periastron date τ , is determined.

Since the Kepler model depends nonlinearly on the adjustable parameters (P, τ, e,
ω, K), a multidimension nonlinear minimization fitting procedure is used, known as
the Levenberg-Marquardt method (Press et al., 1996). In short, this method at-
tempts to minimize the χ2-function, accounting for the quality of a given parameter
fit, and is given by

χ2(P, τ, e, ω, K) =
N

∑

i=1

(vm(ti)− vs(ti, P, τ, e, ω, K)

σti

)2

, (6.2)

where 1/σ2
ti

is the weight or standard deviation of the radial velocity measurements
at time ti. The iteration procedure follows the principle of steepest descent, in order
to determine a best fit set of orbit parameters and the speed of convergence depends
on the complexity of the parameter space topology. The weight 1/σ2, used within the
Marquardt iteration procedure, is assembled from two contributions reflecting two
main sources of radial velocity errors. 1) actual measurement (instrumental) errors,
and 2) astrophysical effects. The effects account for stellar phenomena contributing
to spectral line shifts in addition to the induced reflex-motion of a planet, and could
be due to star-spot activity and/or stellar pulsations. Actual measurement errors
are inferred from internal telescope/instrument uncertainties.

Uncertainties within the derived (fitted) orbital parameters (P, τ, e, ω, K) are
modelled and inferred by using a Monte Carlo approach (Marcy, 2005). At each
observation time ti, the residual function is formed, using the observed and best-
fit computed radial velocities, given by (O − C)(ti) = vm(ti) − vs(ti). Each (O −
C)(ti) represents and simulates the magnitude of a measurement uncertainty in
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an individual radial velocity measurement. The range of uncertainty is then given
by the maximum and minimum velocity residuals. The ”variation” of the best-fit
Kepler velocity curve is then realised by adding a random residual velocity to the
best-fit synthetic Kepler velocity at a given time. The resulting ”distorted” set of
radial velocities is then used to determine a ”new” Kepler-fit with corresponding
orbit parameters. This process is repeated, each time producing a new possible set
of orbital parameters. By this method, a total of 100 variated Kepler fits have been
determined. The resulting uncertainty in a given orbit parameter, is then simply
determined by calculating the 1-σ standard deviation of the accumulated parameter.

The two remaining parameters to be derived from the set of fitted orbital param-
eters are the orbital semi-major axis a, and the projected minimum mass Mpl sin i,
of the planet companion. If the stellar mass is known, the semi-major axis is de-
termined from Kepler’s third law of planetary motion. The derivation of the mini-
mum mass of the planet, starts by considering the mass-function (Perryman, 2000;
Hilditch, 2001) valid for single-lined spectroscopic binaries

f(Mpl, M?) =
(Mpl sin i)3

(M? + Mpl)2
=

1

2πG
(1− e2)3/2K3P, (6.3)

where M? is the mass of the host star, G the gravitational constant and e is the
eccentricity of the planet. The equation for the mass-function is transcendental in
the minimum mass and no analytic expression is obtained without assuming some-
thing on the mass ratio Mpl/M?. In practice, the minimum mass of the planet is
determined using a root-finding iteration procedure (Marcy, 2000 - private commu-
nication). Both parameters (a, Mpl sin i), are derived using numerical quantities and
are stated without any formal uncertainty. In a later section, we will use Eq. 6.3 for
a proper determination of planet-mass range within our parameter survey.

6.2.2 HD70642

As allready mentioned within the thesis introduction, Carter et al. (2003) announced
the existence of a planet within HD70642 using the Anglo-Australian Telescope fa-
cility. As a result of the long observation baseline and constant precision measure-
ments, HD70642b marks the onset of emergence of planets in orbits characterised
by long-periods and low eccentricities. HD70642 is frequently monitored within
the Anglo-Australian Planet Search Program and data aquisition has been ongoing
during a time period of 5 years. A total of 21 radial velocity measurements have
been obtained using an ECHELLE spectrograph with a radial velocity measurement
precision of 3 ms−1 during observations. Further details concerning this search pro-
gram are located under the following URL: http://www.aao.gov.au/local/www/-
cgt/planet/aat.html.
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All 21 spectroscopic measurements for the reflex motion of the host star, are
shown in Fig. 6.1 over the observation period. The sinusoidal line represents the
best 2-body Kepler fit, according to the induced velocity signature within the center-
of-mass frame of the system.

Figure 6.1: Radial velocity curve for HD70642 spanning a time period of 5 years. Here, P
measures the orbital period, e orbit eccentricity and M sin i is the projected minimum mass of
the observed planet companion. The root mean square of the observations is σ = 4.0 ms−1. The
velocity amplitude of the reflex motion is K = 32 ms−1. The figure is reproduced from Carter
et al. (2003).

Orbital parameters for this system, including observational uncertainty ranges, are
listed within table 6.1. Physical properties of the host star are obtained by ei-
ther photometric or spectroscopic observations (Carter et al., 2003, and references
therein). HD70642 is a Solar-like star of spectral type G5 with a surface temper-
ature Teff = 5670 ± 20 K. The mass of HD70642 is 1.0 ± 0.05 M� and its age is
estimated to be 4 × 109 years. The metallicity of HD70642 is consistent with the
majority of observed host stars harboring planets and is metal rich relative to the
Sun with [Fe/H] = 0.16. For comparison, the Sun is of spectral type G2 with a
surface temperature Teff = 5770 K and age 4.5× 109 years.

6.2.3 HD4208

The presence of a single Jupiter-like planet within HD4208 was announced by Vogt
et al. (2001), based on observations obtained within the Keck precision Doppler
survey under the Keck Planet Search Program (http://planetquest.jpl.nasa.gov/-
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Keck/keck index.html). A total of 35 radial velocity measurements have been ob-
tained for this system over a time period of 4.9 years, covering 2 orbital periods
for the observed planet. Using the HIRES echelle spectrometer, a radial velocity
measurement precision of 3 ms−1 is obtained for the observations.

Fig. 6.2 shows the radial velocity measurements as a function of time during
the survey program. The sinusoidal line represents a best 2-body Kepler fit. The
minimum mass for this system is nearly a factor of 2 smaller compared to HD70642.
Additional orbital parameters derived from the synthetic Kepler fit, are listed within
table 6.1.

Figure 6.2: Radial velocity curve for HD4208. The sinosodial line represents a 2-body Kepler fit
with orbital period of 829 days, eccentricity e = 0.04 and velocity amplitude K = 18.3ms−1. The
goodness of fit is σ = 5.21ms−1. The figure is reproduced from Vogt et al. (2001).

Information on properties of the host star is based on Strömgren photometry,
Hipparcos astrometric measurements and Keck-HIRES spectral observations (Vogt
et al., 2001, and references therein). The star HD4208 is a Sun-like star of spectral
type G5V with an estimated mass of 0.93 M� and metallicity [Fe/H] = −0.21. In
addition, HD4208 is included within the Geneva-Copenhagen star survey program
(Nordström et al., 2004). Based on observed parameters, Nordström et al. derive a
stellar mass within the range 0.82−0.95M� with effective temperature Teff = 5572K
in close agreement with the results of Vogt et al.. However, no estimate on stellar age
is published within the literature. Preliminary calculations using stellar evolution
models indicate an age of 4.5 ± 0.5 Gyrs (Southworth, 2005). Unfortunatly, the
process of age determination, using isochrone fitting, is not reliable for certain stars
including HD4208. Following Nordström (Private communication, September 2005.
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Astronomical Observatory, Copenhagen) the isochrone evolutionary tracks are too
dense and observed parameters too uncertain in order to reliably determine the age
of HD4208. A formal uncertainty range for the age of HD4208 is 0− 9× 109 years.

Parameters HD70642b HD4208b

a (AU) 3.3± 0.4 1.68± 0.05
e 0.1± 0.06 0.04± 0.12
ω (◦) 277± 75 301± 84
Mpl sin i (MJup) 2.0 0.80
P (days) 2231± 400 829± 36
K (ms−1) 32± 5 18.3± 2
τ (JD) 2451749± 300 2451774± 197

Table 6.1: Derived orbital parameters from synthetic Kepler fits for the observed planets HD70642
and HD4208 (Vogt et al., 2001; Carter et al., 2003). From Kepler’s law of planetary motion, the
uncertainties in the semi-major axis have been obtained from the corresponding uncertainties in
the orbital period, using the stated value of the minimum masses in each system. Minimum masses
of order Mpl sin i ∼ 10Mjup, have an effect on the semi-major axis of order ∆a ∼ 10−2 AU. Within
the litterature, the time of periastron date (introduced in chapter 2) is often denoted by T0. For
consistency with previous notation, we will use τ to denote the periastron date. A final remark
concerns the uncertainty range in eccentricity for the system HD4208. Formally, the lower bound
in eccentricity assumes a negative value, which is clearly unphysical. This is probably explained
by details within the fitting method applied to derive orbital parameters.

6.3 Determination of the habitable zone

6.3.1 A simple model

In order for liquid water to exist on a planet (with surface pressure p ∼ 1 atm)
the average surface temperature must be within the range 273 K ≤ Tpl ≤ 373 K.
Assuming a simple energy budget model for thermal properties of the planet, we can
estimate the habitable zone (HZ: rmin = r(Tpl = 273 K) and rmax = r(Tpl = 373 K)),
in terms of planetary and stellar parameters. The following discussion is taken from
Clark (1998). If A measures the albedo and f denotes the absorbed heat circulation
factor for a planet at radial distance r, then

r =
R?T

2
?

2 T 2
pl

√

f(1− A), (6.4)

where R?, T? denotes the stellar radius and effective temperature respectively. Fol-
lowing Clark, the albedo (ratio of absorbed and reflected radiation) of an Earth
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like planet is extrapolated from measurements of terrestial planets within the Solar
System and the circulation factor accounts for a temperature gradient between the
day/night hemispheres for a rotating planet. The habitable annulus within the Solar
System can be calculated from Eq. 6.4, using stellar parameters R? = R�, T? = T�,
and A ∼ 0.5, f ∼ 1 for the terrestrial planet (numerical values adopted from Clark
(1998)). The inner and outer radius (or equivalently, the minimum and maximum
radius) are calculated to be rin = 0.39 AU and rout = 0.73 AU. The model clearly
underestimates the range of habitability, since the only habitable planet within the
Solar System is Earth at ∼ 1 AU. Within the next sections we will determine more
accurate boundaries of the habitable zone based on a more detailed atmospheric
model of the habitable planet.

6.3.2 Habitable stable orbit constrains

The confinement of a planet’s orbit to within a given annulus (see Fig. 1.7), imposes
some constraints on the orbital parameters (a, e) for that planet. At some osculat-
ing time, the orbit has a well defined periastron and apoastron distance (which are
equal to each other for circular orbits). It follows from the conservation of angu-
lar momentum, that for increasing eccentricity (at constant semi-major axis) the
pericenter distance a(1− e) becomes smaller while the apocenter distance a(1 + e)
becomes larger. Therefore, we must have some upper limit in eccentricity, for a
given semi-major axis, in order to confine the orbit into a predefined concentric re-
gion defining the habitable zone. The corresponding conditional constrain equations
are given by

rin ≤ a(1− e) ≤ rout and rin ≤ a(1 + e) ≤ rout. (6.5)

Fig. 6.3 represents the habitable zone within (a, e)- space for the two planetary sys-
tems under study and reflects a graphical representation of the constrain equations
Eq. 6.5. Numerical values for the inner and outer radius of the habitable annulus
are calculated from the simple energy budget model. Although this model is incor-
rect for the determination of the habitable zone boundaries, I will use it to outline
the interpretation of the habitable zone boundaries expressed within (a, e)-space.
In Fig. 6.3, contourlines represents the inner and outer boundary of the habitable
annulus. The lower triangle marks the region of habitability. Planetary orbits re-
stricted within this (a, e)-triangular region are defined to be within the habitable
zone. All orbits confined to within this region are defined to be habitably stable.
Within this thesis, we will use this criterion to ascertain wether orbits are habitable
or not during a given time interval.

Considering the left panel within Fig. 6.3, emax is the maximum allowed eccentricity
for an orbit with indicated semi-major axis a = 0.55 in order to remain within the
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Figure 6.3: Graphical representation of the habitable zone annulus within (a, e)-space for HD4208
(left) and HD70642 (right). The extend of the habitable zone is almost similar for both systems
(and the Solar System) and are valid for current age and surface temperature of the host stars.
Inner and outer radius are calculated using the simple energy budget model. The iso-pericenter
contour line (dashed line) marks the inner edge of the habitable zone and the iso-apocenter contour
line (dashed-dotted) marks the outer edge. emax denotes the maximum eccentricity allowed for a
planetary orbit in order to be confined to within the habitable annulus at a = 0.55 AU. From the
figure, emax ∼ 0.3. For further information see thesis text.

habitable zone. Orbits with a < 0.55 and eccentricities exceeding the inner bound-
ary (iso-pericenter contour line) have their pericenter distance located closer to the
host star than the inner edge of the habitable zone. A similar geometric picture
is obtained for the region a > 0.55. Orbits with eccentricities exceeding the outer
boundary (iso-apocenter contour line) have their apocenter distance located beyond
the outer edge of the habitable zone. For the case a = 0.55 with eccentricity greater
than emax, we have both the pericenter and apocenter distance exceeding the inner
and outer boundary of the habitable zone, respectively. As a consequence a planet
not confined to within the habitable zone will experience temperature changes of
temporary character. Depending on the orbital semi-major axis, a planet can expe-
rience either periods of warm or cold climate (or both, if a = 0.55) because of the
variation of stellar energy flux outside the habitable zone region. The discussion of
the energetic effects on planet climate is complicated further, since the duration of
the periastron passage is smaller than the duration at apoastron distance. Consid-
ering the case with a = 0.55 and e > emax cold periods (of longer duration) marked
by extensive glaciation (ice age periods) are alternated with short periods of relative
warmth.
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6.3.3 Aspects of the Kasting et al. climate model

In their one-dimensional radiative-equilibrium climate atmospheric model, Kasting
et al. (1993) calculated the boundaries of the HZ for the Sun and some main sequence
stars, assuming water rich Earth-like planets with CO2/H2O/N2 atmospheres. Kast-
ing et al. apply several theoretical criteria to define the inner and outer boundary of
the habitable zone. The general strategy to find the criteria is to state enviromental
conditions for a terrestial like planet, which keeps surface water in its liquid form.
A planet located too close to the star will result in evaporation and too far away
will result in glaciation of all surface water.

The inner edge of the HZ were defined by the onset of the formation of a moisty
atmosphere. In order of decreasing radial distance these criteria are: 1) Water loss
limit. By photodissociation or photolysis, water is gradually lost by hydrogen escape
into space. This occurs in an atmosphere warm enough to have a wet stratosphere.
2) Runaway greenhouse limit. Water vapour enhances the greenhouse effect and
therefore promotes surface warming. This increases the atmospheric vapour content,
increasing the surface temperature. At the critical point of water (647 K), all surface
water starts to evaporate into the atmosphere. Subsequently, all water is then (in a
runaway manner) lost from the upper atmosphere by hydrogen escape.

The outer edge of the HZ were defined by the distance of a planet at which CO2

and other greenhouse gases no longer can compensate the lower solar flux, resulting
in a glaciation of all surface water. In general the role played by carbon dioxide con-
centration in Earth’s atmosphere is important in controlling the surface temperature
and thus the extent of the HZ. For example, decreasing the atmospheric carbon diox-
ide level, decreases the absorption of surface reflected infrared radiation, resulting
in a surface cooling of the planet. The amount of atmospheric carbon dioxide on
a life-less planet is controlled by the carbonate-silicate cycle. Two reaction mech-
anisms are important to operate the cycle: decarbonation and silicate weathering.
Decarbonation releases carbon dioxide into the atmosphere by thermally decom-
posing carbon-containing rocks in crustal subduction zones at high temperatures
and pressure or by volcanic outgassing. The reverse direction (silicate weathering)
removes carbon from the atmosphere by dissolving carbon dioxide in atmospheric
water to produce carbonic acid (also known as acid rain), which reacts with silicates
in surface rocks by weathering.

The existence of the carbon-silicate cycle (on planet Earth) greatly extends the
width of the HZ acting as a natural thermostat: at greater radial distance the
silicate weathering reaction mechanism ceases because of loss of atmospheric water
vapour in form of glaciation (water ice). This reduction of atmospheric water results
in the accumulation of carbon dioxide within the atmosphere. In particular, the
decarbonation mechanism maintain operation due to plate tectonics and vulcanism,
continously enriching the atmosphere with carbon dioxide. This results in a global
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planetary warming (greenhouse effect) maintaining habitability at greater stellar
distances.

In order of increasing radial distance the outer edge criteria are: 3) first CO2

condensation limit. For a surface temperature of 273 the distance at which carbon
dioxide clouds first begin to form and 4) maximum greenhouse limit. This is the
maximum distance at which a surface temperature of 273 K can be maintained by
a cloud-free carbon dioxide atmosphere, i.e the point where there would be enough
carbon dioxide and water in a planet’s atmosphere to raise surface temperatures to
273 K.

Within the climate model, Kasting et al. allows the possibility of planetary
thawning and is denoted by ”planetary cold starts”. Model calculations including
the allowance of ”cold starts” means that planets initially formed beyond the outer
region of the habitable zone, will start to warm up for a critical high stellar luminos-
ity. Fig. 6.4 describes the time evolution of the habitable zone without allowing cold
starts. Kasting et al. argues that a model calculation assuming the allowance for
possible planetary cold starts are to some extend questionable (cf. discussion within
section 5v in Kasting et al. (1993)). Accordingly, we will consider model calculation
without considering the possibility of planetary cold starts. In Fig. 6.4 (left panel)
the width of the habitable zone within the Solar System is decreasing with time for
a 1M� Solar like star. For the most conservative estimate of the boundaries (dashed
line) the habitable zone is ceased after 7 Gyrs. At the end of the main sequence
period the habitability width for the most optimistic boundary estimate (dotted
line) is 0.21 AU and centered at 1.39 AU.

