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Summary in English 

Diffusion MRI as a decision making tool for in-room MRI-guided 

radiotherapy  

Magnetic resonance imaging (MRI) plays an increasing role in radiotherapy (RT) as it 

provides excellent soft tissue contrast. One of the most recent technical advances in RT is 

the hybrid MRI linear accelerator (MRI-linac), an integrated MRI scanner and linear 

accelerator, which enables adaptation of the treatment to match the patient’s anatomy-of-

the-day. In addition, functional MRI techniques such as diffusion-weighted MRI (DWI) 

provide biological information of body tissue, and hereby holds great potential for 

biologically guided RT.  

DWI allows derivation of quantitative parameters such as the apparent diffusion 

coefficient (ADC), which may be used to identify radio-resistant regions within the 

tumour, and are potential biomarkers for response to RT. DWI might thus be used as a 

tool to guide treatment decisions in the clinic and hereby help personalizing the treatment 

to the individual patient.  

Before DWI can become a decision making tool in the clinic, a technical validation must be 

performed to ensure consistency of biomarker measurements in terms of inter- and intra-

observer variation, repeatability and reproducibility. Further, a clinical validation is 

required to establish a relationship between biomarkers and clinical outcomes. With the 

overall goal of translating DWI into clinical use, this thesis addresses some of the 

challenges in relation to a technical and clinical validation of DWI.  

Study 1: Delineation of regions of interest for ADC measurements 

ADC measurements require delineation of a region of interest (ROI), which is observer 

dependent and time consuming if performed manually. Study 1 presented a simple, 

threshold-based semi-automatic delineation tool for ADC measurements, and evaluated its 

performance in patients with rectal cancer. Compared with manual delineation, the tool 

showed a slightly smaller intra-observer ADC variation. Moreover, it was capable of 

detecting temporal changes in ADC larger than the repeatability, indicating that the 

observed ADC changes are true changes and not only a consequence of measurement 

uncertainty. Thus, the tool may become useful for a technical validation of ADC.  
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Study 2: Multi-centre ADC reproducibility  

Varying methods for ADC derivation between centres (i.e. hospitals or research 

institutions) lead to a poor multi-centre ADC reproducibility and hamper the technical 

validation of ADC. Study 2 evaluated the ADC variation between nine MRI-linac centres 

with respect to two categories: delineation and calculation. MRI scans were shared 

between the centres, and each centre performed 1) delineation of ROIs and 2) ADC 

calculation within the delineated ROIs from all centres using the centre’s local calculation 

method. A correlation between delineation variation and ADC variation was observed, 

underlining the need for and importance of a reduction of the delineation uncertainty. 

Interestingly, the calculation-related ADC variation was even larger than delineation-

related ADC variation, and was mainly driven by different choices of b-values. Other 

important factors were the software implementation and whether the calculation was 

performed voxel-wise or based on the mean DWI signal within the ROI. It is the hope that 

these findings will be useful when designing future studies of ADC as a biomarker, 

especially in a multi-centre setting.  

Study 3: Prediction of response using longitudinal DWI 

The MRI-linac has made daily acquisition of DWI feasible, however, the literature 

investigating the relationship between longitudinal DWI acquired during the RT course 

and clinical outcome is sparse. Study 3 investigated the value of longitudinal DWI for 

prediction of overall survival in patients with pancreatic cancer using both a standard, 

model-based method (ADC) and a model-free decomposition method for parameter 

derivation. The best prediction model for overall survival based on cross-validation 

included two DWI parameters, both derived using decomposition of the DWI signal. 

Moreover, the best model included both baseline information and DWI changes during the 

RT course, and hence demonstrated potential value of longitudinal DWI for response 

prediction.  

Conclusions 

This thesis has addressed important steps in both technical and clinical validation of DWI. 

It was shown that semi-automatic delineation using a could be a way to improve 

consistency of ADC measurements and save time compared to manual delineation. 

Moreover, recommendations for improved multi-centre reproducibility of ADC were 

provided. These findings can be seen as initiatives to improve the repeatability and 

reproducibility of ADC measurements, and might be useful in future validation studies of 
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ADC as a response biomarker. Furthermore, the prognostic value of longitudinal DWI for 

prediction of overall survival in patients with pancreatic cancer was demonstrated, 

indicating that longitudinal DWI could potentially be useful for prediction of response.  

Perspectives 

In the future, DWI could become a tool to guide treatment interventions based on the 

patients’ individual response to the treatmen, or dose escalation to radio-resistant regions 

within the tumour. This could potentially result in improved probability of tumour control 

and/or reduced toxicity for the patients.  
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Dansk resumé 

Diffusions-vægtet MR billeddannelse som et værktøj til 

beslutningstagning i et in-room, MR-vejledt stråleterapiforløb.  

Magnetisk resonans billeddannelse (MR) bliver i stigende grad brugt i stråleterapi (RT), 

da MR giver en god kontrast mellem forskelligt blødt væv i kroppen. En af de nyeste 

teknologiske fremskridt i RT er udviklingen af en hybrid MR lineær accelerator (MR-linac), 

en teknologi som muliggør daglig tilpasning af behandlingen til patientens anatomi. 

Desuden kan funktionelle MR-teknikker som diffusions-vægtet MR (DWI) give information 

om patientens biologi, og dermed potentielt bruges til at tilpasse behandlingen vejledt af 

biologisk information.  

Det er muligt at udtrække kvantitative parametre fra DWI, som fx parameteren ”apparent 

diffusion coefficient” (ADC). Sådanne parametre kan bruges til at definere områder i en 

tumor som er særligt resistente over for RT, og de er mulige biomarkører for respons til 

RT. Af disse grunde kan DWI potentielt bruges til at vejlede beslutninger i RT-forløbet, og 

hermed bidrage til at individualisere behandlingen til den enkelte patient.  

Før DWI kan bruges i klinisk sammenhæng er det nødvendigt at sikre konsistens i 

udtrækningen af biomarkører fra DWI i form af inter- and intra-observatør variation, 

repeterbarhed og reproducerbarhed (teknisk validering). Derudover skal der 

demonstreres en sammenhæng mellem biomarkører og kliniske endepunkter (klinisk 

validering). Denne afhandling adresserer nogle af udfordringerne forbundet med en 

teknisk og klinisk validering af DWI, med det overordnede formål at indføre DWI som et 

værktøj i RT-behandlingen. 

Studie 1: Indtegning af relevante områder for ADC-beregning 

ADC beregning kræver for det meste manuel indtegning af relevante områder (ROIs) 

hvilket både er tidskrævende og forbundet med usikkerhed. Studie 1 præsenterede et 

semi-automatisk indtegnings-værktøj, og testede det for patienter med endetarmskræft. 

Sammenlignet med manuel integning havde værktøjet en mindre intra-observatør ADC-

variation. Derudover var værktøjet i stand til at udtrække tidslige forandringer i ADC som 

var større end usikkerheden forbundet med målingerne. Dette indikerer, at 

forandringerne er ”rigtige” forandringer, og ikke blot et resultat af måleusikkerhed. 

Dermed kan værktøjet potentielt gavne en teknisk validering af ADC. 
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Studie 2: Multi-center ADC reproducerbarhed 

Varierende metoder til udtrækning af ADC giver en ringe multi-center reproducerbarhed 

(mellem hospitaler og forskningsinstitutioner) og vanskeliggør en teknisk validering af 

ADC. Studie 2 undersøgte ADC variationen mellem ni MR-linac-centre i relation til 

indtegning og beregning. MR scanninger blev delt mellem centrene, og hvert center 

udførte 1) indtegning af ROIs og 2) beregning af ADC-værdier inden for ROIs fra alle centre 

ved brug af lokale beregningsmetoder. En sammenhæng blev observeret mellem 

indtegnings-variationen og ADC-variationen, hvilket understreger vigtigheden af at 

reducere integnings-usikkerheden. Studiet viste også, at den beregnings-relaterede ADC 

usikkerhed var større end den indtegnings-relaterede ADC-usikkerhed, og primært 

skyldtes brug af forskellige b-værdier. Andre vigtige faktorer var forskellige software-

implementeringen og hvorvidt ADC blev beregnet ud fra en voxel-vis metode eller ud fra 

middel-DWI-signalet indenfor den indtegnede ROI. Resultaterne fra dette studie kan 

forhåbentligt bruges, når fremtidige ADC-studier skal designes, og kan især blive nyttige 

for multi-center studier.  