The current width of the Solar System habitable zone can be estimated using the
intermediate boundary criteria (solid line). At time 4.5 Gyrs the inner and outer
edge are located at rin ∼ 0.84 AU and rout ∼ 1.41 AU, respectively. Compared to
values for the range of habitability adopted from the simple energy budget model,
it is apparent that the simple model underestimates the zonal habitability range for
main sequence stars.

6.3.4 The habitable zones of HD70642 and HD4208

As demonstrated the simple energy budget model underestimates the range of the
habitable zone. Within this thesis we adopt numerical estimates for the habitable
zone from model calculations within the Kasting et al. paper. Kasting et al. provides
estimates of the time evolution of the habitable zone for different stellar masses
shown in the right panel in Fig. 6.4. In general, we use the intermediate estimates
for the habitable zone boundaries (runaway greenhouse and maximum greenhouse
limits).

For the case of HD4208 the zonal range of habitability is determined by linear
interpolation between the 0.75 M� and 1.0 M� boundary evolution lines in Fig. 6.4
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Figure 6.4: Left panel: Time evolution of the width of the habitable zone for a 1 M� star
using a Iben’s solar evolution model (see ref. within Kasting et al. (1993)). Three different
criteria for the region of habitability are shown. a) Water loss and 1st CO2 condensation limit
(most conservative estimate, dashed lines), b) runaway greenhouse and maximum greenhouse limit
(intermediate estimate, solid lines) and c) recent Venus and early Mars (most optimistic estimate,
dotted lines). The last habitability estimate (c) is not discussed within this thesis and details can
be found in (Kasting et al., 1993, section 3). Right panel: Evolution of the habitable zone (using
the intermediate estimates for the habitable boundaries) for main sequence stars of various masses.
Note that the 1 M� evolution matches the intermediate boundaries (solide line) within the left
panel figure. The figures are reproduced from Kasting et al. (1993).

(right panel). From this the initial ZAMS1 and current boundaries of the habitable
zones are determined, assuming a 0.9 M� stellar mass and current age of 5.0 Gyrs.
For the case of HD70642 the boundaries are adopted directly from the Fig. 6.4
using the 1 M� zonal evolution model. The current width of the habitable zone is
determined by adopting a stellar age of 4 Gyrs.

Fig. 6.5 represents boundaries for the current and ZAMS habitable zone for
HD4208 and HD70642 as determined from Kasting et al.. The current inner and
ZAMS outer boundary marks the (a, e)-parameter space for the continuouse habit-
able zone (CHZ). The zonal radius of habitability increases because of an increase
in stellar luminosity during the main sequence evolution period. A planet initially
formed and subsequently dynamically confined within the CHZ region, is habitable
throughout the lifetime of the host star.

1ZAMS = zero-age main sequence, i.e t = 0yrs
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Figure 6.5: Zonal boundaries for the habitable zone for HD4208 (left) and HD70642 (right) within
(a, e)-parameter space. Boundary radii are determined from Kasting et al. (see text for details).
ZAMS HZ refers to zero-age main sequence boundaries (initial boundaries) and CHZ refers to the
continuouse habitable zone. The current HZ are determined from the current estimated age of the
host star. Planets with orbital (a, e)-parameters within the inner triangle are habitable during the
lifetime of the host star. Comparing the CHZ for HD4208 and HD70642 it is seen that the CHZ
for HD70642 is much smaller than the CHZ for HD4208.

6.4 Summary

In this section, we have introduced and discussed technical aspects of Kepler orbit
fitting method to radial velocities obtained from spectroscopic observations. From
measured radial velocities the orbital parameters for HD4208 and HD70642 have
been presented. Fundamental physical properties of the host stars were mentioned
and necessary parameters for the determination of the habitable zone discussed.
The habitable zone(s) for both systems were introduced in more detail and the cor-
responding boundaries in (a, e)-space were derived and explained. We have adopted
the conservative Kasting et al. (1991) model for the determination of the extend of
the habitable zonal boundaries. For the star HD4208, we assumed an current age of
4 Gyrs. Also, we have discussed problems in the determination of the current age
for HD4208.



Chapter 7

Parameter survey, simulations and

results

7.1 Introduction

Up to this time we have introduced, described and tested various numerical methods
for studying dynamical aspects of the three-body problem. Within this chapter, we
will use and apply these methods for studying stability properties of test particles
within the habitable zone of two selected extrasolar planetary systems. Results from
numerical experiments are presented considering giant planets observed around the
stars HD70642 and HD4208. For clarity, we consider and study the subsequent
time evolution of Earth sized planets after the late stage of planet formation and
assume that Earth like planets have been formed within the terrestrial region of
extrasolar planetary systems. Test particles are used to model terrestrial planets
and are characterised by being mass less. This assumption is justified because the
perturbation of an Earth mass planet on the orbital elements of a giant planet is
small. Within numerical experiments, I will use the MEGNO indicator to study
chaotic dynamics of the three-body problem and infer direct numerical integration
of test particles to follow the dynamical evolution of the orbit.

Our leading question will be: ”within a given system (HD70642 or HD4208) and
under the gravitational perturbation of a giant planet, is it possible that terres-
trial planets (test particles) follow dynamically stable orbits within the continuous
habitable zone?”. Orbital elements of the giant planets have been introduced. My
strategy will be a systematic parameter survey of giant planet orbital elements using
simplifying assumptions. The subject is to study the effect of giant planet orbital
parameters on the dynamical behavior of test particles within the habitable zone.
This approach seems obvious, since orbital elements derived from one-planet Kepler
fits to radial velocity observations are characterised by a large uncertainty range.

103
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Especially, the radial velocity method is unable to determine the true mass of the
detected planet and the derived orbital eccentricity is not well constrained. The gen-
eral approach for numerical experiments, is to consider the time evolution of orbital
elements of a large number of particles (2× 103) on a small time scale (106 years).
Additional numerical integrations of single (selected) particles are then performed
over time scales of 108− 109 years in order to gain some understanding of the long-
term dynamics of terrestrial planets within the systems. At the end of this section,
a comparative discussion of the systems HD70642 and HD4208 will be presented.
Final concluding remarks of the thesis will be given in the next chapter.

7.2 A final test: The Solar System

A final test to infer the reliability of the Mercury6 integration code is the repro-
duction of the time evolution of the orbital elements of planets within the Solar
System.

The long-term dynamical behavior of the Solar System has been extensively studied
since mid 1980. In the following, I will compare the outcome of numerical simu-
lations with the results obtained by Ito and Tanikawa (2002) and Brasser (2003)
using identical initial conditions. Perturbations of all planets within the Solar Sys-
tem are considered and initial conditions have been obtained from the JPL Horizons
Ephemeris Generator. The hybrid mixed-variable symplectic integrator is used to
integrate the equations of motion. The total time span of numerical integration is
2×106 years. This choice is convenient for a direct comparison, in order to match the
presented results within Brasser (2003). During integration the maximum change in
relative energy was dE/E ' 10−8 indicating an acceptable limit for reliable numeri-
cal results. Fig.7.1 represents the obtained results showing the time evolution of the
orbital eccentricity and inclination for all terrestrial planets and Jupiter. Compar-
ing the time evolution of the planets eccentricity with (Brasser, 2003, fig.1.3), we
find a close agreement in both the qualitative and quantitative behavior. However,
comparing the time evolution of orbital inclinations reveals a mismatch in magni-
tude and qualitative behavior. This difference is not due to failure in the numercial
method and is explained by the different use of coordinate systems within which
the orbital elements are represented (Brasser, 2005) (private communication). The
coordinate system used by Brasser (2003), to express the time evolution of orbital
elements, is the so-called fundamental plane, which uses the location of the total
angular momentum as the origin. The elements within Fig. 7.1 are expressed with
respect to the heliocentric frame of reference, which explains the difference.

Within Fig.7.1 the oscillatory variations of the eccentricity and inclination are
shown for the inner planets and Jupiter. From the figure, it is noted that there
exist a strong dynamical coupling between Earth and Venus. Both the eccentricities



7.2. A FINAL TEST: THE SOLAR SYSTEM 105

 0.05

 0.1

 0.15

 0.2

 0.25

 0  500000  1e+06  1.5e+06  2e+06

Ec
ce

nt
ric

ity

Mercury

 4

 6

 8

 10

 0  500000  1e+06  1.5e+06  2e+06

In
cl

in
at

io
n 

/ d
eg

re
es

 0

 0.02

 0.04

 0.06

 0.08

 0  500000  1e+06  1.5e+06  2e+06

Ec
ce

nt
ric

ity

Venus

 0

 1

 2

 3

 4

 5

 0  500000  1e+06  1.5e+06  2e+06

In
cl

in
at

io
n 

/ d
eg

re
es

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  500000  1e+06  1.5e+06  2e+06

Ec
ce

nt
ric

ity

Earth

 0

 1

 2

 3

 4

 0  500000  1e+06  1.5e+06  2e+06

In
cl

in
at

io
n 

/ d
eg

re
es

 0

 0.03

 0.06

 0.09

 0.12

 0.15

 0  500000  1e+06  1.5e+06  2e+06

Ec
ce

nt
ric

ity

Mars

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  500000  1e+06  1.5e+06  2e+06

In
cl

in
at

io
n 

/ d
eg

re
es

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  500000  1e+06  1.5e+06  2e+06

Ec
ce

nt
ric

ity

Time / years

Jupiter

 0

 1

 2

 3

 0  500000  1e+06  1.5e+06  2e+06

In
cl

in
at

io
n 

/ d
eg

re
es

Time / years

Figure 7.1: Plot of orbital elements (e, i) for some planets within the Solar System. The time
evolution of the eccentricity and inclination for all terrestrial planets (Mercury-Mars) and Jupiter
are shown. The total integration time span is 2× 106 years.

and the inclinations are correlated. Peak values in both quantities occur at same
times. According to Brasser (2003) the secular (long-period) oscillations in e and
i for Mercury and Mars are caused due to perturbations from Venus and Earth,
respectively. Also, the short-period oscillations for Jupiters orbital eccentricity and
inclination can be attributed to perturbations by Saturn (Saturn’s time evolution of
orbital elements are not shown within Fig. 7.1). However, the secular variations of
Jupiter’s elements are due to the presence of Uranus (Brasser, 2003).
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In order to study the dynamical behavior of mass less particles within the Solar
Systems habitable zone, a multi-particle simulation have been performed over 2 ×
106 years, considering perturbations of all 9 planets. The corresponding change in
orbital elements of selected planets have allready been presented within Fig. 7.1.
The current habitable zone boundaries are determined from Kasting et al. (1993).
Particles are initially distributed with random mean anomaly (M ∈ [0◦; 360◦]) within
the habitable zone boundaries (din = 0.84 AU, dout = 1.41 AU) on circular (e = 0)
orbits. Plots of simulation snapshots are shown in Fig. 7.2 for 4 different evolution
times. Particular snapshot times are chosen to enhance the current and subsequent
dynamical evolution in the (a, e)-parameter space for the particles. The dynamical
behavior is shown for 106 years, since the dynamical picture of the evolution is not
changing much beyond this time.
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Figure 7.2: Simulation snapshots of a multi-particle simulation with 103 particles distributed
with random mean anomalies throughout the Solar System habitable zone. The contour lines
in each plot represents the inner (dashed) and outer (solid) boundaries of the current habitable
zone as determined from Kasting et al. (1993). The Earth is initially located at a = 1 AU with
e = 0.017.
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Within figure 7.2, at time t = 500 years, it is seen that particles are initially ejected
away from a region near a = 1 AU. At t = 8.5× 103 years the dynamical picture is
characterised by orbital excitation (a = 1.35 AU) and radial mixing (a < 0.9 AU) of
particles initially located around a = 1 AU. At time t = 8.5×103 years the formation
of a gap clearing is easily identified and located within and beyond the orbit of
Earth. The process of radial mixing and eccentricity excitation of particle orbits
continues to operate. Within the final snapshot at t = 106 years the gap clearing
at a = 1 AU is now prominently evident. Most particles on high eccentricity orbits
were initially located within this region. Particles initially located near a = 1.35 AU
are excited possibly due to perturbations by Mars (a ' 1.52 AU). Remaining
particles at a = 1 AU are possibly trapped near the Lagrange L4 or L5 stable
region. This coorbital configuration resembles the same configuration as the Greek-
and Trojan asteroid families observed in the 1:1 mean-motion orbital resonance
state with Jupiter. At current time, no observations suggest the existence of a large
population of Trojan-like objects within or near Earth’s Langragian L4 or L5 points
(Whiteley and Tholen, 1998; Veillet et al., 2001). This suggests that the integration
time for the simulation is too short (even after 2 × 106 years particles remain in a
coorbital state with Earth within Fig. 7.2) in order to remove the remaining particles
from Earth’s vicinity by the accumulation of subsequent planetary perturbations.
The question on the general dynamical behavior and survival times of Lagrangian
coorbital objects with Earth (or other terrestrial planets) is interesting and could
form a thesis of its own. The width of the gaps located around a = 1 AU is
approximately 0.03 AU wide. This corresponds to 3 − 4 rsoi or ' 3 Hill’s radii
as introduced in chapter 4. Particles initially located near a = 1.1 AU remain in
low-eccentric orbits (e < 0.08) throughout the integration time. The confinement of
Earth to within the Solar Systems habitable zone is no proof of stability/habitability,
since the integration time corresponds to 0.04% of the total age of the Solar System.
However, long-term simulations by Ito and Tanikawa (2002) and the fact that Earth
is observed to be within the habitable zone suggests the numerical reliability of the
hybrid symplectic integration code within the MERCURY6 integration package.

7.3 Parameter space and initial conditions

The total number of degrees of freedom for the general three-body problem is 9
and the system follows a trajectory in an 18 dimensional phase space. Taking into
account the mass of each body, we are confronted with an 21-parameter problem.
Clearly, we need some simplifying assumptions which reduces the number of free
parameters of the system.

First, we consider the problem within a star-centered heliocentric frame of ref-
erence. This introduces an additional term within the equations of motion (see
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discussion in section 3.3.1 and in particular eq.3.10) accounting for the motion of
the star around the center of mass due to the presence of planetary perturbations.
Generally, the mass of the central star will be kept constant in each numerical ex-
periment and its numerical value is adopted from the literature.

Secondly, we consider co-planar orbits. This reduces the problem to be two-
dimensional and removes 4 parameters for the orbit of each planet. In particular,
co-planar orbits are characterised to have no inclination (i), and thus the nodal
longitude (Ω) is undefined. This assumption is justified by the ”angular-momentum”
argument: for an interstellar collapsing initially rotating cloud, gas and dust material
will start to form a two dimensional disk-like structure. This is a natural consequence
of the conservation of angular momentum. The subsequent evolution of the disk then
starts to form planets in nearly the same plane. This formation scenario is conform
with observation of planets within the Solar System and with the geometric structure
of observed protoplanetary disks.

Consequently, we are left with orbital parameters (ai, ei, ωi, Mi) for each planet in
a two dimensional three-body system (giant and Earth like planet). It is noted that
the argument of pericenter ω, is only defined if e 6= 0. At this stage the parameter
space is still large (in addition, we have the giant planet mass as a free parameter)
and additional bounds on initial orbital elements seems necessary.

For the Earth mass planet we consider initial circular orbits (e = 0) with random
mean anomalies M ∈ [0◦; 360◦] within the terrestrial region a ∈ [amin, amax]. The
exact bounds in semi-major axis for the Earth like (particle) planet depends on the
extend of the habitable zone. Since we consider initial circular orbits the bounds in
semi-major axis represents a constant radial distance from the central star defining
an annulus for the habitable zone(s).

For the giant planet, I adopt published nominal numerical (cf. table 6.1) values
for the mean anomaly M , semi-major axis a and argument of pericenter ω in all
numerical experiments. Only the orbit eccentricity e and mass Mpl of the giant
planet are considered to be free variables within a parameter survey.

The final parameter to be discussed is the mass of the giant planet. The derived
mass of observed (using radial velocity measurements) giant planets is only the min-
imum mass (cf. table 6.1). The true planetary mass depends on the sin i projection
factor. Only if the orbital plane of an extrasolar planet is parallel to the observers
line of sight. That is, only if i = π/2, the true planet companion mass is known and
enables the possible observation of a transit occultation. However, observational ev-
idence of photometric transits are currently not available for HD70642 and HD4208
and therefore the line-of-sight inclination is assumed to be less than π/2. This raises
the question of the choice in the upper limit of giant planet mass to consider in a
parameter survey within numerical experiments.

The functional dependence of a planets real mass on the line-of-sight inclination i,
is obtained by considering the mass-function eq. 6.3. Assuming the case Mpl �M?,
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we have the following (analytic) expression for the minimum mass of the planet
companion

Mpl sin i =
( M2

?

2πG

(

1− e2
)3/2

K3P
)

1/3

, (7.1)

where M? and Mpl is the mass of the host star and the planet respectively. K
denotes the semi amplitude of radial velocity measurements and P measures the
orbital period of the observed planet (in fact, it is the orbital period of the host star
due to the reflex motion). e denotes the eccentricity of the planetary orbit.

Fig.7.3 represents the graphical relationship between Mpl and the line-of-sight in-
clination i for different orbit eccentricities e for the observed planets within HD70642
and HD4208. The remaining observed parameters (K, P ) are taken from table 6.1.
For decreasing line of sight inclinations the planetary mass is increasing.
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Figure 7.3: Graphical representation of eq. 7.1 showing plots of planet mass dependence on (the
unknown) line-of-sight inclination for different orbital eccentricities for the giant planets within
HD70642 (left panel) and HD4208 (right panel). The horizontal line indicates the 16MJup-mass
limit for planets. Radial velocity obervations suggests an upper limit on orbit eccentricity to
be e ' 0.2. Larger values in eccentricity are shown to demonstrate any effect on the mass-
inclination dependency. The small in-let figures in each plot represents (i, Mpl) dependencies for
e = 0.0, 0.1, 0.2, 0.3, 0.4 with i ∈ [50◦, 90◦].

Within Fig.7.3 the effect of eccentric orbits on the (i, Mpl) dependency is illustrated
for both systems under study. The range in orbital eccentricities e = [0.0, 0.9] is
considered. The maximum eccentricity for both planets is e = 0.16 as derived
from observations. From the inlet figures the qualitative change in the graphs for
e = 0.0, 0.1 and e = 0.2 are nearly indistinguishable. For i = π/2, the difference
in mass between circular and high-eccentric orbits corresponds to a factor of two
for HD70642 and HD4208. In order for the planet within HD4208 to become larger
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than 1 Mjup (or 2 MJup) the line of sight inclination needs to be smaller than ' 56◦

(or ' 22◦). A similar discussion applies to the planet within HD70642.

Based on a statistical analysis on observed minimum masses of extrasolar planets
Zucker and Mazeh (2001) argues that the mass distribution declines for planetary
masses larger than 10 − 16 MJup. This result suggests an upper bound for plane-
tary masses in extrasolar planetary systems. Within the parameter survey, we will
consider giant planet masses in the range 1− 16 MJup.

The following list represents an overview of initial conditions used within the
numerical simulations. Two type of simulations are differentiated. 1) Simulations
calculating the MEGNO indicator producing stability maps to study chaotic aspects
of the three-body systems and 2) direct numerical integration of a swarm of particles
under the perturbation of a giant planet.

Initial conditions - MEGNO scan simulations:

1. Host star:

• M? = 1.0 M� (HD70642) and M? = 0.93 M� (HD4208).

2. Inner Earth-like planet:

• mpl = 3× 10−3 MJup.

• a ∈ [0.76; 1.43] AU (HD70642) and a ∈ [0.57; 1.34] AU (HD4208)

• e = 0.0 (fixed).

• ω = undefined, (fixed to ω = 0.0).

• M = 180◦ (fixed).

3. Outer giant planet:

• Mpl = [2.0, 8.0, 12.0, 14.0, 16.0] MJup (HD70642b) and
Mpl = [1.0, 4.0, 6.0, 8.0, 12.0, 16.0] MJup (HD4208b)

• a = 3.3 AU (fixed, HD70642b) and a = 1.68 AU (fixed, HD4208b).

• e ∈ [0; 0.16] (HD70642b) and e ∈ [0; 0.20] (HD4208b).

• ω = 277◦ (fixed, HD70642b) and ω = 301◦ (fixed, HD4208b).

• M = 0.0◦ (fixed for HD70642b and HD4208b).
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Initial conditions - direct particle simulations:

1. Host star:

• M? = 1.0 M� (HD70642) and M? = 0.93 M� (HD4208).

2. Inner Earth-like planet:

• 2×103 mass less test particles in all numerical experiments. Particles are
distributed randomly within the habitable zones.

• a ∈ [0.76; 1.35] AU (HD70642) and a ∈ [0.60; 1.34] AU (HD4208).

• e = 0.0 (fixed), ”dynamically cold”, (for HD70642 and HD4208).

• ω = undefined, since e = 0 initially. We set ω = 0 ( for HD70642 and
HD4208).

• M ∈ [0◦; 360◦] distributed randomly within the terrestrial habitable re-
gion.

3. Outer giant planet:

• Mpl ∈ [2.0, 4.0, 12.0, 16.0]MJup (HD70642b)
and Mpl ∈ [1.0, 3.0, 12.0, 16.0]MJup (HD4208b).

• a = 3.3 AU (fixed, HD70642b) and 1.68 AU (fixed, HD4208b).

• e ∈ [0.0, 0.16] (HD70642b) and e ∈ [0.0; 0.16] (HD4208b).

• ω = 277◦ (HD70642b) and ω = 301◦ (HD4208b).

• M = 0.0◦ (for HD70642b and HD4208b).

7.4 General remarks on numerical computations

In this section some remarks and practical details concerning numerical experiments
are given. It is intended to explain how results have been obtained by use of dif-
ferent numerical integration algorithms. The general approach is first to study the
chaotic properties of Earth like planets within the terrestrial region. This is done by
calculating the MEGNO indicator for different initial conditions in Kepler elements.
This analysis is complemented with direct numerical integration of particles over 106

years, for which we study the time evolution of the orbit eccentricity and semi-major
axis. Finally, we study the long-term dynamics of single Earth like planets on time
scales corresponding to 108 − 109 years.
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Numerical calculation of MEGNO stability maps

The MEGNO indicator is calculated using the cs.f program for the integration of
the three-body problem. The program reads input data from two files: 1) csi.input
and 2) csi.elements. The former input file holds information regarding accuracy,
configuration and renormalisation parameters for the numerical integrator. Further-
more, csi.input hold information regarding names of data files for data output
storage and scanning parameters defining the scanning range and resolution of se-
lected orbital elements. The latter input file holds the mass of the central star and
planet companions and initial Kepler elements for each planet.

Within the MEGNO computation a Gragg-Bulirsch-Stoer algorithm is used.
This algorithm requires two accuracy parameters for the local error tolerance in
order to determine the integration step size for a given accuracy requirement: 1)
Absolut (δ) and 2) relative (ε) error tolerance parameter needs to be specified.
Since the code uses double precision arithmetics, I adopt numerical values similar to
Goździewski (2001) with numerical values given by δ, ε = 10−14. This choice leads
to relative energy errors on the order of dE/E ' 10−12 during a given integration.
Generally, the time evolution of energy error is characterised by a random walk.
This is explained by stochastic numerical rounding errors.

The MEGNO scans explores the dynamics of Earth-like planets within the (aEarth,-
eGiantplanet) parameter phase space using a typical scan grid of (Nx, Ny) = (120, 100).
This corresponds to a typical spacing of (∆a, ∆e) = (0.0056 AU, 0.0016) for each
MEGNO scan. Thus, a total of 12000 initial conditions are necessary to generate
a single MEGNO map. At each grid point (ai, ej) the MEGNO indicator 〈Y 〉 is
calculated. For a given range in eccentricity and semi-major axis the grid of initial
conditions is given by

ai = amin + i∆a = amin +
amax − amin

Nx

i (7.2)

and

ej = emin + j∆e = emin +
emax − emin

Ny
j (7.3)

where i = 0, . . . , Nx and j = 0, . . . , Ny. The calculation of MEGNO is performed
row-by-row within the program. For a given giant planet eccentricity ej the ter-
restrial habitable region a0, . . . , aNx is scanned. The total integration time for each
initial condition is chosen within the range 103 − 104 Porb. Here, Porb is the orbital
period of the giant planet and reflects the characteristic period of the system. The
renormalisation time is set to 1 Porb within all MEGNO calculations, as suggested
by numerical experiments presented in chapter 5. On average (depending on the
total number of initial conditions) the calculation of a single MEGNO stability map
uses 2-3 days of dedicated CPU time on an AMD 2800+ PC. All MEGNO maps
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presented in this work were calculated using the PC’s within the local linux cluster.
Visualisation of data and the generation of stability maps makes use of Gnuplot 4.1.

Direct numerical particle simulations

To follow the dynamical time evolution of particles under the perturbation of a giant
planet the MERCURY6 orbit integrator is used. MERCURY6 reads input data
from several files as described in section 4.4. Initial Kepler elements for mass less
test particles are specified within the small.in parameter file. It is noted that no
self gravitation is considered. Each particle only ”feels” the gravitational potential
of the giant planet. Inter-particle potentials are not evaluated within numerical
integrations.

Figure 7.4: Plot of initial distribution of particles within the terrestrial habitable region of
HD4208. A total of 2× 103 particles are randomly distributed within an annulus defined by amin

and amax on initial circular orbits.

A total of 2 × 103 particles are used. To generate the small.in parameter file for
2000 particles, a small FORTRAN program (randomkep.f90) have been developed to
automate this process. Individual particles (Earth planets) are labelled using the
format ”tp0001-tp2000”. All particles are initially started on circular orbits. The
mean anomaly is determined at random adopting the Park-Miller random number
generator (i.e adopting the ran0(iseed) subroutine) within Press et al. (1996).
Random numbers1 are initialized by an iseed integer parameter determined from

1Numerical problems have been enountered using the intrensic FORTRAN90 random number
generator!
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the internal system clock. Each particle orbit is constrained to an annulus corre-
sponding to the region of habitability. The current version of randomkep.f90 only
generates initial conditions for co-planar orbits, but the extension to the general
three dimensional case is easily implemented.

Fig.7.4 represents a typical initial distribution of particles within the terrestrial
habitable region. Initial conditions for the giant planet are adopted from the litera-
ture. A parameter survey considers the different giant planet eccentricity and mass.
The system is then integrated for 106 years. Dumpfiles of integration parameters
and initial conditions are generated for every 105 years for reasons of restarting a
given integration in case of system power failure. For the hybrid mixed-variable
symplectic integrator the changeover distance for detecting close approaches is set
to 3 RHill radii.

During each numerical integration the corresponding relative change in energy
and angular momentum have been frequently monitored and stored within a data
file. In general, relative energy were always conserved to better than dE/E ' 10−8.
Within some simulations, in particular using the fixed step-size hybrid symplectic
algorithm, some accuracy issues were encountered for high orbit eccentricities. In
some cases a systematic linear decrease were observed for the relative energy. Ac-
cordingly, particular experiments were repeated by decreasing the step size in order
to suffice the corresponding accuracy requirement. Within all integrations using the
MERCURY6 mixed variable symplectic algorithm a Bulirsh-Stoer accuracy parameter
of ε = 10−12 were adopted for the upper bound of the local integration error.

The 2000 particle simulations were calculated using multiple CPU super com-
puter facilities at the Danish Center for Scientific Computing and the local linux
cluster. UNIX shell scripts were developed to distribute simulations automatically.
Regarding computations on the linux cluster best computing performance during nu-
merical simulations is obtained by executing the program on local machines. This
is due to reasons of reducing I/O network traffic representing the bottleneck effect.

In the following, results obtained from numerical simulations will be presented.
It turns out to be useful to compare the dynamical behavior of test particles for two
different systems. The dynamics of terrestrial planets (modelled as test particles)
are studied within HD4208 and HD70642 under the perturbation of a giant planet.

7.5 MEGNO scans: Numerical simulations and

results

In order to study the chaotic nature and dynamical effect of giant planet perturba-
tions on an Earth-mass planet, the MEGNO indicator is calculated for a range of
initial conditions. The MEGNO indicator is calculated for 12×103 initial conditions
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considering the giant planet eccentricity and the semi-major axis of an Earth-like
planet as variable parameters. Within this parameter space, we will consider differ-
ent mass-parameters for the observed giant planet in HD70642 and HD4208. Within
the figures, to be discussed shortly, the MEGNO indicator is color coded. From the
theory outlined in chapter 5, we found that initial conditions with 〈Y 〉 → 2 for
t→∞, corresponds to quasi-periodic motion of the Earth-like planet. For 〈Y 〉 6= 2
indicated diverging or chaotic motion. Within the MEGNO stability maps quasi-
periodic motion is color coded using the white color; any colors different from white
indicate chaotic (erratic) dynamical behavior of the Earth-like planet at the specified
initial condition. The different panels in Fig.7.5 are examples for the time evolution
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Figure 7.5: Plots of the time evolution of 〈Y 〉 considering chaotic and quasi-periodic initial
conditions for HD70642 and HD4208. From the theory, we have for quasi-periodic dynamics:
〈Y 〉 → 2 and for chaotic dynamic: 〈Y 〉 → γt/2 for t → ∞. Here, γ is the maximum Lyapunov
exponent. The total integration time for the calculation of 〈Y 〉 is 106 years. Initial conditions
leading to chaotic dynamics are taken within mean-motion resonances. The typical integration time
scale for computing 〈Y 〉 within MEGNO scans for HD70642 is tmax ' 3× 104 years. Considering
HD4208 the maximum integration time for the calculation of 〈Y 〉 is tmax ' 12× 103 years.

of 〈Y 〉 for HD70642 and HD4208. For initial conditions leading to quasi-periodic
motion, it is observed that 〈Y 〉 is asymptotically approaching the numerical value
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of two. For chaotic dynamics 〈Y 〉 is quickly diverging. The typical integration time
scale for computing 〈Y 〉 within MEGNO scans for HD70642 is tmax ' 3× 104 years.
Considering HD4208 the maximum integration time for the calculation of 〈Y 〉 is
tmax ' 12× 103 years.

For the MEGNO stability maps the habitable zone(s) are superimposed within
each figure. This enables a quick visualisation of the dynamics within this region.
Formally the boundaries of the habitable zone(s), within the MEGNO stability
maps, should be ascribed using the orbital eccentricity of the Earth-like planet as
outlined in chapter 6, and should not be confused with the giant planet eccentricity.

7.5.1 MEGNO stability maps - HD70642

A total of eight scans for the computation of the MEGNO indicator have been
performed for masses of the giant planet in the range mpl = 2, 4, 6, 8, 10, 12, 14,-
16 MJup. Fig. 7.6 presents the results of a MEGNO scan for four selected masses
(mpl = 2, 8, 14, 16 MJup) of the observed giant planet within HD70642. This range in
mass corresponds to a line of sight inclination within the range i ∈ [10◦; 90◦] (i = 0◦

corresponds to a pole-on (or face-on) observation of the system, in which case no
doppler measurements should be detected). The MEGNO scans within Fig. 7.6
are representative and the presentation of the remaining scans have been omitted
within the thesis, since the qualitative dynamical information of these is more or
less equivalent to the scans shown in Fig. 7.6. As an example, plots of MEGNO
scans considering giant planet masses mpl = 4, 6 MJup (not shown) corresponds
qualitatively to mpl = 2 MJup scan within Fig.7.6 (upper left panel).

The upper left panel in Fig.7.6, considering the mpl = 2 MJup MEGNO scan map,
shows the initial faint appearance of discrete vertical lines located at a ' 1.0 AU, a =
1.13 AU and a = 1.31 AU. It turns out that the location of these ”chaotic stripes”
is not random and corresponds to orbit configurations (with specific particle semi-
major axis) in which the Earth-like planet is in mean-motion resonance with the
giant planet. In each MEGNO map the location of resonances are indicated and
labelled by an arrow. From Kepler’s law of planetary motion the location of different
mean motion resonances can be calculated. If a1 and a2 denotes the semi-major axis
of the giant and Earth like planet respectively, then

(n1

n2

)2

=
(a2

a1

)3

, (7.4)

where n2 and n1 are integers and measures the mean motion of the Earth and
giant planet. For example, calculating the (nominal) location of the 4:1 resonance
(n1 = 4, n2 = 1), we find a1 = a2/(4/1)2/3. For a2 = 3.3 AU we have a1 ' 1.31 AU.
Increasing the mass of the giant planet mainly results in a strengthening of the effect
of mean-motion resonances over a larger range in giant planet orbit eccentricity. This
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Figure 7.6: Plots representing MEGNO stability maps of an Earth-like planet initially within
the terrestrial region of HD70642. Four different masses of the giant planet are considered: 2 MJup

(upper left panel), 8 MJup (upper right panel), 14 MJup (lower left panel) and 16 MJup (lower right
panel). The MEGNO (〈Y 〉) is color coded with ”white” representing initial conditions leading to
quasi-periodic motion and with any color different from white representing chaotic motion. The
boundaries of the habitable zone for HD70642 are superimposed. A total of 12 × 103 initial
conditions are considered using a grid of (Nx, Ny) = (120, 100).

is in particular the case for the 4:1 mean-motion resonance as observed within the
upper right panel in Fig.7.6. In this case the 4:1 mean-motion resonance starts
to appear for almost circular orbits of the giant planet perturber. In addition,
the increase of giant planet mass have the effect to give rise of the emergence of
previously unseen mean-motion resonances. This is the case for the 7:1, 9:2 and
7:2 resonances within the lower left and right panel in Fig.7.6. For giant planet
mass mpl = 16 MJup the 5:1 resonance appears in the outer edge of the continuous
habitable zone.

In general, mean-motion resonances start to appear at higher giant planet eccen-
tricity. Initial conditions for the Earth-like planet within the continuous habitable
zone of HD70642 are characterised to indicate quasi-periodic dynamics. However,
it must be noted that the MEGNO stability maps only represents a portion of the
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systems phase space. No information on the time evolution of the terrestrial planet’s
eccentricity is obtained from these scan maps. Other means need to be addressed in
order to study the time variation of eccentricity for the Earth-like planet as a result
of giant planet perturbations.