Studie 3: Forudsigelse af respons ved brug af longitudinal DWI 

MR-linac’en har muliggjort daglige DWI scanninger (longitudinal DWI), men der er stadig 

brug for undersøgelser af sammenhængen mellem longitudinal DWI og kliniske 

endepunkter, da litteraturen er sparsom på området. Studie 3 undersøgte den 

prognostiske værdi af longitudinal DWI til at forudsige overlevelsen af patienter med kræft 

i bugspytkirtlen, ud fra både en model-baseret metode (ADC) og en model-fri 

dekompositions-metode. Den bedste model for overlevelse baseret på krydsvalidering 

indeholdt to parametre, begge udledt ved hjælp af dekompositions-metoden. De to 

parametre repræsenterede henholdsvis baseline-information og tidslig udvikling af DWI 

henover RT-forløbet, hvilket illustrerer den mulige fordel ved longitudinal DWI i 

forbindelse med forudsigelse af respons. Studie 3 bidrog til den kliniske validering af DWI 

ved at vise en sammenhæng mellem longitudinal DWI og et klinisk endepunkt.  

Konklusioner 

Denne afhandling har adresseret vigtige problemstillinger i forbindelse med en teknisk og 

klinisk validering af DWI. Studie 1 viste at semi-automatisk indtegning kan bidrage til 

konsistente ADC-målinger og potentielt spare tid sammenlignet med manuel indtegning. 

Studie 2 bidrog med anbefalinger for DWI-analyse med det formål at forbedre ADC-

reproducerbarheden mellem centre. Begge studier kom med tiltag, som kan blive nyttige 
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for den tekniske validering af ADC. Derudover demonstrerede studie 3 den prognostiske 

værdi af longitudinal DWI for forudsigelse af overlevelse for patienter med kræft i 

bugspytkirtlen, hvilket indikerer at longitudinal DWI kan blive et nyttigt redskab til 

forudsigelse af behandlingsrespons.  

Perspektiver 

I fremtiden kan DWI potentielt bruges som et redskab til at træffe beslutninger i løbet af 

RT-behandlingen baseret på patienternes individuelle behandlingsrespons, eller til at 

definere områder i tumoren, som er mindre følsomme over for RT og derfor kræver en 

øget dosis. Dette vil potentielt kunne forbedre resultatet af behandlingen og reducere 

mængden af bivirkninger for patienterne.  
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1 Introduction 

 Radiotherapy for cancer treatment 

Cancer is one of the main causes of death worldwide, with 19.3 million new cancer cases 

and 10.0 million deaths occurring each year [1]. The prognosis and the treatment 

strategies vary depending on the type and stage of the cancer. Treatment can include 

surgery, chemotherapy, radiotherapy (RT), immunotherapy, hormonal therapy or 

combinations of these. RT is one of the most common treatments for cancer, and is 

received by approximately 50% of cancer patients [2]. RT can be used for several purposes, 

including definitive treatment, down-staging of the tumour before surgery (neo-adjuvant), 

elimination of remaining microscopic disease after surgery (adjuvant), and palliative 

treatment. It is a local treatment, meaning that it only affects the irradiated region, and not 

the entire body (in contrast to systemic treatments such as chemotherapy).  

In RT, ionizing radiation (photons or particles) damages the DNA in irradiated cells, which 

can lead to cell death [3]. Cells have the ability to repair these damages, however, the repair 

rate is decreased in cancer cells. The total prescribed radiation dose is often delivered in 

small, daily fractions, which allow the normal cells to repair the damage on their DNA 

between the fractions. The slight difference in repair rates gives a higher probability of 

tumour control compared to side effects at a given radiation dose, which is referred to as 

the “therapeutic ratio” of RT [3]. 

The aim of RT is to deliver as high a radiation dose as possible to the tumour, while keeping 

the dose to the surrounding healthy tissue and organs at risk (OAR) as low as possible to 

minimize the risk of side effects (toxicity) [4] [5]. This requires both an accurate definition 

of the position of the tumour and the OARs, and a precise dose delivery. Technological 

advances such as intensity-modulated RT have widened the therapeutic ratio of RT 

treatment, since it allows shaping the dose distribution to the tumour while sparing OARs 

[2,6,7]. Moreover, the use of image-guided RT (IGRT) ensures a correct positioning of the 

patient using pre-treatment imaging and makes it possible to correct for organ motion 

before each delivered RT fraction [8].  

The standard IGRT workflow includes a treatment planning phase and treatment delivery 

phase, as illustrated in Figure 1.1. In the planning phase, the patient is scanned in order to 

outline the tumour and the OARs. The standard imaging modality is computed tomography 

(CT), but often, it is supplemented by magnetic resonance imaging (MRI) or position 

emission tomography to improve visibility of the tumour. Regarding tumour delineation,  
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Figure 1.1. Overview of the standard image-guided radiotherapy workflow 

 

there are three important volume definitions in RT: the gross tumour volume (GTV), the 

clinical target volume (CTV), and the planning target volume (PTV) [9]. The GTV contains 

the visible tumour, while the CTV comprises the GTV and a margin to account for 

microscopic disease spread not visible on scans. Another margin is added to the CTV to 

account for patient motion (including internal target motion) and uncertainties in the 

treatment planning and delivery, resulting in the PTV [9]. The dose plan is optimized such 

that the PTV receives the prescribed target dose, while dose constraints to OARs are met. 

Before each delivered fraction, a cone-beam CT scan is acquired and compared to the 

planning CT image, to make sure that the same patient positioning is used as during 

treatment planning.  

The poor soft-tissue contrast of CT limits the ability to accurately define the tumour. 

Further, it makes it difficult to detect movement of OARs between treatment planning and 

delivery, which can lead to irradiation of normal tissue. MRI offers a much better soft tissue 

contrast compared to CT, and might thus aid detection of organ motion and reduction of 

treatment margins. On top of this, it enables so-called functional MRI, which holds great 

potential for personalization of RT treatment. These advantages have motivated a 

movement towards in-room MRI-guided RT.  

 MRI-guided RT on the MRI-linac 
One of the most recent advances in RT is the introduction of the hybrid MRI linear 

accelerator (MRI-linac), which is an integrated MRI scanner and linear accelerator [10–

12]. The MRI-linac technology enables MRI-guided RT, utilizing the superior soft tissue 

contrast of MRI compared to CT [13]. Due to the high visibility of the tumour and OARs on 

MRI scans, it is possible to adjust the treatment plan to match the daily anatomy of the 

patient, while the patient is on the treatment table. This can potentially reduce treatment 

margins, resulting in smaller irradiated volumes, and consequently less toxicity for the 

patient. Further, it may allow dose escalation to the tumour to increase the probability of 

tumour control while meeting OAR constraints [13,14]. Another advantage is the ability to 

manage intra-fractional motion during beam delivery [13]. The soft tissue contrast makes  
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Figure 1.2. Overview of the MRI-guided adaptive RT workflow on the MRI-linac. Inspired by 
Bertelsen et al. [12]. 

 

MRI-guided RT especially advantageous for tumours in soft tissue regions, such as the 

pelvic and abdominal regions [15–17]. These regions are also prone to motion, due to 

bladder filling, intestinal movement or gas, and therefore, MRI-guided motion 

management can be an advantage.  

The MRI-guided adaptive RT workflow consists of both offline and online treatment 

planning, prior to delivery of the dose, as illustrated in Figure 1.2 [11,12]. The main 

difference from the standard IGRT workflow is the online plan adaptation. This process 

includes re-delineation of the tumour and OARs on the session MRI to match the daily 

anatomy of the patient, followed by re-calculation of the dose plan. A validation MRI scan 

is acquired to validate the adapted plan, e.g. to check if the patient has moved during the 

online adaptation process. If the adapted plan is satisfactory, the treatment is delivered. 

During treatment delivery, the MRI scanner can be used for real-time motion monitoring.  

The MRI-linac technology is relatively new and has a lot of unrealized potential. The 

number of patients treated worldwide is still relatively small, and consequently, 

collaboration between MRI-linac centres is needed to speed up the implementation and 

technical development of MRI-linac-based RT. One example of such a collaboration is the 

MOMENTUM study (multi-outcome evaluation of radiation therapy using the MRI-

linac)[18], an international partnership which has been formed between the vendor of one 

of the commercially available MRI-linac systems, Elekta (Elekta AB, Stockholm, Sweden), 

and several hospitals. Within the MOMENTUM study, technical and clinical patient data is 

collected from participating hospitals worldwide, to support multi-centre research.   
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 Biologically guided RT 
Currently, advances in MRI-guided RT mainly focus on adaptation of the RT treatment to 

the patient anatomy based on high-quality anatomical MRI images. However, in addition 

to anatomical images, MRI also provides information about the tumour biology through 

functional MRI techniques, which opens new pathways for treatment personalization 

based on tumour biology [19].  

Information on tumour biology is of great relevance for RT as the sensitivity of the tissue 

to RT may relate to microscopic processes such as hypoxia, perfusion and diffusivity [20]. 

By escalating the dose to radio-resistant tumour sub-regions identified based on biological 

information, the probability of tumour control might be improved. This has led to the idea 

of a biological target volume (BTV) described by Ling et al. in 2000 [21] (Figure 1.3). The 

use of a heterogeneous dose distribution within the GTV to match the tumour 

heterogeneity is also referred to as dose painting [22,23].  

Another possibility is to use functional MRI to monitor or predict treatment response 

during the course of RT. RT-induced changes in the tissue microstructure occur at an early 

stage during the RT course, before becoming visible on anatomical images [24]. The ability 

to assess the effect of RT in both the tumour and the healthy tissue during the course of RT 

would potentially allow treatment interventions in order to improve the tumour control 

and reduce the toxicity [20].  

Dose painting and treatment interventions based on treatment response are examples of 

biologically guided RT. Here, biologically guided RT is defined as the use of biological 

images to guide treatment decisions before or during the RT course including adaptation 

of the dose distribution to match the tumour heterogeneity. Both dose painting and 

response monitoring and prediction have become feasible with the daily acquisition of  

 

Figure 1.3. Schematic drawing illustrating the biological target volume (BTV). Inspired by Beaton 
et al. [25].  
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functional MRI on the MRI-linac. The “dream” scenario would be to integrate these 

concepts into the MRI-guided adaptive RT workflow, to allow biologically guided RT 

[20,22,26].  

 Diffusion-weighted MRI  
Based on the current evidence, the most promising functional MRI technique for 

biologically guided RT is considered to be diffusion-weighted MRI (DWI) [26]. DWI allows 

quantitative assessment of the tumour biology in a non-invasive way, and can be acquired 

on the MRI-linac [27]. Further, it has been well-researched and has shown potential to be 

used for both dose painting and response prediction [20,26,28]. 

The DWI signal is sensitive to random motion of water molecules in the body tissue (i.e. 

diffusion). The motion of water molecules is impeded by obstacles such as cell membranes, 

and thus, it indirectly provides information of the tissue microstructure. For example, a 

low cell density will allow the water molecules to move more freely compared to a high 

cell density, resulting in a change of in diffusivity, as illustrated in Figure 1.4 [29].  

DWI allows extraction of quantitative information about the water motion through the 

application of mathematical models or decomposition-based analysis methods [30,31]. 

The most commonly derived parameter is the “apparent diffusion coefficient” (ADC) 

[32,33]. The ADC indirectly provides information about the tissue microstructure such as 

the cell density [34], and moreover, changes in the ADC have been observed during RT, 

potentially reflecting RT-induced microstructural changes in the tissue [35]. For these 

reasons, the ADC is considered a promising quantitative imaging biomarker (see section 

1.6) for biologically guided RT [26]. 

 

Figure 1.4. Diffusion of water molecules within and between cells in a region of high cell density 
(a), and a region of low cell density (b). Cells with irregular shapes represent cells with damaged 
cell membranes. The small, black dots represent water molecules, and the arrows represent their 
motion, which is hindered by cell membranes. Inspired by: Koh et al. [29] 
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 The DWI signal and quantitative analysis 

1.5.1 The MRI signal 
The MRI signal originates from the hydrogen atoms (present in water and fat molecules in 

the body), or more specifically, from the hydrogen nuclei, i.e. protons. The protons have a 

“spin” and therefore a magnetic moment, which makes them behave as small magnets. Due 

to the MRI scanner’s strong, homogeneous magnetic field (the B0-field), the magnetic 

moments of the protons are partly aligned inside the scanner forming a net magnetization, 

and furthermore, they precess, i.e. rotate at a frequency that is proportional to the 

magnetic field strength. By applying radiofrequency (RF) pulses at a frequency matching 

the precession frequency, it is possible to “push” the net magnetization to point in a 

direction perpendicular to the B0-field (excitation). After excitation, the net magnetization 

returns to its original state (relaxation). During the relaxation process, the precession 

causes temporal changes in the magnetic field, which induce a current in the scanner’s 

receiver coils. This signal is used to form the MR images. The spatial information needed 

to reconstruct MR images is obtained by the use of magnetic field gradients (i.e. spatial 

variations in the magnetic field) within the scanner, due to which the protons’ precession 

frequency becomes dependent on their position. A detailed description of the principles 

behind MRI is provided by Nishimura [36]. 

1.5.2 The DWI signal 

The DWI signal reflects the random motion of water molecules in the imaged tissue, also 

known as Brownian motion. The macroscopic consequence of Brownian motion is the 

spread of a substance from areas with high concentration of the substance to areas of low 

concentration, known as diffusion. The ‘degree’ of diffusion can be described by the 

diffusion coefficient, D (a proportionality constant between the flux of the substance and 

the concentration gradient) [37], which depends on the size of the substance particles, the 

temperature and the surrounding media.  

In DWI, the self-diffusion of water within the tissue is measured, as described in detail by 

Le Bihan et al. [38]. The self-diffusion coefficient of water is approximately 3⋅10-3 mm2/s 

at body temperature. In body tissue, the average displacement of water molecules within 

a given time interval is typically shorter compared to free diffusion, as the motion is 

impeded by barriers such as cell membranes [29,39]. More precisely, the motion can be 

“hindered” or “restricted” as described in detail by White et at. [40]. Thus, the (hindered 

or restricted) motion of water molecules can be used to probe the microstructure of the 

tissue.  
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Figure 1.5. Stejskal-Tanner sequence for acquisition of diffusion-weighted MRI (DWI). The figure 
shows the application of radio-frequency (RF) pulses and diffusion-sensitizing magnetic field 
gradients to obtain a diffusion-weighted signal. Inspired by Koh et al. [29].  

 

DWI is typically acquired using a Stejskal-Tanner DWI sequence [33]. Here, the signal is 

sensitized to diffusion using two so-called diffusion sensitizing gradients, as illustrated in 

Figure 1.5. The first gradient causes a dephasing of the magnetic moments of the protons, 

which results in a signal loss. The second gradient causes re-phasing of the magnetic 

moments, which leads to recovery of the signal. Protons that move away from their original 

position in the time between the two gradients will not be fully re-phased, and therefore, 

the signal will not be fully recovered. Thus, the motion of the water molecules is linked to 

signal loss. For this reason, dark regions in DWI scans represent a high degree of diffusion, 

and bright regions represent a low degree of diffusion.  

1.5.3 The ADC model 

The sensitivity of the DWI signal to diffusion depends on the strength (𝐺) and duration (𝛿) 

of the diffusion-sensitizing gradients, as well as the time between them (Δ) [33]. These 

factors are included in one factor, referred to as the “b-value”:   

𝑏 = 𝛾2𝐺2𝛿2 (Δ −
𝛿

3
) 

Here, 𝛾 is the gyromagnetic ratio describing the precession frequency of protons at a given 

field strength. The b-value can be altered on a clinical MRI scanner, to obtain images of 

different diffusion-weighting by using different gradient strengths, duration and times. 

With increasing b-values, the DWI signal becomes more sensitive to diffusion, and as a 

result, the DWI signal decays as a function of b-values (Figure 1.6). By acquiring a series of 

images with varying b-values, it is possible to use mathematical models to derive 

quantitative information from the DWI signal.  
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Figure 1.6. Schematic illustration of the DWI signal as a function of b-values. A DWI scan of a 
patient with locally advanced pancreatic cancer is used as an example.  

 

The most commonly used model is the mon-exponential model, which is used for 

derivation of the ADC [32]: 

𝑆 = 𝑆0 ⋅ 𝑒−𝑏⋅𝐴𝐷𝐶  

Here, 𝑆0 represents the DWI signal at b=0 s/mm2. The ADC differs from the diffusion 

coefficient D, as the ADC is a statistical parameter describing the average motion of all 

water molecules in a voxel, including those experiencing hindered or restricted motion 

due to boundaries. Thus, it describes the “apparent diffusion” within a voxel. The ADC can 

be calculated for each image voxel, resulting in so-called “ADC maps”, which may be useful 

for biological guided RT.  

Other mathematical models for DWI analysis include the intra-voxel incoherent motion 

(IVIM) model [41], and the kurtosis model [42,43]. The IVIM model provides information 

of both diffusion and perfusion wheras the kurtosis model might provide complementary 

information about the microstructural organization of the tissue by taking into account the 

non-gaussian diffusion behaviour resulting from the restricted water motion. However, 

parameters derived using these models have been less investigated compared to the ADC 

[30].  