7.5.2 MEGNO stability maps - HD4208

Fig.7.7 shows the results of MEGNO scans within the HD4208 parameter space.
Four selective scans corresponding to giant planet masses mpl = 1, 4, 6, 16 MJup

are presented. In all figures the habitable zone(s) are superimposed. The inner
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Figure 7.7: Plots representing MEGNO stability maps of an Earth-like planet initially within
the terrestrial region of HD4208. Four different masses of the giant planet (mpl) are considered:
1 MJup (upper left panel), 4 MJup (upper right panel), 6 MJup (lower left panel) and 16 MJup

(lower right panel). The MEGNO indicator (〈Y 〉) is color coded with ”white” representing initial
conditions leading to quasi-periodic motion and any color different from white representing chaotic
motion. The boundaries of the habitable zone for HD4208 are superimposed (and measured in
AU) and a total of 12000 initial conditions are considered within the terrestrial region using a grid
of (Nx, Ny) = (120, 100). Locations of important mean-motion resonances are indicated by arrows.

triangular region represents the continuous habitable zone. The dynamical effect of
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increasing the outer giant planet’s mass is apparently observed. For mpl = 1 MJup

within the upper left panel in Fig.7.7, a general instability region occurs for semi-
major axis greater than a > 1.30 AU. This instability region starts to move inward
towards the center of the continuous habitable zone for larger masses of the observed
giant planet. An interesting feature to note is the reduction, with increasing giant
planet mass, of the stability island at a = 1.26 AU extending over a giant planet
eccentricity range e ∈ [0.0; 0.15].

The presence of mean-motion resonances are observed and indicated with an
arrow in each MEGNO map wihin the figure panels. Of particular interest is the
2:1 mean-motion resonance located at a = 1.05 AU for mpl = 1 MJup (upper left
panel). The 2:1 resonance is ”active” for almost all eccentricities of the outer giant
planet. With increasing giant planet mass the continuous habitable zone becomes
dominated by the 3:1, 5:2 and 2:1 mean-motion resonances. This is clearly visible
for mpl = 16 MJup (lower right panel) in Fig.7.7.

7.5.3 Resonance finestructure

An interesting question to follow up after studying MEGNO stability maps concerns
the finestructure of the observed mean-motion resonances. What is the appearance
of mean-motion resonances within a high resolution scan? In Fig.7.7 (upper left
panel) the low resolved shape of the 2:1 mean motion resonance resembles a wing
V-form. The width of the wing appears to be a function of giant planet eccentricity:
the width increases with increasing orbit eccentricity. Furthermore, we observe
several mean-motion resonances (”resonance fingers”) located near and around the
5:3 resonance (a ' 1.18 AU). The exact number of resonances are not clear from
the figure. A high resolution scan within this region should enhance any details
of the resonance structure in this particular phase space region. In the following,
we will focus on these two regions and present results from a zoomed high resolved
MEGNO scan revealing the resonant fine structure for the case of giant planet mass
mpl = 1 MJup.

Fig.7.8 shows the fine structure of the 2:1 mean motion resonance for a giant
planet mass mpl = 1 MJup. Compared with the upper left panel in Fig.7.7, this
result confirms that the 2:1 commensurability is wing-like structured with a well
defined transition region from chaotic to quasi-periodic motions. An explanation for
the peculiar V-shape structure is based on analytic resonance perturbation theory
(Murray and Dermott, 1999). The width of the resonance at a given eccentricity
is called the libration width. The semi-major axis of a planet captured within
the 2:1 mean motion resonance will exhibit librations (oscillations). The extend
(amplitude) of the libration depends on orbit eccentricity of the external perturber
and the specific mean-motion resonance considered (cf. Fig. 8.7 in (Murray and
Dermott, 1999, p.341)).
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Fig.7.9 shows the fine structure of (a, e)-space in the region a ∈ [1.1; 1.25] AU.
The high resolution MEGNO scan indicates the presence of three prominent mean-
motion resonances. In particular they correspond to the 9:5 (a ' 1.145 AU), 5:3
(a ' 1.183 AU) and 8:5 (a ' 1.22 AU) commensurabilities. Each resonance is
located at the outer edge of the continuous habitable zone and dynamically active
for near-circular orbits of the giant perturber. Again, we observe the characteristic
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Figure 7.8: High resolution MEGNO map considering the fine structure of the 2:1 mean motion
resonance. The terrestrial region is scanned within the interval a ∈ [1.0; 1.1] AU. The mass of
HD4208b is mpl = 1 MJup. The resolution of the scan is (Nx, Ny) = (200, 100). The line represents
the outer boundary (a ∼ 1.26 AU) of the initial (ZAMS) habitable zone. In addition to the
wing-like structure of the 2:1 resonance several high order mean motion resonances are identified
predominantly at high giant planet eccentricities.

V-shape geometry of each resonance. Of particular interest is the 5:3 resonance line
exhibiting a large O-shaped splitted region, indicating initial conditions resulting in
quasi-periodic (regular) motion. In its simplest interpretation this result suggests
that for certain giant planet eccentricities regular quasi-periodic motion is possible
for a planet initially started with semi-major axis near a ' 1.185 AU correspond-
ing to the 5:3 mean-motion resonance. From the figure, it is observed that chaotic
motion is dominating the dynamics for giant planet orbit eccentricities e ≥ 0.14.
An explanation for this phenonmenon is not readily derivable from simple Newto-
nian mechanics and must be found within analytic resonance perturbation theory.
Apparently this ”hole-in-a-resonance” feature is not the norm. This is the case for
the 9:5 commensurability exhibiting chaotic dynamics within the full range of giant
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planet eccentricity.
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Figure 7.9: High resolution MEGNO scan considering the finestructure of the 9:5, 5:3 and 8:5
mean-motion resonance. The terrestrial region covers the range a ∈ [1.1; 1.25] AU. The mass
of HD4208b is mpl = 1 MJup. The resolution of the scan is (Nx, Ny) = (200, 100). The two
(parallel) lines corresponds to the outer boundaries of the initial (1.26 AU) and current (1.34 AU)
habitable zone (cf. Fig. 7.7). The main characteristic feature is the wing V-shape of resonances
with increasing giant planet eccentricity.

7.6 Numerical particle simulations

Up to this point we considered the chaotic dynamics of a particle within the ter-
restrial region. By studying the time evolution of 〈Y 〉, we identified the presence
of mean-motion resonances. However, the effect of mean-motion resonances on par-
ticle orbital elements is not clear. What is the dynamical consequence of these
resonances? From the MEGNO maps, it is not possible to extract any informa-
tion on the time variation of a and e for the particle orbit. It is remembered that
MEGNO is a measure of exponential divergence of initially close orbits. Hence,
we need to follow the dynamics of a particle initially started within the terrestrial
habitable region by numerical integration. Instead of considering a single particle
initially started on a circular orbit with different semi-major axis, we consider several
particles and study their time evolution in (a, e) space. This approach should give
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some insight on the effect of mean-motion resonances on terrestrial planet orbital
elements.

In order to study the effect of giant planet perturbations on test particles as
a function of giant planet parameters, direct numerical simulations have been per-
formed using the MERCURY6 integration package. In Fig.7.10 - Fig.7.17 and Fig.7.18-
Fig.7.25 dynamical planet-particle simulation snapshots of test particles for differ-
ent choices of giant planet parameters are presented. Snapshots are taken for the
(a, e)-parameter space of test particles within the habitable zone representing the
time evolution of test particle semi-major axis and orbit eccentricity. Each figure
shows four simulation snapshots representing a total simulation time of 106 years.
Different parameters for the giant planet are varied within a parameter survey. Pa-
rameters used in each simulation are indicated within the upper left panel in each
snapshot figure. Both the giant planet’s mass and eccentricity are considered as
variable parameters. Four different masses for the giant planet in each system are
considered. Simulations for every mass parameter are paired with two choices in
eccentricities of the giant planet orbit. This produces eight simulation snapshots
for each system; resulting in 16 snapshots in total for both HD70642 and HD4208.
At the beginning of each simulation all particles have circular (dynamically cold)
orbits and are distributed within the habitable zone with a random mean anomaly
within the range M ∈ [0◦; 360◦]. In all simulations, a total of 2× 103 particles are
considered. The inner and outer boundaries of the habitable zone for each system,
is shown in each simulation snapshot. In particular, we will focus our discussion
on the continuous habitable zone. Each particle is regarded and assumed to model
an Earth-like planet initially formed within the habitable zone. This assumption is
justified by considering the time evolution of giant planet orbit parameters due to
perturbations of an Earth-like planet. Different Earth masses have been considered
in an increasing order within numerical experiments. Changes in the giant planet
orbital elements have been observed only for sub-Saturn masses, indicating that
Earth-mass planets can be modelled as mass less test particles. In physical terms,
by considering mass less test particles only means the neglection of the perturbative
back-reaction of the massive Earth planet on the giant observed planet. However,
an Earth mass planet is to small to have any perturbative gravitational effect on
giant planet orbital parameters.

In the following, we first consider the dynamics of particles under the perturba-
tion of HD70642b. The results are then compared with similar simulations consid-
ering HD4208b.

7.6.1 HD70642: Numerical simulations and results

Numerical planet-particle simulations within HD70642 considers the following mass
range for the observed giant planet: mpl = [2, 4, 12, 16] MJup. For each mass the
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eccentricity of the giant planet is varied for each numerical value in eccentricity:
e ∈ [0.0, 0.1, 0.16]. Within the figures, I only present simulation snapshots for the
lower and upper range in giant planet eccentricity (i.e e = 0.0 and e = 0.16). All
figures representing simulation snapshots for the HD70642 system are appended at
the end of this section.

In order to study the dynamical effect on particle orbital parameters for variable
giant planet mass at constant giant planet eccentricity (i.e e = 0.0), we need to
discuss and compare snapshot Fig. 7.10, 7.12, 7.14 and 7.16.

In order to study the effect of giant planet mass for an eccentric giant planet
orbit (upper observed limit, e = 0.16), we need to discuss and compare Fig. 7.11,
7.13, 7.15 and 7.17.

Discussion - the case of circular giant planet eccentricity (e = 0.0)

In Fig.7.16, it is noted that the scale in eccentricity is changed. In general, within
all snapshots we observe a periodic variation for the eccentricity of particles. This
is explained by general giant planet perturbations. For increasing mass of the giant
planet, we observe a higher eccentricity excitation of particles initially placed near
the giant planet (i.e outer edge of the current habitable zone). The general trend at
the end of each simulation, is the emergence of an ”eccentricity gradient” throughout
the terrestrial habitable zone.

In Fig. 7.14 and 7.16, we observe an additional (snapshots at t = 7.0× 103 years
and t = 7.75×104 years, respectively) excitation in eccentricity of some particles near
a ' 1.30 AU. An explanation to this phenomenon is obtained from our MEGNO
analysis (cf. Fig.7.6). At this location within the terrestrial habitable zone, we
identify the presence of the 4:1 mean-motion resonance clearly visible over a large
range of giant planet eccentricity. However, the MEGNO indicator does not fully
exhibit the 4:1 mean-motion resonance for e(HD70642b) ' 0.0. This is an excellent
example of demonstrating the limitation of a MEGNO stability analysis in general.
The MEGNO indicator is capable of quickly indicating strong chaotic (unstable)
dynamics. In order to detect weak chaotic motion it is necessary to prolong the
time span of numerical integrations. The results suggests that dynamical weak chaos
manifest itself by exponential divergence on longer time scales. It is important to
note, that a MEGNO analysis is not capable of proving stable quasi-periodic motion!
The indication of a quasi-periodic orbit is only quasi-periodic within the considered
time period. A possible onset of chaotic behavior at later times can not be ruled
out! The dynamical behavior of a particle, might show irregular (chaotic) dynamics
at some later time.

Furthermore, it is observed (in particular in Fig.7.16) that the eccentricity of
the particles is characterised by an transient excitation wave in eccentricity. The
wave length is quickly decreasing with time. It should be noted that there is no on-
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going mass-transport. The main particle dynamics is characterised by an oscillatory
vertical motion at constant semi-major axis. Finally we note, that for each giant
planet mass, particles are confined to within the continuous habitable zone for a
circular giant planet orbit. That this is the case, even for a giant planet mass of
mpl = 16 MJup should be considered as a surprise. My general conception, at the
beginning of the thesis period, suggested that such a giant Jupiter mass planet with
a ' 2− 3 AU and e = 0, would definitely render the orbit of an Earth mass planet
to become inhabitable resulting in some form of orbital instability. This is not the
case as simulations indicate.

Discussion - the case of eccentric giant planet orbits (e = 0.16)

Independent of giant planet mass, it is quickly observed that particles are rapidly
excited in eccentricity up to e = 0.16. Comparing simulation snapshots for mpl =
2 MJup and mpl = 4 MJup (Fig. 7.11 and Fig.7.13), we observe no difference in the
qualitative behavior of particle dynamics. In addition, we observe an initial transient
excitation wave in particle eccentricity within all four simulations in Fig.7.11, 7.13,
7.15 and 7.17. The presence of mean-motion resonances are clearly visible within
the snapshots, and it is observe that they cause additional particle eccentricity ex-
citation. Comparing the upper left panel in Fig.7.13 with Fig.7.6, we can identify
the following mean-motion resonances (and their locations): 7:1 (a ' 0.9 AU), 6:1
(a ' 1.0 AU), 5:1 (a ' 1.13 AU) and 4:1 (a ' 1.31 AU). Finally we note, that for a
high eccentricity (e ≥ 0.16) giant planet the orbits of particles are not confined to
within the continuous habitable zone. This would indicate that high eccentric ex-
trasolar planet would render the orbits of terrestrial planets, possibly formed within
the terrestrial habitable region, to become inhabitable due to periodic excursions to
regions outside the continuous habitable zone. In the following simulation snapshots
are presented.
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Figure 7.10: Simulation snapshots for particles in HD70642 with giant planet parameters: mpl =
2 MJup and e = 0.0. A total of 2×103 particles are randomly distributed within the habitable zone.
Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked by
the inner boundary at 0.92 AU and outer boundary 1.17 AU. The two outermost boundaries are
located at 0.80 AU (inner) and 1.35 AU (outer). The total integration time is 106 years.
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Figure 7.11: Simulation snapshots for particles in HD70642 with giant planet parameters: mpl =
2 MJup and e = 0.16. A total of 2× 103 particles are randomly distributed within the habitable
zone. Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked
by the inner boundary at 0.92 AU and outer boundary 1.17 AU. The two outermost boundaries
are located at 0.80 AU (inner) and 1.35 AU (outer). The total integration time is 106 years.
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Figure 7.12: Simulation snapshots for particles in HD70642 with giant planet parameters: mpl =
4 MJup and e = 0.0. A total of 2×103 particles are randomly distributed within the habitable zone.
Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked by
the inner boundary at 0.92 AU and outer boundary 1.17 AU. The two outermost boundaries are
located at 0.80 AU (inner) and 1.35 AU (outer). The total integration time is 106 years.
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Figure 7.13: Simulation snapshots for particles in HD70642 with giant planet parameters: mpl =
4 MJup and e = 0.16. A total of 2× 103 particles are randomly distributed within the habitable
zone. Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked
by the inner boundary at 0.92 AU and outer boundary 1.17 AU. The two outermost boundaries
are located at 0.80 AU (inner) and 1.35 AU (outer). The total integration time is 106 years.



7.6. NUMERICAL PARTICLE SIMULATIONS 129

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.8  0.9  1  1.1  1.2  1.3

E
cc

en
tr

ic
ity

Semimajor axis / AU

Inner boundary / AU
Outer boundary / AU

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.8  0.9  1  1.1  1.2  1.3

E
cc

en
tr

ic
ity

Semimajor axis / AU

Inner boundary / AU
Outer boundary / AU

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.8  0.9  1  1.1  1.2  1.3

E
cc

en
tr

ic
ity

Semimajor axis / AU

Inner boundary / AU
Outer boundary / AU

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.8  0.9  1  1.1  1.2  1.3

E
cc

en
tr

ic
ity

Semimajor axis / AU

Inner boundary / AU
Outer boundary / AU

t = 5.000 × 102 years t = 7.000 × 103 years

t = 3.850 × 104 years t = 1.000 × 106 years

HD70642:

e = 0.0

mpl = 12 MJup

Figure 7.14: Simulation snapshots for particles in HD70642 with giant planet parameters: mpl =
12 MJup and e = 0.0. A total of 2× 103 particles are randomly distributed within the habitable
zone. Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked
by the inner boundary at 0.92 AU and outer boundary 1.17 AU. The two outermost boundaries
are located at 0.80 AU (inner) and 1.35 AU (outer). The total integration time is 106 years.
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Figure 7.15: Simulation snapshots for particles in HD70642 with giant planet parameters: mpl =
12 MJup and e = 0.16. A total of 2× 103 particles are randomly distributed within the habitable
zone. Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked
by the inner boundary at 0.92 AU and outer boundary 1.17 AU. The two outermost boundaries
are located at 0.80 AU (inner) and 1.35 AU (outer). The total integration time is 106 years.
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Figure 7.16: Simulation snapshots for particles in HD70642 with giant planet parameters: mpl =
16 MJup and e = 0.0. A total of 2× 103 particles are randomly distributed within the habitable
zone. Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked
by the inner boundary at 0.92 AU and outer boundary 1.17 AU. The two outermost boundaries
are located at 0.80 AU (inner) and 1.35 AU (outer). The total integration time is 106 years.
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Figure 7.17: Simulation snapshots for particles in HD70642 with giant planet parameters: mpl =
16 MJup and e = 0.16. A total of 2× 103 particles are randomly distributed within the habitable
zone. Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked
by the inner boundary at 0.92 AU and outer boundary 1.17 AU. The two outermost boundaries
are located at 0.80 AU (inner) and 1.35 AU (outer). The total integration time is 106 years.
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7.6.2 HD4208: Numerical simulations and results

Planet-particle simulations within HD4208 considers the following mass range for
the observed giant planet: mpl = [1, 3, 12, 16] MJup. For each mass the eccentricity
of the giant planet is varied within the range e ∈ [0.0, 0.1, 0.16]. Numerical values
for the remaining orbital parameters are given within the initial condition section.
Within the figures, I only present simulation snapshots for the lower and upper
range in giant planet eccentricity (i.e e = 0.0 and e = 0.16). All figures are shown
at the end of this section and in the following, a discussion on the results will be
given.