 Biomarkers and translational gaps 
A quantitative imaging biomarker (QIB) is defined by the quantitative imaging biomarker 

alliance (QIBA) as “an objective characteristic derived from an in vivo image measured on 

a ratio or interval scale as an indicator of normal biological processes, pathogenic  
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Figure 1.7. Overview of the imaging biomarker roadmap for validation of imaging biomarkers. 
Inspired by: O’Connor et al. [44]. 

 

processes, or a response to a therapeutic intervention” [45]. QIBs have many applications 

in oncology, such as detection and characterization of tumours, delineation of target 

volumes, and assessment of response to treatment [20]. Biomarkers can be prognostic or 

predictive, two concepts that are often confused [46]. A biomarker is prognostic if there is 

a relation between the biomarker and the prognosis of the patients regardless of 

treatment. A predictive biomarker can be used to predict response to a specific treatment, 

i.e. it can be used to predict which patients will benefit from an experimental treatment 

compared to a standard treatment.  

All biomarkers must be validated before they can be used to guide decisions in a clinical 

setting. In 2017, a consensus group assembled by Cancer Research UK (CRUK) and the 

European Organisation for Research and Treatment of Cancer (EORTC) formulated an 

imaging biomarker “roadmap” of the validation process [44]. According to this roadmap, 

imaging biomarkers must cross two so-called “translational gaps” (Figure 1.7). By crossing 

the first gap, an imaging biomarker becomes a reliable tool to test hypothesis in clinical 

cancer research, and by crossing the second gap, it becomes a decision making tool in the 

clinic, meaning that it is used to guide the treatment of the patients.  

The roadmap proposes a validation process which runs in three parallel tracks, 

representing a technical validation, biological and clinical validation and cost effectiveness 

(Figure 1.7). The technical validation ensures that the biomarker can be measured with 

sufficient accuracy, repeatability and reproducibility. Accuracy refers to the “true” value of 

the biomarker, and can be studied by scanning objects (so-called phantoms) with known 

values of the biomarker. Repeatability refers to the agreement between repeated 
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measurements under identical conditions, while reproducibility refers to the agreement 

between measurements performed under different conditions, e.g. different observers or 

different equipment.  

The biological and clinical validation is needed to establish a relationship between the 

biomarker and the underlying biology and clinical outcomes. Importantly, the biomarker 

must demonstrate value in improving outcomes for the patients, which is referred to as 

clinical utility. The technical and the biological/clinical validation goes hand in hand, as 

each of them would be meaningless without the other. The validation process can be 

resource demanding, and therefore, the cost effectiveness of the biomarker must be taken 

into account [44]. 

Initial technical and biological/clinical validation might be performed as single-centre 

studies, however, large, multi-centre validation studies are needed in order to achieve 

more statistical power, and to establish multi-centre reproducibility and correlation to 

treatment outcome. To demonstrate the clinical utility of the biomarker, i.e. proof that the 

biomarker can lead to an improvement of outcomes for the patients, large, randomized 

trials are needed with treatment interventions guided by the biomarker.  

 Challenges regarding translation of DWI into clinical use  
DWI is currently the most promising functional MRI technique for biologically guided RT 

[26]. However, despite a substantial amount of research, DWI is still not used for this 

purpose in the clinic. In fact, it has not yet crossed the first translational gap in the imaging 

biomarker roadmap described in section 1.6. The first steps have been taken with respect 

to the biological and clinical validation. For example, ADC has been shown to correlate with 

cell density [34], and ADC values measured before treatment as well as changes in the ADC 

during the treatment course have been related to treatment response [26,35]. 

Furthermore, IVIM parameters have shown potential for response prediction [30,47]. 

However, most studies so far have been small and single-centre (i.e. performed within one 

single hospital or research institution), and have suffered from a large variation in 

methods, which makes it difficult to compare results. Hence, there is a need for validation 

of the findings in larger patient cohorts. With respect to the technical validation, DWI suffer 

from a poor multi-centre reproducibility due to the large variation of methods, and thus, a 

standardization of methods is needed. Further, there is a need for investigations of 

repeatability of DWI parameters using repeated scans (so-called test-retest scans), as the 

literature on this topic is limited [48].  
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Since the hardware of the MRI-linac differs from that of a diagnostic MRI scanner, it is 

necessary to perform a separate technical validation of DWI on the MRI-linac. In fact, a 

technical validation must be performed on any MRI system including MRI-linacs, since the 

scanner performance might differ between scanners, as recommended by QIBA [49]. So 

far, feasibility and accuracy of ADC has been demonstrated using phantoms [27,50], and 

recommendations for acquisition of DWI for ADC measurements on the MRI-linac has been 

published [51]. Investigations of the repeatability and reproducibility of DWI parameters 

measured on the MRI-linac, as well as the use of longitudinal DWI measurements for 

response prediction are wanted [26,48].  

 Outline of this thesis 
The aim of the thesis is to investigate methods for a technical and clinical validation of DWI 

in RT. The long term goal is to use DWI for biologically guided RT, e.g. by defining tumour 

sub-regions for dose escalation, or by predicting response in order to guide potential 

treatment interventions.  

During the Ph.D. project, three sub studies were conducted, of which the first two 

addressed the technical validation of DWI and the third addressed the clinical validation 

of DWI. Specifically, the sub studies aimed at: 

1. developing and testing a semi-automatic delineation tool for robust ADC 

measurements 

2. giving recommendations for improved ADC reproducibility 

3. investigating the capacity of longitudinal DWI to predict outcome in patients with 

locally advanced pancreatic cancer 

The thesis is structured in three parts. Part I addresses the technical validation of ADC, and 

includes the first two sub studies. Part II addresses the clinical validation of DWI 

parameters, and includes the third sub study. Both part I and part II include relevant 

background information about the topics. Part III includes a discussion of the findings and 

future perspectives. 
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PART  I 

 

Technical validation 
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2 Technical validation  

 Repeatability and reproducibility 
A technical validation of a biomarker implies among other things a determination of the 

biomarker repeatability and reproducibility. The repeatability describes the agreement of 

repeated measurements performed in the same patient using the same equipment over a 

short time period. It is usually reported using the repeatability coefficient (RC), defined as 

the smallest significant difference between repeated measurements performed under 

identical conditions (so-called test-retest measurements) [49]. It can be calculated from 

the within-subject standard deviation (wSD) using a 95% confidence interval (CI), as 

recommended by QIBA [49]: 

𝑅𝐶 = 1.96 ⋅ √2 ⋅ √𝑤𝑆𝐷2 = 2.77 ⋅ 𝑤𝑆𝐷 

Here, 𝑤𝑆𝐷2 is the within-subject variance which can be calculated from test-retest 

measurements (𝑥𝑖1 and 𝑥𝑖2) performed for 𝑁 subjects [52]:  

𝑤𝑆𝐷2 =
1

2𝑁
∑(𝑥𝑖1 − 𝑥𝑖2)2

𝑁

𝑖=1

 

Alternatively, if the measurement agreement varies with the magnitude of the 

measurement, the percentage wise RC can be calculated using the within-subject 

coefficient of variance (wCV) [49]: 

%𝑅𝐶 = 1.96 ⋅ √2 ⋅ √𝑤𝐶𝑉2 = 2.77 ⋅ 𝑤𝐶𝑉 

Here, 𝑤𝐶𝑉2 is calculated by [52]: 

𝑤𝐶𝑉2 =
1

𝑁
∑ (

(𝑥𝑖1 − 𝑥𝑖2)2

2 𝑥̅𝑖
2 )

𝑁

𝑖=1

 

Where 𝑥̅𝑖 denotes the mean of the replicate measurements for the 𝑖’th subject.   

It is important to know the RC of a biomarker in order to detect patient-related differences 

or changes over time. When following a patient using longitudinal DWI, the RC must be 

known in order to determine whether DWI changes reflect biological changes or merely 

measurement uncertainty. For example, if the %RC of ADC is 20%, a change in ADC of more 

than 20% between two time points can be considered a true change.  

Reproducibility is somewhat similar to repeatability, except that there are differences in 

the measurement procedures between the “repeated” measurements. Regarding DWI, the 
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measurements could for example be obtained using different MRI scanners or by different 

observers (see section 2.2). The reproducibility coefficient is expected to be larger 

compared to the repeatability coefficient [49]. Like the repeatability coefficient, the 

reproducibility coefficient represents the smallest significant difference between 

measurements. For example, the reproducibility of DWI must be known in order to 

compare DWI studies performed at different centres, where the measurements may have 

been performed using different MRI scanner types and DWI sequences.  

 Challenges regarding repeatability and reproducibility of ADC 
ADC measurements require acquisition of DWI with at least two, well-separated b-values, 

delineation of a region of interest (ROI) in which the ADC should be measured, and ADC 

calculation using either commercial or in-house software. Several factors related to both 

image acquisition, delineation and ADC calculation impact the repeatability and 

reproducibility of ADC measurements [35]. 

First of all, the repeatability reflects the image-related uncertainty, which is related to both 

image noise, patient movement and organ deformation between and during DWI 

acquisitions. Motion may cause misalignment of voxels between b-value images or 

between DWI acquisitions, and thus impact ADC measurements. Moreover, geometric 

distortions in DWI images can contribute to the image-related uncertainty, due to 

deformation of the images as well as false high-intensity or low-intensity regions [53].  

Another important source of ADC uncertainty is the delineation of a ROI. Delineation is 

normally performed manually, and gives rise to inter- and intra-observer ADC variability 

[54] [55]. Hence, the delineation process impacts both repeatability and reproducibility.  

Furthermore, the choice of ROI strategy has been shown to impact the ADC measurements, 

and is therefore relevant in relation to ADC reproducibility [56,57]. A ROI may be 

delineated on T1- or T2-weighted MRI which have a high level of anatomical details, or it 

can be delineated directly on DWI images [35]. In many investigations of ADC, delineation 

has been performed on high b-value DWI images, as they have a high tumour-to-

background ratio [35]. This type of ROI is generally considered to represent the region 

with the highest cell density within the tumour [34], and some studies have described it as 

the “viable tumour volume” (VTV), as necrotic and cystic regions are excluded [35,58]. The 

VTV differs from the GTV, which normally includes necrotic and cystic regions. From a 

theoretical point of view, since the VTV represents the region with the highest cell density, 

the mean ADC is expected to be lower within the VTV compared to the GTV. Thus, the use 

of different delineation strategies may give rise to ADC variation between studies or 
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centres. Currently, there is no standard way of performing delineation for ADC 

measurements, and the optimal ROI strategy for RT purposes (e.g. response prediction) 

remains to be determined. 

DWI acquisition protocols vary between centres, which impacts the multi-centre 

reproducibility of ADC. For example, the ADC is sensitive to the choice of b-values, since 

inclusion of low b-values might lead to an overestimation of ADC due to perfusion effects 

[41]. Further, inclusion of high b-values might lead to an underestimation of ADC both due 

to the kurtosis effect, i.e. non-gaussian diffusion behavior [42], and the so-called noise-

floor present in DWI due to the rician noise distribution in magnitude MR images [59]. The 

noise floor might dominate the DWI signal at high b-values since the signal-to-noise-ratio 

(SNR) decreases with increasing b-values. Besides the choice of b-values, parameters such 

as the voxel size and the diffusion time also affect ADC measurements [53,60].   

Lastly, the ADC calculation process itself may lead to ADC variation. As described above, 

the choice of b-values plays an important role. The b-values used for calculation may be a 

subset of those acquired on the scanner, e.g. one could exclude low b-values to avoid the 

impact of perfusion. One important point is that the highest acquired b-value determines 

other acquisition parameters (e.g. Δ, see Figure 1.5) in a DWI sequence which may impact 

the ADC [51]. For this reason, different DWI sequences may cause ADC variation even if 

the same b-values are used for ADC calculation. For example, an ADC value calculated using 

the b-values 0 and 500 s/mm2 may differ between two DWI scans acquired using b-values 

of [0, 500, 1000] s/mm2 and [0, 500] s/mm2, respectively.  

In addition to the choice of b-values, different calculation approaches may cause ADC 

variation. Typically,  calculation is performed in a voxel-wise manner, i.e. by calculating the 

ADC within each voxel and subsequently calculating the mean or median within a ROI. 

Another approach is ROI-based calculation, i.e. calculation based on the mean or median 

DWI signal within a ROI. Different centres have different softwares available for ADC 

calculation, which may differ with respect to both ROI-/voxel-based calculation, fitting 

methods (e.g. least squares fitting) and filtering (e.g. removal of low SNR voxels). The 

literature investigating the impact of software choice on ADC measurements is limited 

[61,62].  

 Contribution from study 1 and study 2  
Study 1 presents a semi-automatic delineation tool (SADT) for ADC calculation as an 

alternative to manual delineation. The tool represents one possible approach for 

automated delineation of the VTV, using a simple-to-implement strategy. The tool’s 
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performance is tested in patients with rectum cancer, and it is compared to manual 

delineation by a radiologist. Potential benefits of semi-automatic delineation are improved 

inter-and intra-observer agreement, as well as time saved for the medical doctors 

performing delineations.  

Study 2 provides recommendations for improved ADC reproducibility, based on an 

evaluation of delineation- and calculation-related ADC variation between MRI-linac 

centres. Potentially, these recommendations can become useful when designing future 

investigations of ADC, especially in multi-centre studies.  
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 Abstract 

Background and Purpose  

Diffusion-Weighted Magnetic Resonance imaging (DWI) quantifies water mobility through 

the Apparent Diffusion Coefficient (ADC), a promising radiotherapy response biomarker. 

ADC measurements depend on manual delineation of a region of interest, a time-

consuming and observer-dependent process. Here, the aim was to  introduce and test the 

performance of a new, semi-automatic delineation tool (SADT) for ADC calculation within 

the viable region of the tumour.  

Materials and Methods 

Thirty patients with rectal cancer were scanned with DWI before radiotherapy (RT) 

(baseline) and two weeks into RT (week 2). The SADT was based on intensities in b=1100 

s mm-2 DWI and derived ADC maps. ADC values measured using the SADT and manual 

delineations were compared using Bland-Altman- and correlation analyses. Delineations 

were repeated to assess intra-observer variation, and repeatability was estimated using 

repeated DWI scans. 

Results 

ADC measured using the SADT and manual delineation showed strong and moderate 

correlation at baseline and week 2, respectively, with the SADT measuring systematically 

smaller values. Intra-observer ADC variation was slightly smaller for the SADT compared 

to manual delineation both at baseline, [-0.00; 0.03] vs. [-0.02; 0.04] 10-3 mm2 s-1, and week 

2, [-0.01; 0.00] vs. [-0.04; 0.07] 10-3mm2 s-1 (68.3% limits of agreement). The ADC change 

between baseline and week 2 was larger than the ADC uncertainty (±0.04⋅10-3mm2 s-1) in 

all cases except one.  

Conclusion 

The presented SADT showed performance comparable to manual expert delineation, and 

with sufficient consistency to allow extraction of potential biological information from the 

viable tumour.  

Keywords: Diffusion-weighted MRI, apparent diffusion coefficient, automatic delineation, 

MRI guided radiotherapy, imaging biomarker 
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 Introduction 

Magnetic Resonance imaging (MRI) is used in radiotherapy (RT) planning as a supplement 

to computed tomography (CT), primarily because it provides better soft-tissue contrast. 

Furthermore, advanced MRI techniques can provide information on tumour biology. For 

example, Diffusion-Weighted MRI (DWI) probes the micro-environment of the tissue by 

measuring local water mobility [33]. Low water mobility correlates with high cell density, 

which is often indicative of high tumour viability [29].  

DWI is acquired as a set of images with different diffusion weighting, defined through so-

called b-values. With higher b-values, the acquisition becomes more sensitive to random 

motion of water molecules, inflicting large signal loss in regions with high diffusivity. Vice 

versa, in regions with reduced diffusivity, e.g. due to high cell density, signal loss is small. 

The water mobility can be quantified if at least two b-values are acquired, as the “Apparent 

Diffusion Coefficient” (ADC) [29].  

ADC is a promising biomarker for treatment response both when derived from pre-

treatment imaging and during the course of RT [63–65]. ADC has also shown potential 

clinical value in treatment planning and adaptation [66]. However, ADC has yet to be 

translated into widespread clinical use in RT planning and response evaluation. Lacking 

randomized trials and lack of consistency in ADC measurement are some of the challenges 

that need to be addressed before such translation can happen [20,44].  

Recent introduction of the hybrid MRI linear accelerator (MR-linac) has allowed MRI at 

every treatment fraction, making frequent ADC measurements more accessible [10,11,67]. 

This gives a unique opportunity to collect large data sets to investigate ADC for clinical use. 

However, to perform large multi-center studies, consistency in ADC calculation and 

workflow feasibility is important [20]. 

An important aspect of ADC calculation is the delineation of a region of interest (ROI), 

which, if done manually, is time-consuming, requires a high level of expertise, and suffers 

from intra- and inter-observer variation [54,68]. A potential solution is automated 

delineation, which is already widely employed in medical images, including standard MRI 

[69,70], but not adequately developed for advanced imaging such as DWI. Simple, 

threshold-based delineation has been tested on DWI, exploiting the large tumour-to-

background ratio on raw, high b-value DWI images. Despite promising results, manual 

inspection was required to avoid non-tumour regions [71]. Fully automated delineation 

may be achieved using more advanced methods based on artificial intelligence (AI), e.g. 
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convolutional neural networks [72], however, this approach requires training data and 

suffers from a lack of transparency. 