In order to study the dynamical effect on particle orbital parameters for variable
giant planet mass at constant giant planet eccentricity (i.e e = 0.0), we need to
discuss and compare snapshot Fig. 7.18, 7.20, 7.22 and 7.24.

In order to study the effect of giant planet mass for an eccentric giant planet
orbit (upper observed limit, e = 0.16), we need to discuss and compare Fig. 7.19,
7.21, 7.23 and 7.25.

Discussion - the case of circular giant planet eccentricity (e = 0.0)

In Fig.7.18, we observe eccentricity excitations at a ' 1.06 AU and a ' 1.2 AU.
These locations correspond to the 2:1 and 4:3 mean-motion resonance configuration.
Particles within the 2:1 resonance are observed to be excited in eccentricity up to
e ' 0.18 within the continuous habitable zone. Within the simulation snapshots
the motion is mainly oscillatory in eccentricty at nearly constant semi-major axis
(i.e for example, for particles initially within the 2:1 commensurability the eccen-
tricity is oscillating between emax ' 0.2 and emin ' 0 at a ' 1.06 AU). However,
all planets (except at the very outer boundary of the continuous habitable zone at
a ' 1.23 AU) have orbital parameters well constrained within the continuous hab-
itable zone exhibiting only small eccentricity variations (excepts at the 2:1 and 4:3
commensurability). Furthermore, the case of particle removal is observed. Particles
initially located at a ' 1.33 AU are ejected (or accreted onto the giant planet) from
the system. This decadence of particles is faintly indicated by the formation of a
void region in the (a, e)-space at a ' 1.33 AU.

In Fig.7.20 (considering mpl = 3 MJup) the gravitational effect of the 3:1 mean-
motion resonance (located at a ' 0.8 AU) is observed (the presence of this resonance
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was allready visible within Fig. 7.18). For an increased mass, we observe the
2:1 resonance increasing in strength resulting in a further excitation of particle
eccentricities beyond the boundaries of the continuous habitable zone (e ' 0.3).
Terrestrial planets with a ' 1.05 AU and e ' 0.3 have their orbital pericenter
distance located at q ' 0.74 AU and apocenter distance located at Q ' 1.37 AU.
This means that those planets occasionally will experience periods of glaciation
(mainly because of a decrease in stellar radiation flux), since the outer boundary
of the continuous habitable zone is priodically crossed. However, we observe stable
habitable terrestrial planets (particles) located within the interval 0.85 AU < a <
1.0 AU. Those planets experience eccentricity oscillations of e < 0.04 caused by giant
planet perturbations . In addition, a narrow region around a ' 0.77 AU indicate
habitable orbits of terrestrial planets. Whether particles are removed from this
region, is not clear from the simulation snapshots. However, particles are definitely
removed from the terrestrial region around a ' 1.3 AU and larger.

In Fig.7.22, we observe a further increase of particle eccentricity within the 3:1
mean-motion resonance, suggesting that those planets have their pericenter distance
crossing the inner boundary of the continuous habitable zone. The majority of
particles initially located beyond a ' 1.1 AU have been ejected from the system or
accreted on either the central star (because of large eccentricity excitations leading to
stargrazers) or the giant planet. Particles with a ' 0.99 AU have large eccentricities
and are crossing the outer and inner boundary of the continuous habitable zone.

A similar discussion applies for the simulation snapshots in Fig.7.24, and it is
emphasized that for giant planet mass mpl > 12 MJup for a planet with semi-major
axis a = 1.68 AU would render the terrestrial habitable region beyond a = 0.97 AU
to become unstable for Earth-mass terrestrial planetary (particle) orbits. However,
it is again noted that the semi-major axis is almost constant and only the orbital
eccentricity is changing in time. This dynamical behavior is, for example, observed
for particles located at a = 0.9 AU in Fig.7.20 and 7.22.

Discussion - the case of eccentric giant planet orbits (e = 0.16)

In Fig.7.19 we observe a general eccentricity excitation of particles within the first
snapshot at t = 103 years - resembling a Planckian-like continuum curve. This
increase in eccentricity is explained by general gravitational giant planet pertur-
bations. Increasing the giant planet orbit eccentricity results in the shift of the
pericenter distance closer to the terrestrial region. Additional eccentricity excita-
tions are observed at regions corresponding to mean-motion resonances. Particles
initially located within a narrow band (∆a ' 0.06 AU) centered on a ' 1.0 AU
have orbital eccentricities well defined within the continuous habitable zone exhibit-
ing oscillations in eccentricity between emin = 0.0 and emax ' 0.23 (this region
corresponds to ' 12% of the total range of the continuous habitable zone). At the
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end of the 106 year integration, the formation of a gap is observed with a cleared
region within amin = 1.1 AU and amax = 1.28 AU. From the MEGNO stability
maps this region is dominated by chaotic particle motion resulting in radial mixing
and subsequent accretion or ejection from the system. The survival of particles at
a ' 1.3 AU is explained by regular (oscillatory in eccentricity) motion. Comparing
with the corresponding MEGNO map in Fig.7.7 (upper left panel) this region is
characterised by quasi-periodic motion. The location of the particles corresponds
to the 3:2 mean-motion resonance and it seems that this resonance has the ability
to act as a protective mechanism for particle ejection or accretion. At this point
the details of protective mean-motion resonances are not further discussed, but is
clearly an interesting dynamical feature to be investigated in future studies.

In Fig.7.21 the range in eccentricity is changed in order to stress and demonstrate
the existence of high eccentricity excitations of particles. In particular, the orbits
of particles initially located within the 5:2 mean-motion resonance (a ' 0.9 AU)
are quickly (within 500 years, or equivalently, corresponding to 220 orbital periods
of HD4208b) excited in eccentricity and consequently removed from the system.
In the subsequent snapshots the ejection of these particles are indicated by the
formation of a gap in semi-major axis near a ' 0.9 AU. Particle dynamics is
generally characterised to be erratic with the formation of a void region within
amin ' 1.1 AU and amax ' 1.28 AU. Because of this erratic dynamical behavior, it
seems not plausible that Earth-like planets can survive on dynamically stable orbits
during the lifetime of the host star. However, particles with initial semi-major axis
near a ' 1.0 AU are confined to within the continuous habitable zone.

In Fig.7.23 and 7.25 the dynamical information within the simulation snapshots
is nearly equivalent within both figures. Hence, a discussion is only given for Fig.
7.25. For the considered extreme planetary and orbital parameters, we observe a
nearly complete removal of particles throughout the continuous habitable zone. The
formation of a gap is observed at a ' 0.82 AU and characterised by a gradual deple-
tion of particles during the simulation. Comparing the simulation snapshots with
the results obtained from the MEGNO calculation in Fig.7.7 (lower right panel, for
e(HD4208b) = 0.16), we identify that the gap clearing is caused by the action of
the 3:1 mean-motion resonance. The chance for observing a terrestrial Earth-like
planet within the continuous habitable zone, is likely to be minimal. In the following
simulation snapshots are presented.
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Figure 7.18: Simulation snapshots for particles in HD4208 with giant planet parameters: mpl =
1 MJup and e = 0.0. A total of 2×103 particles are randomly distributed within the habitable zone.
Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked by
the inner boundary at 0.74 AU and outer boundary 1.26 AU. The two outermost boundaries are
located at 0.63 AU (inner) and 1.34 AU (outer). The total integration time is 106 years.
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Figure 7.19: Simulation snapshots for particles in HD4208 with giant planet parameters: mpl =
1 MJup and e = 0.16. A total of 2× 103 particles are randomly distributed within the habitable
zone. Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked
by the inner boundary at 0.74 AU and outer boundary 1.26 AU. The two outermost boundaries
are located at 0.63 AU (inner) and 1.34 AU (outer). The total integration time is 106 years.
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Figure 7.20: Simulation snapshots for particles in HD4208 with giant planet parameters: mpl =
3 MJup and e = 0.0. A total of 2×103 particles are randomly distributed within the habitable zone.
Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked by
the inner boundary at 0.74 AU and outer boundary 1.26 AU. The two outermost boundaries are
located at 0.63 AU (inner) and 1.34 AU (outer). The total integration time is 106 years.
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Figure 7.21: Simulation snapshots for particles in HD4208 with giant planet parameters: mpl =
3 MJup and e = 0.16. A total of 2× 103 particles are randomly distributed within the habitable
zone. Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked
by the inner boundary at 0.74 AU and outer boundary 1.26 AU. The two outermost boundaries
are located at 0.63 AU (inner) and 1.34 AU (outer). The total integration time is 106 years.
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Figure 7.22: Simulation snapshots for particles in HD4208 with giant planet parameters: mpl =
12 MJup and e = 0.0. A total of 2× 103 particles are randomly distributed within the habitable
zone. Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked
by the inner boundary at 0.74 AU and outer boundary 1.26 AU. The two outermost boundaries
are located at 0.63 AU (inner) and 1.34 AU (outer). The total integration time is 106 years.
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Figure 7.23: Simulation snapshots for particles in HD4208 with giant planet parameters: mpl =
12 MJup and e = 0.16. A total of 2× 103 particles are randomly distributed within the habitable
zone. Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked
by the inner boundary at 0.74 AU and outer boundary 1.26 AU. The two outermost boundaries
are located at 0.63 AU (inner) and 1.34 AU (outer). The total integration time is 106 years.
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Figure 7.24: Simulation snapshots for particles in HD4208 with giant planet parameters: mpl =
16 MJup and e = 0.0. A total of 2× 103 particles are randomly distributed within the habitable
zone. Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked
by the inner boundary at 0.74 AU and outer boundary 1.26 AU. The two outermost boundaries
are located at 0.63 AU (inner) and 1.34 AU (outer). The total integration time is 106 years.
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Figure 7.25: Simulation snapshots for particles in HD4208 with giant planet parameters: mpl =
16 MJup and e = 0.16. A total of 2× 103 particles are randomly distributed within the habitable
zone. Boundaries of the habitable zone are superimposed. The continuous habitable zone is marked
by the inner boundary at 0.74 AU and outer boundary 1.26 AU. The two outermost boundaries
are located at 0.63 AU (inner) and 1.34 AU (outer). The total integration time is 106 years.

7.7 Single particle dynamics

Within the presented particle simulations, we only considered a total integration
time of 106 years in order to study the time evolution of particle orbits. Strictly,
nothing can be concluded on the subsequent evolution of orbital elements. It might
be possible that particles exhibiting quasi-periodic regular motion within the first
106 years, suddenly undergoes dynamical changes with large excursions in orbital
elements. However, short period integrations allowed us to perform a large param-
eter survey of different initial conditions. Obviously, we ask: What is the long-term
dynamical behavior of single particles? The most promising extrasolar planetary
system to possibly harbor a terrestrial Earth-like planet is HD70642. Hence, we will
consider long-term integrations of single particles within this system.
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7.7.1 Longterm dynamics - HD70642

In order to study the long-time dynamics of single particles, I have performed long-
time integrations of the orbits of single particles using Mikkola’s symplectic variable-
step leap-frog algorithm (g3.f).
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Figure 7.26: Long-term integration of test particle tpW100 under the perturbation of a giant
planet in HD70642. The mass of the giant planet is mpl = 12 MJup with orbit eccentricity e = 0.0.
The total integration time is 109 years. Test particle ”tpW100” is initially located within the
continuous habitable zone.
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Figure 7.27: Long-term integration of test particle tpW050 under the perturbation of a giant
planet in HD70642. The mass of the giant planet is mpl = 12 MJup with orbit eccentricity e = 0.0.
The total integration time is 109 years. Test particle ”tpW050” is initially located outside the
continuous habitable zone.
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The time variation of orbital semi-major axis and eccentricity of particles are moni-
tored for ' 2× 108 years and 1× 109 years. In the following, we consider perturba-
tions on particle orbital parameters of the observed giant planet within the system
HD70642.

The integration time spans corresponds to 5% and 25% of the current age of the
host star. The integrations follow the dynamics of single particles initially located
inside and outside the continuous habitable zone. The mass of the giant planet is
fixed to mpl = 12 MJup and two eccentricities of the giant planet orbit are considered.
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Figure 7.28: Long-term integration of test particle tpZ100 under the perturbation of a giant
planet in HD70642. The mass of the giant planet is mpl = 12 MJup with orbit eccentricity
e = 0.16. The total integration time is 2.2× 108 years. Test particle ”tpZ100” is initially located
inside the continuous habitable zone.

Fig.7.26 - 7.29 represents the time variation of semi-major axis (left panel) and ec-
centricities (right panel) of single particles. From the figures, it is noted that the
particle semi-major axis is nearly constant during the integration time. This is a
typical behavior and is also observed and noted within the section discussing multi-
particle simulation snapshots. Long-term perturbations originating from the giant
planet are mainly transferred in the variation of particle orbital eccentricities. For
the time evolution of particle eccentricities, both long-term and short-term pertur-
bations are identified and best observed in Fig.7.28. A detailed frequency analysis
of the time series of orbital elements (mainly the eccentricity) would require the
application of a Fourier analysis.

7.7.2 Orbital (emax −∆ω) correlations

Lecar et al. (2001) notes the existence of a correlation between eccentricity excita-
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Figure 7.29: Long-term integration of test particle tpZ102 under the perturbation of a giant
planet in HD70642. The mass of the giant planet is mpl = 12 MJup with orbit eccentricity
e = 0.16. The total integration time is 2.2× 108 years. Test particle ”tpZ102” is initially located
outside the continuous habitable zone.

tions (∆e) and the difference in apsidal arguments for the giant planet and the test
particle (ωtp − ωpl). In particular Lecar et al. notes that two different behaviors for
the time evolution of the apsidal argument can be observed. 1) Circulation and 2)
libration. Both domains induces different dynamical behavior in the dynamics of a
particle. Inspired from this, I investigated the possibility of any similar correlation
between orbital elements within the numerical integrations.

In Fig.7.30 a correlation is found between the particles eccentricity (upper left
panel) and the difference in apsidal argument for the giant planet and test particle.
It is seen, that whenever ωtp − ωpl ' 0 in the lower left panel of Fig.7.30, we
observe a maximum in particle eccentricity (upper left panel). This is an example
of a so-called secular resonance. Secular resonances occur if there exists an integer
relationship between the apsidal arguments of any two bodies. Secular resonances
are characterised to induce or cause long-term dynamical behavior in the system. In
particular the time evolution of the particles eccentricity is of secular nature. From
the upper right panel in Fig.7.30, it is noted that the particle’s apsidal argument is
librating (or oscillating) around ωtp ' 280◦.

Sometimes the apsidal argument is observed to circulate. This is the case shown
in Fig.7.31 (upper right panel), and it is noted that ωtp traverses the range [0◦; 360◦]
with a positive slope. Occasionally, ωtp librates for a small period of time followed by
a circulation in the subsequent evolution. Searching for any correlations, we observe
that repeated periods of the circulation in ωtp, is correlated with the presence of
eccentricity beats. To enhance this relationship vertical lines are superimposed onto
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the figure.
A final note to remark concerns the perihelion shift of the giant planet. Since the

performed simulations takes full account of and evaluates all forces involved within
the three-body problem, we observe a perturbating effect in form of the advancement
of the perihelion angle for the giant planet. This effect is caused by the gravitational
potential of the Earth-mass planet. From the bottom left panel in the figures, it is
observed that this shift is minimal an amounts to 15 - 20 degress at most.
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Figure 7.30: Plot of time evolution of orbital elements demonstrating ω-libration. Upper left
panel: Time evolution of the eccentricity of a particle. Upper right panel: Time evolution of the
apsidal argument of the particle. Lower right panel: Time evolution of apsidal argument (ωpl) of
the giant planet in HD70642. Lower left panel: Difference in apsidal argument for the particle and
the giant planet.
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Figure 7.31: Plot of time evolution of orbital elements demonstrating ω-circulations. Upper left
panel: Time evolution of the eccentricity of a particle. Upper right panel: Time evolution of the
apsidal argument of the particle. Lower right panel: Time evolution of apsidal argument (ωpl) of
the giant planet in HD70642. Lower left panel: Difference in apsidal argument (∆ω = ωtp − ωpl)
for the particle and the giant planet.

7.8 Conclusion and discussion of results - what

has been learned?

Regarding general comments on particle dynamics:

Combining the calculation of the MEGNO indicator with direct particle simula-
tions, enables us to correlate chaotic regions in phase space (MEGNO maps) with
eccentricity excitations. Most of these chaotic regions are identified to correspond
to orbital mean-motion resonances. The effect of chaotic commensurabilities causes
pumping of orbital eccentricities. Objects (planets, asteroids, etc.) on (high) eccen-
tric orbits are generally unstable. The reason for this is because of radial mixing:
objects on eccentric orbits become crossing orbits, implying an increase probability
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of close encounters or even direct collisions with other objects. This enables us to
designate and characterise chaotic regions within a given MEGNO map to be un-
stable. The use of the word ”unstable” needs some remarks and should be treated
with caution. The identification of chaotic regions within a MEGNO map implies
not necessarely unstable orbits for given initial conditions. In our simulations for
example, it has been demonstrated that planets with large eccentricity excursions
(emax ' 0.65) remained on stable orbits, despite of that the corresponding MEGNO
map indicated chaotic motion. If we included additional planets in our simulations,
particles on high eccentric orbits (possibly driving by a resonancs mechanism) would
probably be removed from the system by the event of a close encounter or collision.
Whether there exists a correlation between the maximal excited orbital eccentricity
and the corresponding MEGNO indicator is not clear at this point. This question
has not been addressed within the thesis. However, Goździewski (2002) reports on
correlations between 〈Y 〉 and emax. Hence, we conclude that MEGNO maps always
needs to be accompained with information on the time variation of a planets orbital
eccentricity.