In this study, we present a simple, semi-automatic tool for delineation of the viable tumour 

volume (VTV), a recommended ROI for ADC measurement, which is not directly 

identifiable from raw, high b-value DWI images [35,56,58]. Instead, the VTV was in this 

study defined using combined information from both raw, high b-value DWI images and 

derived ADC maps [35]. The study aim was to test the performance of the tool in terms of 

robustness of ADC measurements, compared to manual delineation. Also, the capacity of 

the tool to measure temporal changes in ADC was tested using longitudinal DWI data. 

 Materials and methods 

3.3.1 Patients 

This prospective study included thirty patients with biopsy-proven locally advanced 

adenocarcinoma of the rectum. All patients received long-course chemoradiotherapy and 

were treated with a daily fraction five times a week. Tumour was prescribed a dose of 60 

Gy in 30 fractions, and the elective lymph node volumes were prescribed 50 Gy in 30 

fractions using a concomitant boost intensity-modulated radiation therapy (IMRT) 

technique. All patients received a 5 Gy brachytherapy boost. The Regional Committee on 

Health Research Ethics for Southern Denmark has approved the study (study ID S-

20110021 and S-20130030), and informed consent was obtained from all patients. 

3.3.2 MRI protocol 

Patients were MRI scanned before RT (baseline) and two weeks into RT (week 2) with a 

1.5 T clinical MRI scanner (Philips Ingenia, Philips Healthcare, Best, The Netherlands). The 

imaging protocol consisted of T2-weighted imaging (T2W) and DWI. T2W was acquired 

using a turbo spin-echo sequence (repetition time (TR)/echo time (TE): 7161/100 ms) 

with an in-plane resolution of (0.8×0.8) mm2, a slice thickness of 2.4 mm, and a slice gap of 

1.0 mm. Scan duration was 5 minutes and 43 seconds. DWI was implemented as a single-

shot spin-echo echo-planar imaging sequence (TR/TE: 2860/82 ms) with fat suppression 

(spectral presaturation with inversion recovery) and with b-values ranging from 0 to 1100 

s mm-2 (0 (2), 7 (2), 20 (2), 40 (2), 90 (2), 170 (2), 300 (2), 500 (4), 700 (4), 900 (4) and 

1100 (6) s mm-2); with the number of image averages for each b-value given in parenthesis. 

In this study, only b=0, b=170 and b=1100 s mm-2 were used. In-plane resolution was 

(1.82×1.82) mm2, slice thickness 4.6 mm and slice gap 0.4 mm. Sequence duration was 4 

minutes and 23 seconds. In each imaging session, DWI was performed twice in succession 

(test-retest), while the patient remained in the same position to assess repeatability. 
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3.3.3 Included data 

Thirty patients were MRI scanned at baseline, and out of these patients, twenty-nine were 

MRI scanned at week 2, resulting in a total of 59 scan sets of images (each set including 

T2W and DWI for both test and retest). Of these 59 sets, five sets of DWI images were 

excluded either due to artefacts in DWI (2), severe bulk motion (1), or the tumour being 

partly outside the field of view (2). In total, full scan data from 27 image sessions at 

baseline and 27 image sessions at week 2 were used to evaluate repeatability and intra-

observer variation at baseline and at week 2. Of these, 25 patients had all scans available 

at both time-points and were used to assess ADC change between baseline and week 2. 

3.3.4 ADC calculation 

A set of b-values (170 and 1100 s mm-2) were selected for ADC calculation; the high b-value 

was selected to obtain high diffusion sensitivity and the non-zero, low b-value was selected 

to avoid perfusion effects [41,51]. ADC-maps were calculated voxel-wise by applying linear 

regression to the logarithm of the signal intensity S to get ln(Shigh)=ln(Slow)-[bhigh-blow] ⋅ADC.  

3.3.5 Semi-automatic delineation tool 

A semi-automatic delineation tool (henceforward named ‘SADT’) was developed with the 

purpose of delineating VTVs for ADC calculation. VTV was defined as viable tumour, 

excluding necrotic regions [35,58]. The SADT was implemented using in-house developed 

software (Matlab  R2019a, Mathworks ab, Sweden), following a 3-step process (Figure 

A1.1 in Appendix I)1. 

In step 1, a rough delineation of the relevant 3D region was given as manual input (manual 

mask). The manual mask indicates the ‘relevant’ region, and the algorithm described below 

is, except for the very last step, only performed on voxels within this region.  

In step 2, 3D thresholding in b=1100 s mm-2 DWI and ADC-maps was used to define two 

masks that fulfilled criteria of high DWI intensity and low ADC values, respectively. In the 

b=1100 s mm-2 DWI image, a binary DWI mask for the bright voxels was created using a 

threshold value obtained from the Otsu algorithm [73]. Furthermore, an ADC-mask 

indicating the low ADC values was created from the ADC map using a threshold value equal 

to the median ADC value plus 0.5 times the standard deviation of the measured ADC values 

                                                           
 

1 The code is available upon request to the corresponding author. 
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within the manual mask. Half the standard deviation was used to obtain a stable 

delineation.  

In step 3, the overlap between the DWI mask and the ADC mask was created and used as 

the raw VTV, fulfilling both criteria (high DWI intensity and low ADC values).  

The final VTV was obtained by a 2-step post-processing of the raw VTV: First, only the 

largest volume was retained if non-connected sub-regions were included in the raw VTV. 

Second, to account for the possibility that the manual mask (Step 1) might have excluded 

target voxels, the VTV was allowed to expand beyond the boundaries of the manual mask 

iteratively while respecting threshold criteria (Step 2) and a criterion of connectivity.  

3.3.6 Delineation of viable tumour volumes 

A radiologist (author MLF) performed manual VTV delineation on b=1100 s mm-2 DWI 

images guided by T2W and ADC-maps on test-retest data for all included patients. The 

same radiologist re-contoured the images after two months for intra-observer variation 

assessment. T2W and DWI were rigidly registered prior to delineation using clinical 

software (MIM, MIM Software Inc., Cleveland, Ohio). 

A non-radiologist (author ALHB, physicist, experienced with DWI) used the SADT to 

delineate the same cases as the radiologist including test-retest data. The manual mask 

used for input to the SADT included rectum, mesorectum, and some surrounding areas 

respecting anatomical boundaries to other anatomical structures, e.g. prostate, and was 

restricted to the same slices as included by the radiologist. Delineation was performed on 

b=0 s mm-2 DWI images using b=1100 s mm-2 DWI images for guidance. The same observer 

created the manual mask input for the SADT twice with a time interval of at least one day 

to assess intra-observer variation.  

3.3.7 Statistics 

Measured ADC values were median ADC within the VTV. Bland-Altman analysis [74] was 

used both at baseline and week 2 to compare delineation methods, and to evaluate intra-

observer ADC variation (repeated delineations on the same scan) and ADC repeatability 

(test-retest difference). As data were non-normally distributed, non-parametric statistics 

(median, 15.9% and 84.2% percentiles) were used in the Bland Altman analysis to describe 

bias and 68.3% limits of agreement (LOA) for the observed ADC differences; mimicking a 

one standard deviation confidence interval (CI) for normal distributed data. Correlation 

between ADC values from the two delineation methods was assessed using Pearson’s 

correlation coefficient, including the 95% CI.  
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Figure 3.1. Comparison of delineation methods: Correlation plots (a-b) and Bland-Altman plots (c-
d) comparing ADC values measured using semi-automatic delineation by a non-radiologist and 
manual delineation by a radiologist, at baseline and week 2 in RT. Pearson's correlation coefficient 
(r) is shown on correlation plots. The Bland-Altman plots show the ADC difference (semi-automatic 
minus manual) against the mean ADC; the solid and dashed lines represent median ADC difference 
and 68.3% limits of agreement, respectively. Two extreme measurements were observed at week 2 
(-0.437⋅10-3 and 0.158⋅10-3 mm2 s-1); the first may be explained by the fact that tumour volume was 
very small, making ADC calculation sensitive to delineation, and the second by a sub-optimal SADT 
delineation. 
 

To obtain an uncertainty estimate of the ADC values measured with the SADT, all test-

retest values at baseline and week 2 were analysed together, bearing in mind that the test-

retest differences represented a combined imaging and delineation uncertainty. The 

uncertainty was estimated as the range between the 15.9% and 84.2% percentiles of the 

distribution of the differences in median ADC between test and retest. For each individual 

test-retest scan, ADC differences were calculated as both ‘test minus retest’ and ‘retest 

minus test’ to get a symmetric distribution with zero mean. The obtained uncertainty 

estimate was used to evaluate whether a significant change in ADC values between 

baseline and week 2 could be observed. 
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Figure 3.2. Delineation agreement: Example of a good (Patient 20) and a bad (Patient 25) 

agreement between manual (green) and semi-automatic (red) delineations for two patients. The 

images are transaxial and have been cropped, such that an area of (92.8x92.8) mm2 is shown. 

Rectum and part of the prostate are visible. Although the VTV defined by the semi-automatic 

delineation tool (SADT) appears as several separated regions when presented in 2D, it is in fact one 

connected 3D region. 

 

 Results 

3.4.1 Comparison of semi-automatic and manual delineation 

Median ADC values were systematically smaller when derived using the SADT compared 

to manual delineation by a radiologist. This difference was observed both at baseline and 

week 2 (Figure 3.1). The observed median differences and LOA as given in the method 

section were -0.13 [-0.20; -0.09] 10-3 mm2 s-1 and -0.13 [-0.18; -0.07] 10-3 mm2 s-1 for 

baseline and week 2, respectively . The Bland Altman plots in Figure 3.1 did not indicate 

any association between ADC differences and ADC values. The correlation [95% CI] of ADC 

between the two delineation methods was 0.89 [0.78, 0.95] at baseline and 0.65 [0.36, 

0.83] at week 2.   

By visual inspection, representative examples of good (patient 20) and poor (patient 25) 

delineation agreements between the SADT and manual delineation were identified (Figure 

3.2). VTVs delineated with the SADT were typically smaller than manually delineated VTVs 

(mean volume was 42% smaller at baseline and 39% smaller at week 2).  
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Figure 3.3. ADC variation: Bland-Altman plots showing intra-observer ADC variation (a-d) and ADC 
repeatability (e-h) at baseline and week 2 for delineation with the semi-automatic delineation tool 
(SADT) by a non-radiologist and manual delineation by a radiologist. The solid and dashed lines 
represent median ADC difference and 68.3% limits of agreement, respectively. The limits of 
agreement is defined as the 15.9% and 84.2% percentiles (pctl) of the ADC differences. 
 

 

Figure 3.4. Temporal ADC changes: ADC change between baseline and week 2 measured using the 

semi-automatic delineation tool (SADT). The error bars represent the estimated ADC uncertainty 

described in section 3.3.7 (±0.04 mm2 s-1). The ordering of patients on the x-axis is arranged to 

show increasing ADC change from left to right. 
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The intra-observer ADC variation (repeated delineations on the same scan) was compared 

between the manual delineation and the SADT at baseline (Figure 3a-b) and week 2 

(Figure 3c-d). For manual delineation, the median difference and LOA were 0.00 [-0.02; 

0.04] 10-3 mm2 s-1 at baseline and 0.02 [-0.04; 0.07] 10-3 mm2 s-1 at week 2. For the SADT, 

the median difference and LOA were 0.00 [-0.00; 0.03] 10-3 mm2 s-1 at baseline and -0.00 [-

0.01; 0.00] 10-3 mm2 s-1 at week 2; hence, the tool demonstrated a smaller intra-observer 

ADC variation compared to manual delineation.  

The ADC repeatability (test-retest difference) was compared between manual delineation 

and the SADT at baseline (Figure 3.3e-f) and week 2 (Figure 3.3g-h). For manual 

delineation, the median difference and LOA were -0.00 [-0.04; 0.05] 10-3 mm2 s-1 at baseline 

and -0.00 [-0.04; 0.07] 10-3 mm2 s-1 at week 2, and for the SADT 0.01 [-0.03; 0.05] 10-3 mm2 

s-1 at baseline and 0.00 [-0.04; 0.05] 10-3 mm2 s-1 at week 2. Thus, the ADC repeatability 

was comparable between the two delineation methods.  

3.4.2 ADC changes and related uncertainty 

For each patient, the ADC change between baseline and week 2 was evaluated when using 

the SADT. The obtained differences showed an increase between baseline and week 2 for 

all patients except one, with a mean ADC increase of 0.159⋅10-3 mm2 s-1 (Figure 3.4). The 

error bars in Figure 3.4 represent the ADC uncertainty estimate derived in section 3.3.7. 

The ADC increase was larger than the uncertainty (±0.04⋅10-3 mm2 s-1) in all cases.  

 Discussion 

The SADT for ADC calculation of tumours was implemented to improve consistency of ADC 

measurements and increase feasibility in the clinical workflow of MR guided RT. The 

observed correlation between the SADT and manual delineation was strong at baseline 

and moderate at week 2, with the SADT measuring systematically smaller ADC values. A 

clearly smaller intra-observer ADC variance was seen for the SADT compared to manual 

delineation, and ADC repeatability was comparable between the delineation methods. In 

all patients but one, an ADC change larger than the uncertainty was observed between 

baseline and week 2 using the SADT. This supported the assumption that ADC might carry 

potential biological information which can be detected using the presented SADT. The 

SADT was simple, transparent, easy to implement, and may be used in other types of 

cancer.  

There has been debate as to which ROI strategy to use for ADC calculation [35,56,75]. Using 

the VTV is a recommended strategy, which has been explored in recent studies [35,56,58]. 
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One study found that ADC within the VTV was a potential response biomarker and that the 

VTV was more relevant for response prediction than the GTV [58]. It would be highly 

relevant to validate the VTV approach against histology in future studies. The presented 

SADT delineated the VTV based on the underlying assumption that hyperintense areas on 

high b-value DWI correspond to high cellularity. This assumption has been widely 

supported [34], although a lower degree of correlation has been observed in patients [76]. 

A higher correlation might have been found if delineations were better confined to viable 

tumour sub-regions, such as the VTV. To prevent the SADT from capturing false high 

cellularity regions, due to so-called T2-shine-through, ADC maps were included in the 

delineation process, to impose the low-ADC criterion. The SADT made use of Otsu’s method 

of thresholding to determine a threshold automatically based on the intensity distribution 

within the manual mask. This approach allowed the threshold to be tailored to a specific 

ROI in a particular image volume; hence, the threshold differed between delineations. This 

method was preferred over a constant threshold level due to the arbitrary intensities in 

MRI and the possibility of intensity variation across images and MRI scanners. A drawback 

of this method, however, was a slight sensitivity to the manual input.  

Some differences between the manually and semi-automatically segmented VTVs were 

observed (Figure 3.2). The manual delineation by the radiologist included more of the 

periphery of the tumour region, leading to a systematically higher ADC (Figure 3.1) since 

the diffusion usually is less restricted in the surrounding normal tissue. Furthermore, the 

manual delineations did not have as concave shapes as those created from the SADT, as 

seen in the upper part of Figure 3.2. In general, the SADT seemed to perform as intended, 

and the observed differences in size and shape between delineation methods were not 

considered a failure of the SADT. However, in a few cases, VTVs delineated with the SADT 

erroneously included healthy tissue, e.g. prostate tissue, as illustrated in Figure 3.2, patient 

25. This error arose due to the expansion of the VTV in the post-processing step of the 

SADT’s algorithm. However, rejecting the expansion-step might lead to exclusion of 

relevant regions. This implied that the resulting contours should be reviewed for obvious 

errors. Overall, the two delineation methods correlated well, indicating that the same 

tendency could be captured. Since the purpose of the SADT was not to mimic manual 

delineation but rather to deliver a reproducible measure of a representative tumour ADC, 

the observed offset between semi-automatic and manual delineation was considered 

acceptable. 

Manual delineation showed larger intra-observer ADC variation at week 2 compared to 

baseline (Figure 3.3). This may be explained by the fact that the tumour volume decreased, 
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and the tumour outline became less clear, as it is often seen during the course of RT. No 

information of tumour size and position was available to the radiologist during 

delineation, which might have caused the manual intra-observer variation to be larger 

than in normal clinical situations. In comparison, the intra-observer variation was smaller 

for the SADT, showing its potential to improve the consistency of ADC measurements. 

Potentially, the SADT may also reduce the inter-observer ADC variation, which should be 

investigated in a follow-up study. 

ADC repeatability was affected by imaging-related uncertainty and intra-observer 

variation. The test-retest scans were acquired in quick succession while the patient 

remained positioned on the treatment table. Re-positioning the patient between the scans 

might give a better estimate of the actual clinical ADC repeatability. Though, even without 

re-positioning, tumour motion (due to bulk motion, peristalsis, gas etc.) between test and 

retest was evident, and may therefore be a good estimate of the true repeatability. Due to 

observed differences in tumour position and shape between test and retest, it was found 

more appropriate to re-contour on test and retest, than to apply structure propagation 

between scans. This was also representative of a clinical setup where delineations are 

made on the data by hand.   