It is interesting to note the underlying dynamical effect of mean-motion reso-
nances on orbital elements. In all simulations, we observed that repeated giant
planet resonant perturbations are preferably affecting the eccentricity of particles.
While the eccentricity undergoes large excursions the semi-major axis almost re-
mains constant (cf. Fig. 7.27, 7.28, 7.29). In section 3.3.5, following Gauss’s form
of perturbation theory, we identified force components of the applied perturbation
force responsible for changes in orbital elements. Only forces embedded within the
plane (the transverse, T and radial, R force components) have the effect to change
the orbital eccentricity (shape) and semi-major axis (size) of a Keplerian orbit. The
question then is: If the cause for their time variation is the same, why is the ec-
centricity changing more rapidly compared to the semi-major axis? Murray and
Dermott (1999) presents an explanation only discussing the change in semi-major
axis. This question is left for future clarification.

All simulations indicates that giant planet perturbations have a general impact
on orbital eccentricity. Particles are observed to be quickly excited with a final
eccentricity gradient throughout the habitable terrestrial region. In general, the
driving of eccentricity is larger for particles located near the giant planet.

Regarding stability of Earth-like planets within HD70642:

Using the MEGNO stability analysis, we identified several mean-motion resonances.
The strength (measured in terms of 〈Y 〉) of various resonances is observed to be
an increasing function for increasing giant planet eccentricity and mass. From the
stability maps no global chaos is observed and only initial conditions located within
mean-motion resonances indicate chaotic dynamics. For a circular giant planet orbit
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and nearly independent of giant planet mass, the simulations suggest that all Earth-
like planets (particles) initially within the continuous habitable zone remain confined
to this region within a 106 year time scale. Furthermore, based on the results
obtained from long-term simulation of single particles, we conclude the existence of
confined orbits on 109 years time scales. However, non-confinement of terrestrial
orbits are observed for giant planet eccentricity exceeding emax = 0.16. Eccentric
orbits have their perihelion distance closer to the host star compared to circular
orbits. This leads to orbit crossings and an increased potential of the event of
close encounters. Assuming that no additional planets exists and if the giant planet
eccentricity is less than e = 0.16, this system is a promising candidate to harbor
habitable Earth-like planets (assuming a terrestrial planet has been initially formed
within the habitable zone).

Regarding stability of Earth-like planets within HD4208:

Ashgari et al. (2004) presents a stability map analysis of terrestrial orbits within
HD4208 using the Kolmogorov entropy as a measure to detect chaotic dynamics.
Comparing their results with the MEGNO stability maps presented in this thesis
reveals a qualitative conformity of the obtained dynamical results. Nearly every
feature from global (general) chaos to the presence of mean-motion resonances are
reproduced. However, Ashgari et al. did not undertake a mass parameter survey
for the giant planet. The results presented here in the form of MEGNO stability
maps considered various masses of the giant planet. For increasing mass, we ob-
serve most of the continuous habitable zone to become chaotic for nearly the whole
range in giant planet eccentricity. For giant planet eccentricity e ' 0.16, we ob-
served only a narrow band in semi-major axis exhibiting confined habitable orbits.
For this eccentric orbit, we estimated that 98% of the total range within the con-
tinuous habitable zone would render terrestrial orbits inhabitable by either having
their pericenter or apocenter distance crossing the inner and outer boundaries of the
continuous habitable zone. Increasing the giant planet mass would result in even
more dramatic dynamical events. For masses larger than 3 MJup our simulations
indicated a depletion of particles mainly from a > 1 AU. Because of short-range
perturbations particles are removed as a consequence of strong two-body gravita-
tional interactions and close-encounters. In some cases the formation of gaps and
void regions are observed. However, an exception is the case for which the giant
planet have a circular (e = 0) orbit. In this case nearly the whole range for particles
within the continuous habitable zone, have small eccentricity variations (except at
the 2:1 and 4:3 resonance). For a low mass (mpl ' 1 − 3 MJup) giant planet with
e ' 0.0, we observe (cf. Fig.7.19) that terrestrial planets with initial semi-major axis
in the range 0.85 AU < a < 1.0 AU of the continuous habitable zone are confined
during the 106 integration period. We conclude, that a Jupiter-mass giant planet
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with a circular orbit at a ∼ 1.68 AU, could render Earth-like planetary orbits to be
confined within the continuous habitable zone. However, an interesting question,
not addressed in this thesis is, how likely is the formation of a terrestrial planet
in the proximity of a giant planet perturber? A partial answer exist and has been
given within the stability discussion of the 47 UMa planetary system. We will take
up this discussion in the final conclusion section.

Comparison of results - what has been learned?:

Comparing the results for the two systems, we conclude the following. In general,
giant planets (HD4208b, a ' 1.68 AU) with orbital parameters in the vicinity of the
habitable region excert strong gravitational mean-motion perturbations on terres-
trial Earth-like orbits. The dynamical effect of giant planet mean-motion resonances
increases for increasing giant planet eccentricity, resulting in a resonance replenishing
within the terrestrial habitable zone. The effect of mean-motion resonance pertur-
bations is dynamically manifested in eccentricity excitations. This result suggests
that the presence of mean-motion resonances are best avoided within the terrestrial
region, in order to circumvent strong resonance effects. However, for giant planets
close to the terrestrial region, confinement of terrestrial planetary orbits to within
the continuous habitable zone is guaranteed only for a low-mass (mpl < 3 MJup) and
circular orbit giant planet. Although, the 2:1 and 4:3 mean-motion resonances dom-
inates the dynamics for these parameters. One could speculate that mean-motion
resonances could have a counteracting effect on terrestrial planet accretion in the
late stage of planet formation. Moderate high eccentricities of planetesimals within
the terrestrial region would represent a stirring in the late evolved planetesimal disk,
represent a higher velocity dispersion relative to circular planetary orbits. A higher
mean velocity would automatically mean a higher relative impact velocity within
the event of two-body collisions. This mechanism could imply a higher fragmen-
tation frequency of planetesimals, counteracting the proces of planet accretion in
order to form Moon to Mars sized protoplanets. However, the presence of mean-
motion resonances in the outskirts of the terrestrial region within the Solar System
are important in order to provide a transport mechanism of hydrated planetesimals
from the asteroid belt toward the inner terrestrial region (i.e Earth - cf. Fig. 1.5,
Chapter 1, Raymond et al. (2004)).

In order to bypass the dynamical effect of mean-motion resonances, results from
our numerical simulations suggests a larger separation between the terrestrial and
the perturbing planet. The optimal configuration would be represented by a giant
planet in a wide orbit (HD70642, a ≥ 3.3 AU). Simulations considering the giant
planet HD70642b indicate a decrease in the number of mean-motion resonances in
the continuous habitable zone. However, for eccentric giant planet orbit a general
eccentricity excitation is observed. This excitation is attributed to the inforced giant
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planet perturbations, due to the decrease of the orbital pericenter distance. From
simulation snapshots, a maximum allowed eccentricity (emax = 0.16) for the orbit is
determined in order for terrestrial Earth-like planets to remain confined to within
the continuous habitable zone at a ' 1.0 AU. This upper limit should be regarded
very restrictive, since only 12% of the continuous habitable zone were populated
with confined orbits (namely those particles with initial semi-major axis a ' 1 AU).

Application to giant planet data, general conclusion:

The results obtained from our simulations can be used to gain some information
on the general possibility of the existence of habitable Earth-like planets within
the current population of observed giant planets. Fig. 7.32 shows the (a, e)-space
for the total population of giant planets observed in extrasolar planetary systems.
Within each figure panel, the semi-major axis and the upper bound in eccentricity
(as determined for HD70642b) are indicated by stipulated lines.

Figure 7.32: Plots of the current population of observed giant extrasolar planets in (a, e)-space.
In both panels orbital parameters (nominal) for HD70642b and HD4208b are indicated by (�).
Stipulated lines represent the current observed semi-major axis (vertical line) and upper bound
in eccentricity (horizontal line). Left panel: HD70642, a = 3.3 AU and e = 0.16. Right panel:
HD4208, a = 1.68 AU and e = 0.16. Giant planets being members in multiplanet systems are
indicated by lines. Dashed line: Ups And. Dotted line: Gliese 876. Dashed-dot line: 47 Uma.
The solid curve is the contour line for a pericenter distance of a = 2.77 AU. Giant planet candi-
dates located below this line, will have a pericenter distance greater than 2.77 AU. Giant planet
candidates located above this line, will have a pericenter distance smaller than 2.77 AU. Results
from numerical simulations, suggests that q < 2.77 AU marks the onset of global unconfinement of
terrestrial orbits. For both systems error bars indicate the uncertainty range in orbital parameters.
For HD4208 the error in semi-major axis is smaller than the indicated box. In addition, the error
range in eccentricity for two selected giant planets are shown.

From Fig.7.32, we conclude the following. For each panel the stipulated lines marks
the nominal semi-major axis (vertical line for each giant planet) and the maximum
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eccentricity (horizontal). The lines divide the (a, e)-parameter space into 4 regions
(A,B,C,D). Considering first the case for HD70642 (left panel), it is clear that giant
planets populating the A-region would introduce large gravitational perturbations
on planets within the terrestrial region. The reason for this is, because extrasolar
giant planets located within this region are characterised by (moderate/high) ec-
centric orbits (eccentric orbits have their pericenter distance shifted closer to the
central star, resulting in terrestrial orbit crossings). Hence, results from numerical
simulations suggest a destabilisation and non-confinement of terrestrial orbits within
the continuous habitable zone for e ≥ 0.16 and a ≤ 3.3 AU.

The survival of terrestrial Earth-like planets within planetary systems with giant
planet orbital parameters attributed to the C-region in Fig.7.32 (a ≤ 3.3 AU and
e ≤ 0.16) seems intuitively unlikely. According to standard (Solar System) planet
formation theory, it is believed that giant planets are formed in the outer region
(a > 5 AU) of the initial protoplanetary disk. For a sufficient massive disk, it has
been shown that disk-planet interactions induces the process of planet migration
(Murray et al., 1998; Kley, 2000; Nelson and Papaloizou, 2004). Hence, during the
migration process, strong perturbation interactions are expected to exist between
the giant and terrestrial planet. The ultimate fate of an Earth-like planet would
either be an ejection or collision event, while the giant planet traverses inwards
through the terrestrial region. However, Mandell and Sigurdsson (2003) reports on
the possible survival of terrestrial planets in the presence of giant planet migration.
Further studies of this kind needs to be considered in order to confirm the published
results. For now, we will regard this region to be very suspicious regarding the
possibility of the existence of an Earth like planet within these systems. Detailed
investigation needs to be performed in order to clarify this question.

This leaves us with the final two regions to be discussed. The most obvious
parameter space for which terrestrial planets are on stable and confined orbits is
represented by the D-parameter space (a > 3.3 AU and e ≤ 0.16). From our studies
considering the system HD4208 (with giant planet semi-major axis a = 1.68 AU), we
concluded that terrestrial planets could remain on stable orbits confined to within
the continuous habitable zone for circular giant planet orbits (having in mind the
effect of the 2:1 resonance). For the case of HD4208 had an eccentric orbit (e ' 0.16),
we observed dramatic dynamical effects rendering nearly the complete continuous
habitbale zone to be unstable for confined particle dynamics.

The final region of interest is represented by the B-parameter space within Fig.
7.32 (right panel). High eccentric giant planet candidates are orbit crossing within
the terrestrial region. For example, the planet with orbital parameters a ' 2 AU
and e ' 0.78 (see arrow (1) within the figure panel), have a pericenter distance
(q ' 0.44 AU) well located within the terrestrial region. The chance for a close
encounter event with a terrestrial planet on a circular orbit at a ' 1 AU is most
likely imaginable.
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However, orbits with a larger semi-major axis allows for a larger eccentricity be-
fore the pericenter distance reaches some predescribed inner boundary. Obviously,
some borderline must exist for the combined region (B+D) in order to divide the
population into two regions: From our study considering HD70642, we determined
a maximum eccentricity of emax = 0.16. For a semi-major axis given by a = 3.3 AU
the pericenter distance is given by q = 3.3 AU(1.0− 0.16) ' 2.77 AU. If we adopt
this distance to be the closest distance of a giant planet to allow visit the terrestrial
region, then we can determine the allowed region within (a, e)-parameter space for
which giant planet perturbations render terrestrial planets to be on confined habit-
able orbits. This constraint on orbital parameters inroduces the restriction of orbital
pericenter distance to be q > 2.77 AU. Within Fig.7.32 (right panel), the solid con-
tour line represents the (q = 2.77 AU) limiting pericenter distance, constraining and
dividing the (a, e) parameter space.

Giant planets with orbital parameters located below this line represent giant
planet candidates with q > 2.77 AU. Again, as an example we consider a planet
with semi-major axis a = 4.16 AU and eccentricity e = 0.18 (marked by an arrow
(2) within the right panel of Fig. 7.32). The pericenter of the orbit is located at
q ∼ 3.41 AU. The class of candidates belonging to within this parameter space are
suggested to be dynamically ”quiet” enough and ”well spaced”, to allow terrestrial
planets on stable confined habitable orbits.

This result is in agreement with dynamical stability studies of terrestrial planets
within the 47 Ursae Majoris extrasolar planetary system. Within Fig. 7.32 the two
planets observed within 47 UMa are connected with a dashed-dotted line. Ashgari
et al. (2004) determines stable orbits within the terrestrial region (with semi-major
axis in the range 1.05 AU < a < 1.3 AU and 0.65 AU < a < 0.8 AU). However,
Goździewski (2002) points out that several mean-motion and secular resonances are
detected to be present within the habitable zone of 47 UMa, resulting in large or-
bit instabilities of possible terrestrial planets. In addition, (Laughlin et al., 2002)
performed accretion simulations of terrestrial planets considering a ring of initial
planetesimal within 47 UMa, addressing the question of how likely terrestrial plan-
ets could be formed. Laughlin et al. (2002) concluded that final Earth-like planets
could only form within a < 0.7 AU by considering the perturbative effects of both
giant planets. The removal of planetesimals within the habitable zone, were domi-
nated by the presence of secular resonances causing large eccentricity excitations of
planetesimal orbits.

Up to this point, we have identified possible orbital parameters of giant planets
favouring the existence of terrestrial Earth-like planets on stable habitable orbits.
This results are only valid for the case of single planet extrasolar planetary sys-
tems. From numerical simulation presented within the literature, the existence of
terrestrial like planets were questionable for two-giant planetary systems in close
proximity to the terrestrial region. This was discussed for the case of 47 UMa and
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the dynamical effects of mean-motion and secular resonances were identified to be
disruptive and counter acting the process of planet formation by planetesimal accre-
tion. A similar mechanism is observed within the asteroid belt in the Solar System.
This result suggests, that if two giant planets exists within a single planetary sys-
tem, the inner planet needs to be located in the outskirts of the system in order to
avoid the gravitational perturbative effects of mean-motion and secular resonances
on planetesimals (and possible planets) within the terrestrial region.
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Chapter 8

Conclusion and prospects

The work presented in this thesis concerned aspects of planet dynamics and Celestial
Mechanics within the field of dynamical astronomy. We considered and outlined the
basic theory for the three-body problem and its application to dynamical studies
within extrasolar planetary systems. The main effort during the thesis period has
focused on numerical methods for the integration of planetary orbits and the de-
tection of their possible chaotic nature. Results of intensive numerical experiments
broadened my physical understanding of planetary dynamics. Realistic and accu-
rate numerical simulations enabled the assessment of necessary conditions on giant
planet orbital parameters in order to render stable orbits of terrestrial like planets
within extrasolar planetary systems.

The thesis period has been a laborious and time consuming project. However,
from an academic point of view, I have acquainted myself in details on fundamental
theory within modern celestial mechanics, planet dynamics and related numerical
aspects. Numerical tools outlined and presented in this thesis can readily be ap-
plied to a large variety of physical problems within Solar System dynamics (i.e
satellite dynamics, small-body dynamics, long-term stability), terrestrial planet for-
mation (n-body accretion simulations within the late stage formation regime) and
subsequent orbital evolution and orbital stability analysis of multi-planet extrasolar
planetary systems.

8.1 Thesis summary

In the following, a summary of thesis highlights will be presented. Technical aspects
regarding numerical issues and physical results are listed.

157
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General and numerical aspects

• The three-body problem is identified and introduced. It represents a funda-
mental model to study the dynamical evolution of an Earth (particle) like
body under gravitational perturbations of a giant planet.

• The solution of Kepler’s equation has been investigated using different numer-
ical algorithms (as outlined in Danby (1988)) by comparing the convergence
speed of iterations within the (M, e)-parameter space. Implementation of nu-
merical algorithms uses IDL.

• Modern algorithms for the numerical integration of planetary orbits were re-
trieved from the dynamical astronomy community. In particular, I have ac-
quainted myself with the public available MERCURY6 orbit integration package
(Chambers and Migliorini, 1997; Chambers, 1999) and Mikkola’s symplectic
leap-frog code (Mikkola, 1997). The codes have been tested for possible limi-
tations for applications of dynamical simulations within extrasolar planetary
systems. Special properties of symplectic methods have been demonstrated
and their numerical advantage outlined.

• Routines for coordinate transformation algorithms have been adopted from
the literature (Boulet, 1991; Roy, 1988) and implemented within F90. The al-
gorithms are outlined and tested and concerns transformation between Carte-
sian coordinates and Kepler elements. The routines are developed as modular
input/output interfaces for coordinate transformation within the symplectic
leap-frog integration algorithm.

• A numerical method to compute the MEGNO indicator have been obtained
from the astrodynamical community. Theory and properties of the MEGNO
indicator are discussed and outlined (Goździewski, 2001). The code have been
tested against known results published within the literature. These tests en-
abled the identification of numerical issues regarding limitations and the proper
calculation of MEGNO within a dynamical stability analysis.

• Orbital parameters for the giant planets HD70642b and HD4208b have been
introduced and physical properties of the host stars are discussed (Carter et al.,
2003; Vogt et al., 2001). For HD4208, we assumed a current stellar age of
5 × 109 years. The boundaries of the continuous habitable zone are inferred
within the (a, e)-parameter space of the terrestrial regions for both systems.
Boundaries for the continuous habitable zone are obtained from (Kasting et al.,
1993). Considering the dynamics of Earth-sized planetary orbits within (a, e)-
parameter space is more fruitful regarding the gain of system information in
terms of orbital energy and angular momentum.
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Physics, dynamical aspects and the effect of giant planet gravitational

perturbations

From numerical simulations, we observe:

• The presence of high-order mean-motion resonances for large values of giant
planet orbital eccentricity (HD4208 and HD70642) within the terrestrial re-
gion.

• Gravitational planet-particle resonance interactions, causing particle eccen-
tricity excitations beyond the continuous habitable zone.

• Chaos dominated dynamics within the continuous habitable zone of HD4208
for large values of giant planet mass. The effect is particle removal (either
accretion or ejection) and gap formation at regions corresponding to mean-
motion resonances.

• General eccentricity excitation (eccentricity gradient) by giant planet pertur-
bations on particle orbits throughout the considered terrestrial regions and
within the continuous habitable zone (HD70642, HD4208).

• Correlation of ”resonance strength” with giant planet orbital parameters. Planet-
particle resonance interaction within HD70642 are more quiescent as compared
to HD4208.

• Secular resonance dynamics. Correlation between particle eccentricity etp, and
difference in apsidal argument ωtp − ωpl.

8.2 Concluding remarks, application and future

work

In this thesis, we addressed the question whether orbits of possible Earth like planets
are dynamically confined within the habitable zone of extrasolar planetary systems
by considering the long-time effects of giant planet gravitational perturbations.

At the beginning, my motivation to persue this question is inspired by the exis-
tence of stable mean-motion resonances as observed within the asteroid belt in the
Solar System. The first candidate subject for a numerical dynamical analysis were
the extrasolar planetary system HD70642. This star is observed to exhibit spec-
troscopic signatures indicating the existence of a giant planet. During the thesis
period, it proofed useful to compare the results obtained by numerical simulations
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with a second exosystem characterised by different orbital parameters. For this pur-
pose, we considered HD4208 for an additional dynamical analysis of the stability of
hypothetical Earth like planets.

Numerical studies (Jones et al. (2001), Jones and Sleep (2002), Noble et al.
(2002a)) concerning orbital stability simulations of Earth like planets in extrasolar
planetary systems, generally considers the long-term dynamical evolution of single
Earth sized planetary orbits. The numerical integration of planetary orbits is very
CPU intensive. Hence, a parameter survey of giant planet orbital parameters is
consequently restricted and limited by the factor of time. The overall strategy to

Figure 8.1: Population of observed (184 in total) giant planets within the (a, e)-parameter space.
The planets HD70642b and HD4208b are indicated by (2) at their nominal published orbital values.
HD4208: semi-major axis, a = 1.67 AU. HD70642: semi-major axis, a = 3.3 AU. The vertical
dashed line indicates the position of the semi-major axis for HD4208 as determined by observations.
This line represent the smallest allowed semi-major axis, as suggested from numerical stability
simulations. The horizontal dashed line at e = 0.16, represents the maximum allowed orbital
eccentricity for HD70642 (with a = 3.3 AU), as suggested from numerical stability simulations.
The region below the solid contour line (representing the a ' 2.77 AU inner boundary) represents
orbital parameters of (single) giant planets in order to render Earth like planets on stable orbits
within the terrestrial region. For both systems error bars indicate the uncertainty range in orbital
parameters. In addition, uncertainty ranges in eccentricity for two additional giant planets are
shown. Data is taken from http://vo.obspm.fr/exoplanetes/encyclo /encycl.html.

accomplish our quest for the possible existence of Earth like planets in stable orbits
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within extrasolar planetary systems, considers the short-term dynamics of an particle
ensemble under the action of giant planet perturbations. This approach is different
compared to work published within the literature and enabled us to perform a large
parameter survey on initial conditions.

A comparative analysis of the systems HD70642 and HD4208, enabled us to
generally conclude on the possible existence of Earth-like planets within the current
population of observed extrasolar planetary systems. As a result, we identified a
region within the (a, e)-parameter space for the current population of observed gi-
ant planets, for which the existence of an Earth like planet on a stable orbit within
the continuous habitable zone is most likely. However, it is noted that the derived
conditions of giant planet parameters to render stable Earth like orbits, represents
a necessary condition. The gravitational effect from possible undetected (smaller)
planets within HD70642 or HD4208 would introduce additional perturbations on
the orbit of the considered Earth like planet. Hence, our conclusion is restricted to
one-planet systems. Fig.8.1 represents and reflects the overall result obtained from
numerical simulations. Single giant planets with orbital parameters located below
the contour line corrsponding to a = 2.77 AU, are identified to possibly have terres-
trial Earth-like planets on confined orbits within the habitable zone. Nevertheless,
we did observe confined terrestrial planets for circular orbits of HD4208b. This re-
sult remains valid only for mpl < 3 MJup considering HD4208b. However, it must
be stressed that the presented stability analysis considered giant planets with host
stars nearly similiar to the Sun. Strictly, only G-type stars should be considered
within the suggested (a, e)-parameter plot.

Application

The results presented in this thesis are of purely theoretical character. Obviously, a
direct comparison with observations is not possible at current time. The detection of
terrestrial planets is beyond the resolving capabilities of current telescope technology.
However, the results could be used to guide future satellite missions in their search for
terrestrial planets in extrasolar planetary systems. Planned space missions like TPF
(Terrestrial Planet Finder, NASA) or DARWIN (ESA) involves free-flying space
telescopes designed to directly detect Earth-like planets orbiting nearby stars. The
observation technique is based on nulling interferometry and first light is expected
to be within 8 to 15 years.

In order to detect terrestrial planets within future search missions the results
presented in this work could be used to compile a mission targeting list of extrasolar
planetary systems, with a high confidence (based on a numerical stability analysis)
to harbor Earth-like planets on stable orbits within the terrestrial region. In fact,
a possible region within (a, e)-parameter space of observed giant planets is readily
identified (cf. Fig.8.1) to be considered as allowed orbital parameters for potential
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candidates harboring terrestrial planets. A continuation of numerical experiments
considering additional giant planet systems, would improve our understanding of
general aspects of gravitational planetary interactions.

Future work

Several questions were left unanswered that need detailed investigation. The most
obvious question concerns terrestrial planet formation: How is the process of terres-
trial planet formation affected by the presence of near giant planet perturbations?
What conditions on orbital parameters are mostly favouring the accretion process
of terrestrial planets within the late stage of formation history? What is the gen-
eral formation frequency of terrestrial Earth-mass planets? Some work considering
accretion simulations of terrestrial planets have been done within the literature, but
needs to be taken much further. The MERCURY integration package could be used
for future studies considering accretion with possibly including collision induced
fragmentation physics.

In addition, we pose the question on the dynamical effect of migrating giant
planets on terrestrial planets. What is the survival frequency of terrestrial planets?
Within numerical integrations the effect of migration could be modelled by adding
a dissipative term to the equation of motion of the giant planet. This would require
the use of different numerical techniques, as symplectic algorithms are strictly valid
for conservative mechanical systems (although, some symplectic workarounds exists
within the literature).

A further aspect of habitability is spin axis dynamics of the terrestrial planet. A
planet rotating irregular or chaotic would not favour a stable climate environment.
For the case of the Earth-Moon system, the Moon has a stabilizing effect on the
Earth’s spin axis. The most general question for future investigations is: what is the
dynamical evolution of a planets spin axis considering both tidal and gravitational
perturbations from various sources?



Appendix A

Fortran 90 and IDL source codes

A.1 analkep.f90

program analkep

! This program calc. exact position and velocities of a 2D Kepler orbit

! with eccentricity e and semi-major axis a. The program uses f and g

! functions to calc. the position and vel. at time t_n.

! Reference: Boulet, 1991

use kinds

use math

use apc

implicit none

real(KIND=kind15) :: &

e,a,x_0,y_0,vx_0,vy_0,t_start,t_stop,n,solve_kep_eq,h,mm,x,y,vx,vy, &

r_0,r,cape_0,cape,t,f_func,g_func,f_dot,g_dot,ma,time

integer :: &

counter

! integration param.:

t_start = 0.0

t_stop = 1.0*twopi

n = 64 ! number of steps

163
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h = (t_stop - t_start)/n ! step size

! orbit parameters:

e = 0.3

a = 1.0

mm = 1.0

! Initial values: (object starts at pericenter in an orbit with a=1.0 AU and

! the orbital period is

x_0 = a*(1-e)

y_0 = 0.0

vx_0 = 0.0

vy_0 = sqrt((1+e)/(1-e))

r_0= sqrt(x_0*x_0 + y_0*y_0)

cape_0 = 0.0

t = t_start

counter = 1

Open (1, file=’analkep.dat’, form=’formatted’, action=’write’, &

blank=’null’)

do while (t .le. t_stop)

! first get eccentric anomaly

ma = mm * t

if (ma .gt. twopi) ma = mod(ma,twopi)

! solve kepler’s equation:

cape = solve_kep_eq(ma, e)

! calc. the f-function:

f_func = a/r_0 * (cos(cape) - 1.0) + 1.0 ! (eq. 2.69)

! calc. the g-function:



A.1. ANALKEP.F90 165

g_func = time + (sin(cape) - cape)/mm ! (eq. 2.69)

! calc. the position components and magn. of radius vector:

x = f_func*x_0 + g_func*vx_0

y = f_func*y_0 + g_func*vy_0

r = sqrt(x*x + y*y)

! calc. the f_dot-function:

f_dot = -(a*a*mm*sin(cape))/(r*r_0) ! (eq. 2.71)

! calc. the g_dot-function:

g_dot = a/r * (cos(cape) - 1.0) + 1.0 ! (eq. 2.71)

! calc: the velocity components:

vx = f_dot*x_0 + g_dot*vx_0

vy = f_dot*y_0 + g_dot*vy_0

! read out data:

write (1,’(f10.3,1X,f10.6,1X,f10.6,1X,f10.6,1X,f10.6)’) t,x,y,vx,vy

t = t + h

time = time + h

if (time .gt. twopi) time = mod(time,twopi)

counter = counter + 1

enddo

! make a final data dump (last data!):

write (1,’(f10.3,1X,f10.6,1X,f10.6,1X,f10.6,1X,f10.6)’) t,x,y,vx,vy

close(1)

end program analkep
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A.2 car2kep.f90

program car2kep

!##############################################################################

!# Program description: #

!# This program converts heliocentric cartesian elements (x,y,z,vx,vy,vz) at #

!# epoch t0 to osculating keplerian elements (a, e, i, omega, capo, ma) and #

!# derived quantities like (piomega, ml, q, bigq, tau, f, tlon, mm, theta) #

!# where #

!# a = semimajor axis #

!# e = eccentricity #

!# i = inclination #

!# omega = argument of pericenter #

!# capo = longitude of ascending node #

!# ma = mean anomaly #

!# piomega = longitude of pericenter #

!# ml = mean longitude (lambda) #

!# q = pericenter distance #

!# bigq = apocenter distance #

!# tau = time of pericenter passage #

!# f = true anomaly #

!# tlon = true longitude #

!# mm = mean motion #

!# theta = true longitude #

!# Note: The velocities must be given in units of vx/k, vy/k, vz/k #

!# #

!##############################################################################

use kinds

use math

use apc

implicit none

! external variables (going in):

real(KIND=kind15) :: &

x,y,z,vx,vy,vz,t0,m_pl,m_star

! external variables (going out):
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real(KIND=kind15) :: &

a,e,i,q,capo,omega,ma,mm,f,tau,theta,piomega,ml

integer :: &

conic

! internal variables:

real(KIND=kind15) :: &

v,mu,r,v2,rv,hx,hy,hz,h2,h,ex,ey,ez,e2,tmp1,tmp2,tmp3,capn, &

cosi,coscapo,capne,cosomega,xbar,ybar,b,cape,pocs,bigd,bigh, &

per,sini,coscape,sinf,cosf,er

! first compute basic quantities:

r = sqrt(x*x + y*y + z*z) ! heliocentr. distance from central body (Sun)

v2 = vx*vx + vy*vy + vz*vz ! "v dot v" heliocentric velocity squared

rv = x*vx + y*vy + z*vz ! "r dot v" heliocentric

hx = (y*vz) - (z*vy) ! ang. mom. 1.component, heliocentric

hy = (z*vx) - (x*vz) ! ang. mom. 2.component, heliocentric

hz = (x*vy) - (y*vx) ! ang. mom 3.component, heliocentric

h2 = hx*hx + hy*hy + hz*hz ! square of ang. mom. , heliocentric

h = sqrt(h2)

capn = sqrt(hy*hy + hx*hx) ! Boulets ascending node vector, heliocentric

! calc. conic parameters - e, p and Laplace-Runge-Lenz vector:

mu = m_star + m_pl ! Boulets mu, masses in units of m_star

pocs = h2/mu ! semi-parameter, param. of conic section

tmp1 = (v2/mu) - (1.0/r) ! used for the L-R-L vector

tmp2 = rv/mu ! used for the L-R-L vector

ex = tmp1*x - tmp2*vx ! Laplace-Runge-Lenz vector, x-comp

ey = tmp1*y - tmp2*vy ! Laplace-Runge-Lenz vector, y-comp

ez = tmp1*z - tmp2*vz ! Laplace-Runge-Lenz vector, z-comp

capne = hx*ey - hy*ex ! vec{N} dot vec{e}

e2 = ex*ex + ey*ey + ez*ez ! mag. of eccentricity
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! calc. eccentricity from Laplace-Runge-Lenz vector:

if (e2 .lt. 0.0) then

e = 0.0

else

e = sqrt(e2)

endif

! calc. the inclination, true longitude and long. of ascending node and

! consider special cases:

! inclination: will always be within 0 .le. i .le. pi

if (h .ne. 0) then

cosi = hz/h

sini = capn/h

i = acos(hz/h) ! i is in proper quadrant since 0 <= acos <= pi

endif

! watch for the case when inclination is small or 0.0:

if (sini .lt. 1.0e-10) then ! then i is either nearly pi or 0 (no inclination case)

theta = atan2(y,x) ! true longitude within proper quadrant,see Roy p.104-105

if (ABS(i - pi) .lt. 1e-10) theta = -theta !change sign for retrograde orbit

if (cosi .gt. 0.0) then

i = 0.0 ! brutally set i = 0.0 and have prograde orbits

capo = 0.0 ! long. of ascending node is not defined, we set capo=0.0

endif

if (cosi .lt. 0.0) then

i = pi ! we have retrograde orbits

capo = 0.0 ! long. of ascending node is not defined, we set capo=0.0

endif

else

capo = acos(-hy/capn) ! asc. node within 0 and pi

if (hx .lt. 0) capo = twopi - capo ! asc. node within pi and 2pi

theta = atan2( z/sin(i), x*cos(capo) + y*sin(capo) ), see Roy,p.104-105

endif

! normalize the angles:
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if (capo .lt. 0.0) capo = capo + twopi ! normalize capo

if (capo .gt. twopi) capo = mod(capo,twopi) ! normalize capo

if (theta .gt. twopi) theta = mod(theta, twopi)! normalize theta

if (theta .lt. 0.0) theta = theta + twopi ! normalize theta

! determine type of conic section (using the eccentricity parameter):

if (ABS(1.0 - e) .lt. 1.0e-8) then ! if e > 0.99999999 then

conic = 0 ! parabola (the e = 1 case)

else

if (e .lt. 1.0) conic = -1 ! ellipse

if (e .gt. 1.0) conic = +1 ! hyperbola

endif

! the elliptic and circular case:

if (conic .eq. -1) then

if (e .gt. 1.0e-5) then ! the elliptic case also if e=1e-5

print *, ’ellipse’

! working within orbit plane coordinate system:

! semimajor axis and pericenter distance:

a = 1.0/(2.0/r - v2/mu) ! semimajor axis

q = pocs/(1.0 + e) ! pericenter distance

bigq = a*(1.0 + e) ! apocenter distance

! true anomaly:

er = ex*x + ey*y + ez*z ! e dot r

if (e .ne. 0) then

f = acos(er/(e*r)) ! true anom. within 0 and pi

if (rv .lt. 0) f = twopi - f ! true anom. within pi and 2pi

if (f .lt. 0) f = f + twopi ! normalizing

if (f .gt. twopi) f = mod(f,twopi) ! normalizing

endif

! eccentric anomaly, accurate also for small eccentricities (guthmann):
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cape = acos( (e+cos(f))/(1.0+e*cos(f)) ) ! E within 0 and pi

if ( (f .lt. twopi) .and. (f .gt. pi) ) cape=twopi-cape ! E w. pi and 2pi

if (cape .lt. 0) cape = twopi + cape ! normalizing

if (cape .gt. twopi) cape = mod(cape,twopi)! normalizing

ma = cape - e*sin(cape) ! mean anomaly from Kepler eq.

omega = theta - f ! arg. of pericenter

else ! the circular case e < 0.00000001

!print *, ’circular orbit’

e = 0.0

f = theta ! true anomaly becomes true longitude

cape = theta ! eccentric anomaly becomes true long.

a = pocs

omega = 0.0

ma = theta

endif

if (omega .lt. 0) omega = omega + twopi ! normalizing within 0 and 2pi

if (omega .gt. twopi) omega = mod(omega,twopi)! normalizing within 0and2pi

mm = sqrt(mtot/(a*a*a))*k ! mean motion rad./day

tau = t0 - (ma/mm) ! time of pericenter passage

per = (twopi/k)*sqrt((a*a*a/mtot)) ! orbital period

endif

! the hyperbola (e > 1.0) case:

if (conic .eq. +1) then

!print *, ’hyperbola’

ybar = (rv/e)*sqrt(pocs/mu)

xbar = (pocs - r)/e

b = -a*sqrt(e*e - 1.0)

bigh = sinh(ybar/b)

ma = e*(ybar/b) - bigh

mm = k*sqrt(mtot/(-a)**3) ! mean motion

tau = t0 - ma/mm

per = 0.0

endif

! the parabolic (e = 1.0 = (0.99999999)) case:

if (conic .eq. 0) then
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!print *, ’parabola’

a = 0.5*pocs ! here a means pericenter distance

bigd = rv/sqrt(mtot)

ma = q*bigd + (bigd*bigd*bigd)/6.0

mm = k*sqrt(mtot)

tau = t0 - ma/mm

per = 0.0

endif

if (ma .gt. 0.0) ma = mod(ma, twopi)

if (ma .lt. 0.0) ma = ma + twopi

! calc. weired angles and normalizing:

piomega = capo + omega

ml = ma + capo + omega

if (piomega .lt. 0) piomega = twopi + piomega

if (piomega .gt. twopi) piomega = mod(piomega,twopi)

if (ml .lt. 0) ml = twopi + ml

if (ml .gt. twopi) ml = mod(ml,twopi)

end program car2kep
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A.3 kep2car.f90

program kep2car

!###############################################################################

!# Program description: #

!# This program converts Kepler elements to Cartesian heliocentric coordinates #

!# or any inertial coordinate system for which Kepler elements are defined. #

!# #

!# input: (a,e,M,i,omega,capo,t0,mu)-Kepler elements #

!# #

!#output: (x_h,y_h,z_h,vx_h,vy_h,vz_h) ( heliocentric Cartesian coordinates #

!# (celestial ecliptic coordinates) and velocities #

!# #

!# where: #

!# a - semimajor axis, [a] = AU #

!# e - eccentricity #

!# M - mean anomaly #

!# i - inclination #

!# omega - argument of pericentre #

!# cap - long. of ascending node #

!# t_0 - Initial Epoch #

!# #

!# #

!# compiling option(s): f90 -O2 kep2car.f90 -o kep2car #

!# #

!# reference Boulet, "Methods of Orbit Determination" (1991) #

!# #

!###############################################################################

use kinds

use apc

use math

implicit none

! external variables (going in and going out)

real(KIND=kind15) :: &

a,e,i,ma,omega,capo,m_pl,x_h,y_h,z_h,vx_h,vy_h,vz_h,lop &

ta,m_cen,x_e,y_e,z_e,vx_e,vy_e,vz_e,t0,mm,ta,tau
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! internal variables:

real(KIND=kind15) :: &

z1,z2,z3,z4,d11,d12,d13,d21,d22,d23,x_scalar,y_scalar, &

x_dot_scalar,y_dot_scalar,tmp1,tmp2,tmp3,tmp4,mu,q, &

solve_kep_eq,solve_barkers_eq,lop,solve_hyper_eq

integer :: &

conic

mu = k2*(m_cen + m_pl)

! converting from degrees to radian measure:

i = i*DtoR

ma = ma*DtoR

omega = omega*DtoR

capo = capo*DtoR

! normalizing angles (i, omega, capo, ma):

if (i .gt. 0.0) then

i = mod(i,twopi)

else

i = i + twopi

endif

if (omega .gt. 0.0) then

omega = mod(omega, twopi)

else

omega = omega + twopi

endif

if (capo .gt. 0.0) then

capo = mod(capo, twopi)

else

capo = capo + twopi

endif
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if (ma .gt. 0.0) then

ma = mod(ma, twopi)

else

ma = ma + twopi

endif

if ( (i .eq. 0.0) .and. (e .eq. 0.0) ) then

capo = 0.0

omega = 0.0

lop = capo + omega

else

if (i .eq. 0.0) then

capo = 0.0

lop = capo + omega

else

if (e .eq. 0.0) then

omega = 0.0

lop = capo + omega

endif

endif

endif

! Determine type of conic section (using the eccentricity)

if (ABS(1.0 - e) .lt. 1.0e-8) then ! if e > 0.99999999 then

conic = 0 ! parabola (the e = 1 case)

else

if (e .lt. 1.0) conic = -1 ! ellipse

if (e .gt. 1.0) conic = +1 ! hyperbola

endif

! calc. scalar components of orbital motion (using e,a and ma)

! elliptic and circular case:

if (conic .eq. -1) then

a = q/(1.0 - e)

tmp1 = sqrt(1.0 - e*e)

tmp2 = solve_kep_eq(ma,e)

tmp3 = sqrt(mu/a)/(1.0 - e*cos(tmp2))

x_scalar = a*(cos(tmp2) - e) ! From (4.117) (ok)
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y_scalar = a*tmp1*sin(tmp2) ! From (4.117) (ok)

x_dot_scalar = -tmp3*sin(tmp2) ! From (4.117) (ok)

y_dot_scalar = tmp1*tmp3*cos(tmp2) ! From (4.117) (ok)

endif

! parabolic orbit case:

if (conic .eq. 0) then

tmp1 = solve_barkers_eq(ma, q) ! Call function (ok)

tmp2 = q + 0.5*tmp1*tmp1 ! r from eq. (4.126) (ok)

tmp3 = sqrt(mu) / tmp2 ! D_dot eq. (4.127) (ok)

x_scalar = q - 0.5*tmp1*tmp1 ! From eq.(4.129) (ok)

y_scalar = sqrt(2.0*q)*tmp1 ! From eq.(4.129) (ok)

x_dot_scalar = -tmp1*tmp3 ! From eq.(4.129) (ok)

y_dot_scalar = sqrt(2.0*q)*tmp3 ! From eq.(4.129) (ok)

endif

! hyperbolic orbit case:

if (conic .eq. +1) then

a = q/(1.0 - e) ! here, "a" is well defined

tmp1 = solve_hyper_eq(ma, e) ! Call function

tmp2 = -a * sqrt(e*e - 1.0) ! From eq.(4.123) (=b)

tmp3 = -a * (e * cosh(tmp1) - 1.0) ! From eq.(4.120) (=r)

tmp4 = sqrt(-mu/a) / tmp3 ! From eq.(4.122) (hdot)

x_scalar = a * (cosh(tmp1) - e) ! From eq.(4.123) (ok)

y_scalar = tmp2 * sinh(tmp1) ! From eq.(4.123) (ok)

x_dot_scalar = a * tmp4 * sinh(tmp1) ! From eq.(4.123) (ok)

y_dot_scalar = tmp2 * tmp4 * cosh(tmp1) ! From eq.(4.123) (ok)

endif

! rotation from star centeret coordinate system to the orbit-plane

! coordinate system (using capo, i and omega)

! auxiliary quantities:

z1 = cos(omega)*cos(capo)

z2 = cos(omega)*sin(capo)

z3 = sin(omega)*cos(capo)

z4 = sin(omega)*sin(capo)
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d11 = z1 - z4*cos(i) ! P_x component

d12 = z2 + z3*cos(i) ! P_y component

d13 = sin(omega)*sin(i) ! P_z component

d21 = -z3 - z2*cos(i) ! Q_x component

d22 = -z4 + z1*cos(i) ! Q_y component

d23 = cos(omega)*sin(i) ! Q_z component

! calc. comp. of pos. and vel. using eq. (4.110, Boulet p.158):

x_h = d11*x_scalar + d21*y_scalar

y_h = d12*x_scalar + d22*y_scalar

z_h = d13*x_scalar + d23*y_scalar

vx_h = d11*x_dot_scalar + d21*y_dot_scalar

vy_h = d12*x_dot_scalar + d22*y_dot_scalar

vz_h = d13*x_dot_scalar + d23*y_dot_scalar

end program kep2car
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A.4 kepler.pro

Pro Kepler

; Goal: Solve elliptic Kepler equation with 3 methods:

; 1) N-R method (quadriatic convergence)

; 2) Hally’s method (cubic convergence)

; 3) 3-method (quartic convergence)

; 1), 2) and 3) are compared to each other by plotting either

; (# iterations, x_n+1) and/or (# iterations, delta eps)

; After comparing the 3 methods, begin to investigate the initial

; (ma, e)-parameter space for which each of the three methods converge and plot

; a surface plot of (ma, e, #iterations used).

ma_min = 0.0D

ma_max = 3.0*!DPI

; find increment function for mean anomaly, dma

nma = 70

dma = (ma_max - ma_min)/nma

e_min = 0.0D

e_max = 1.0D

; find increment function for eccentricity, de

necc = 70

de = (e_max - e_min)/necc

; variable parameters

eps = 1.0E-12 ; tolerance for iteration accuracy

maxit = 20 ; maximum number of iterations

alpha = 0.0d0 ; alpha parameter for initial guess

beta = 1.0d0 ; beta parameter for initial guess

iter_array_nr = IntArr(nma, necc)

iter_array_halley = IntArr(nma, necc)

iter_array_quartic = IntArr(nma, necc)

arr_x = DblArr(nma)

arr_y = DblArr(necc)
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; generating mean anomaly array

For i = 0, nma-1 Do Begin

ma = i*dma + ma_min

arr_x(i) = ma

Endfor

; generating eccentricity array

for j = 0, necc-1 do begin

e = j*de+e_min

arr_y(j) = e

endfor

for i = 0, nma-1 do begin ; mean anomaly loop

for j = 0, necc-1 do begin ; eccentricity loop

iter_array_nr(i,j) = Solve_kep_NR(arr_x(i), arr_y(j),eps,maxit,alpha,$

beta)

iter_array_halley(i,j) = Solve_kep_halley(arr_x(i),arr_y(j),eps,maxit,$

alpha,beta)

iter_array_quartic(i,j) = Solve_kep_quartic(arr_x(i), arr_y(j),eps,$

maxit,alpha,beta)

endfor

endfor

;**************************************************************

; Newton-Raphson - plotting section

Set_plot, ’ps’

!X.Margin = [2,0]

!Y.Margin = [2,2]

;Device, filename=’NR_surf_a1.0_b0.0best.eps’, /Encapsulated

Device, filename=’NR_surf_a1.0_b0.0_new.eps’, /Encapsulated

surface, iter_array_nr, arr_x, arr_y, CharSize=3.0, XTITLE=’!3Mean Anomaly’, $

ZTITLE=’!3Iterations’, YTITLE=’!3Eccentricity’, $

XRANGE=[ma_min, ma_max], $

/XSTYLE, TITLE=’!3 !4a=!N1.0, !4b=!N0.0!3’

Device, /CLOSE

!X.Margin = [6,1]

!Y.Margin = [3,1]
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Device, filename=’NR_cont_a1.0_b0.0best.eps’, /Encapsulated

Contour, iter_array_nr, arr_x, arr_y, /Follow, CharSize=1.5, $

XTITLE=’Mean Anomaly’, YTITLE=’Eccentricity’, $

XRANGE=[0.0, ma_max], YRANGE=[-0.05, 1.05], /YSTYLE, $

;Nlevels=20

;C_LABELS = [1,0,1,1,1,1,1,1,1,1,1], /DOWNHILL, $

C_LABELS=[1,1,1,1,1,1,1,1,1,1,1,1,1],$

LEVELS = [1,2,3,4,5,6,7,8,9,10,11,12,13];, /DOWNHILL

XYOUTS, 0.05, -0.03, ’!3 !4a=!N1.0, !4b=!N0.0!3’

Device, /CLOSE

;**************************************************************

;**************************************************************

; Halley Area - plotting section

Set_Plot, ’ps’

!X.Margin = [2,0]

!Y.Margin = [2,2]

Device, filename=’H_surf_a1.0_b0.0best.eps’, /Encapsulated

surface, iter_array_halley, arr_x, arr_y, XTITLE=’!3Mean Anomaly’, $

ZTITLE=’!3Iterations’, CharSize=3.0, XRANGE=[0.0, ma_max], $

/XSTYLE, YTITLE=’!3Eccentricity’, $

TITLE=’!3 !4a=!N1.0, !4b=!N0.0!3’

Device, /CLOSE

!X.Margin = [6, 1]

!Y.Margin = [3, 1]

Device, filename=’H_cont_a1.0_b0.0best.eps’, /Encapsulated

Contour, iter_array_halley, arr_x, arr_y, /Follow, CharSize=1.5, $

XTITLE=’Mean Anomaly’, YTITLE=’Eccentricity’, $

XRANGE=[0.0, ma_max], YRANGE=[-0.05, 1.05], /YSTYLE, $

;Nlevels=20

;C_LABELS = [1,0,1,1,1,1,1,1,1,1,1], /DOWNHILL, $

C_LABELS=[1,1,1,1,1,1,1,1,1,1,1,1,1],$

LEVELS = [1,2,3,4,5,6,7,8,9,10,11,12,13];, /DOWNHILL
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XYOUTS, 0.05, -0.03, ’!3 !4a=!N1.0, !4b=!N0.0!3’

Device, /CLOSE

;***************************************************************

;***************************************************************

; Halley’s quartic method - plotting section

Set_plot, ’ps’

!X.Margin = [2,0]

!Y.Margin = [2,2]

;Device, filename=’Qua_surf_a1.3_b0.0.eps’, /Encapsulated

Device, filename=’test.eps’, /Encapsulated

surface, iter_array_quartic, arr_x, arr_y, XTITLE=’!3Mean Anomaly’, $

ZTITLE=’!3Iterations’, YTITLE=’!3Eccentricity’, $

CharSize=3.0, XRANGE=[ma_min, ma_max], /XSTYLE, $

TITLE=’!3 !4a=!N1.0, !4b=!N0.0!3’

Device, /CLOSE

!X.Margin = [6, 1]

!Y.Margin = [3, 1]

Device, filename = ’Qua_cont_a0.0_b1.0.eps’, /Encapsulated

Contour, iter_array_quartic, arr_x, arr_y, /Follow, CharSize=1.5, $

XTITLE=’Mean Anomaly’, YTITLE=’Eccentricity’, $

XRANGE=[-0.05, ma_max], YRANGE=[-0.05, 1.05], /XSTYLE, /YSTYLE, $

;Nlevels=20

;C_LABELS = [1,0,1,1,1,1,1,1,1,1,1], /DOWNHILL, $

C_LABELS=[1,1,1,1,1,1,1,1,1,1,1,1,1],$

LEVELS = [1,2,3,4,5,6,7,8,9,10,11,12,13];, /DOWNHILL

XYOUTS, 0.05, -0.03, ’!3 !4a=!N0.0, !4b=!N1.0!3’

Device, /CLOSE

;****************************************************************

end

function Solve_kep_NR, ma,e,eps,maxit,alpha,beta
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ea = alpha*ma + beta*e

func1 = ea - (e*sin(ea)) - ma

iter = 1

while ( (ABS(func1) GE eps) AND (iter LT maxit) ) do begin

func1 = ea - (e * sin(ea)) - ma

df = 1.0D - e*cos(ea)

ea = ea - (func1/df)

;print, FORMAT = ’(f17.15)’, ea

iter = iter + 1

endwhile

return, iter

end

function Solve_kep_halley, ma,e,eps,maxit,alpha,beta

ea = alpha*ma + beta*e

func1 = ea - (e*sin(ea)) - ma

iter = 1

while ( (ABS(func1) GE eps) AND (iter LT maxit) ) do begin

func1 = ea - (e*sin(ea)) - ma

df = 1.0 - e*cos(ea)

ddf = e*sin(ea)

temp = (func1 * ddf) / (0.5*df)

ea = ea - ( (func1) / (df - temp) )

iter = iter + 1

endwhile

return, iter

end

function Solve_kep_quartic, ma,e,eps,maxit,alpha,beta

ea = alpha*ma + beta*e

f = ea - (e*sin(ea)) - ma

iter = 1
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while ( (ABS(f) GE eps) AND (iter LT maxit) ) do begin

f = ea - (e*sin(ea)) - ma

temp1 = e*sin(ea); second derivative of f

temp2 = e*cos(ea); third derivative of f

df = 1.0 - temp2 ; first derivative of f

eps1 = -f/df

eps2 = -f/(df + 0.5*eps1*temp1)

;ea = ea - f/(df + 0.5*eps2*(temp1 + 0.333333333333333*eps2*temp2) )

eps3 = -f/( df + 0.5*eps2*temp1 + ((eps2*eps2*temp2)/6.0))

ea = ea + eps3

iter = iter + 1

endwhile

return, iter

end
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Poster

Poster (next page) presented at the annual DPS/AAS conference meeting, Cam-
bridge (UK), September 2005. T.C.Hinse, U.G.Jørgensen (BAAS, v.37 p.3).
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