In all patients except one, ADC increased between baseline and week 2 (Figure 3.4). An 

increase in ADC during RT is in correspondence with earlier ADC studies and might be 

explained by radiation-induced cellular changes [63,77]. The observed ADC change was 

larger than the ADC uncertainty in all cases, indicating a potential biological change. In this 

study, ADC changes were not compared to treatment response, as the aim was to evaluate 

the capacity of the SADT to extract potential biological changes and not response 

prediction in this particular patient cohort. 

The manual mask defined by the non-radiologist was restricted to the same slices as 

included in the radiologist´s delineation. Hence, only the in-plane delineations were 

compared between the SADT and the expert manual delineation. This was done to allow a 

more fair comparison of the delineation methods, since the non-radiologist was 

inexperienced in recognizing rectal tumours, although it limits the use of the SADT as a 

standalone tool for ADC calculation. Nevertheless, in a clinical workflow, it may be 

preferable to use the GTV as manual input to the SADT since the VTV is by definition a sub-

region of the GTV. The GTV could be obtained by AI based delineation if this became robust 

and commonly available. In all cases, the GTV as manual input is appealing since GTVs are 

already available from the normal workflow, and it may facilitate treatment adaption 
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based on ADC in an MRI guided RT workflow on the MR-linac.  

In conclusion, the presented SADT showed performance comparable to manual expert 

delineation, and demonstrated potential to improve consistency of ADC measurements. 

The SADT was able to detect temporal ADC changes larger than the uncertainty associated 

with ADC measurements, which implies capability of measuring ADC changes attributed 

to change in tumour biology during the course of RT. The SADT may therefore prove useful 

for validation of ADC as a treatment response biomarker.   
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 Abstract 

Background and purpose 

The apparent diffusion coefficient (ADC), a potential imaging biomarker for radiotherapy 

response, needs to be reproducible before translation into clinical use. The aim of this 

study was to evaluate the multi-centre delineation- and calculation-related ADC variation 

and give recommendations to minimize it.  

Materials and methods 

Nine centres received identical diffusion-weighted and anatomical magnetic resonance 

images of different cancerous tumours (adrenal gland, pelvic oligo metastasis, pancreas, 

and prostate). All centres delineated the gross tumour volume (GTV), clinical target 

volume (CTV), and viable tumour volume (VTV), and calculated ADCs using both their local 

calculation methods and each of the following calculation conditions: b-values 0-500 vs. 

150-500 s/mm2, region-of-interest (ROI)-based vs. voxel-based calculation, and mean vs. 

median. ADC variation was assessed using the mean coefficient of variation across 

delineations (CVD) and calculation methods (CVC). Absolute ADC differences between 

calculation conditions were evaluated using Friedman’s test. Recommendations for ADC 

calculation were formulated based on observations and discussions within the Elekta MRI-

linac consortium image analysis working group. 

Results 

The median (range) CVD and CVC were 0.06 (0.02-0.32) and 0.17 (0.08-0.26), respectively. 

The ADC estimates differed 18% between b-value sets and 4% between ROI/voxel-based 

calculation (p-values <0.01). No significant difference was observed between mean and 

median (p=0.64). Aligning calculation conditions between centres reduced CVC to 0.04 

(0.01-0.16). CVD was comparable between ROI types. 

Conclusion 

Overall, calculation methods had a larger impact on ADC reproducibility compared to 

delineation. Based on the results, significant sources of variation were identified, which 

should be considered when initiating new studies, in particular multi-centre 

investigations.  
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 Introduction 

Quantitative imaging biomarkers (QIBs), derived from in-vivo imaging, are useful in 

oncology, as they non-invasively provide quantitative information on tissue characteristics 

[44,45,78]. Development of QIBs has the potential to improve precision and reduce 

subjectivity of image analysis, and hereby enable a more robust association between 

image-derived parameters and biological and clinical parameters [79,80]. QIBs may 

provide spatially and temporally resolved information linked to tumour biology, which in 

radiotherapy may be used for improved target delineation, dose painting and prediction 

and monitoring of response. Hence, QIBs may improve personalization of the treatment 

[20].   

The advanced magnetic resonance imaging (MRI) technique, diffusion-weighted MRI 

(DWI), is a potential QIB for the above-mentioned radiotherapy purposes [20,23,26,29]. In 

standard DWI, strong magnetic gradients are applied to sensitize the MRI signal to the 

random motion of water molecules within the scanned object. The amount of diffusion 

weighting is defined by the b-value, and if at least two appropriately selected b-values are 

acquired, the quantitative parameter, the apparent diffusion coefficient (ADC), can be 

derived. ADC correlates with tissue cellularity, and have been shown to identify radio-

resistant regions [10] [11]. DWI and derived ADC maps are used in the clinic to guide target 

delineation for some tumours, and may be a future tool for dose painting [28,82]. Further, 

baseline ADC and ADC changes during treatment have shown potential to predict 

response, although lack of consistency is preventing translation to the clinic 

[26,63,65,66,83]. Specifically, varying acquisition protocols and analysis methods reduce 

ADC reproducibility, potentially hindering validation of ADC as a QIB. To overcome this 

problem, a standardization of measurements is needed, and large multi-centre validation 

trials are warranted [35,44]. 

Hybrid MRI linear accelerators (MRI-linac) allows daily measurement of ADC, with no or 

limited prolongation of the radiotherapy fractions [10,11]. As such, an MRI-linac provides 

an ideal platform for clinical validation of potential QIBs such as ADC. Accuracy of ADC on 

MRI-linac has been demonstrated using phantoms, and feasibility has been demonstrated 

in patients [27,35,50]. Furthermore, recommendations for MRI protocols to acquire DWI 

on an Elekta MRI-linac have been published [51]. The current study focused on the analysis 

of the acquired DWI scans to obtain an ADC value.  

Different approaches to DWI analysis may introduce a variation across centres/studies. 

Within the Elekta MRI-linac consortium image analysis working group [84], two expected 
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sources of variation were identified: The delineation of a region of interest (ROI), and the 

calculation method. Delineation uncertainty is a well-known source of uncertainty in 

radiotherapy and propagates as ADC variation as well [55,85]. The impact of calculation 

methods on ADC reproducibility has been investigated to a lesser extent [61]. The current 

study investigated the impact of variations in both delineations and calculation methods 

on the ADC reproducibility utilizing the same data, which enabled assessment of their 

relative contributions. The aim was to give vendor-neutral recommendations to improve 

ADC reproducibility, based on an evaluation of the observed ADC variation between MRI-

linac centres and discussions within the working group.  

 Methods 

4.3.1 Study design 

Nine MRI-linac centres participated in the study using anonymized patient MRI data from 

four different clinical cases, acquired at one of the participating centres. At each centre, 

two steps were performed (Figure 4.1). In step 1, an oncologist performed delineations. In 

step 2, each centre calculated ADC for delineations made at all centres using their local 

calculation method. This resulted in a 9x9 table of ADC values for each clinical case and 

delineation type. 

4.3.2 Clinical cases  

The study included four patients with different cancerous tumours.  

Adrenal gland (76 year old male with oligo progression after systemic treatment for non-

small cell lung cancer) 

Pancreas (68 year old male with recurrent pancreas cancer, consolidative radiotherapy 

after systemic treatment) 

Oligo metastasis in the pelvis (54 year old woman with recurrent ovarian cancer, 

consolidative radiotherapy after systemic treatment) 

Prostate and adjacent seminal vesicles (74 years old man with low volume metastatic 

prostate cancer) 

All patients received treatment on the same 1.5 T MRI-linac (Unity by Elekta, Stockholm, 

Sweden) at one of the participating centres. The patients were included in the 

MOMENTUM study (clinicaltrials.gov NCT04075305) [28] . Informed consent was 

obtained from all patients, and DICOM-data was anonymized and stored adhering to ethics 

standards. 
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Figure 4.1. Study design. Each of the nine participating centres performed delineation and ADC 
calculation. The collected ADC values were organized in a table as illustrated to the right, where 
rows and columns represent the delineations and calculation methods from the nine centres. Tables 
were made for each combination of cancer diagnosis and delineation types (GTV, CTV, VTV). The 
ADC variation across delineations and calculation methods were assessed using the mean 
coefficient of variation (CV), as indicated on the table.                                       

 

4.3.3 MRI data  

MRI data were acquired at fraction one, prior to beam delivery and included T2-weighted 

images (T2W) and DWI with the b-values 30, 80, 150, 300 and 500 s/mm2 (adrenal gland 

and pancreas), and 0, 30, 80, 150 and 500 s/mm2 (oligo metastasis and prostate) adhering 

to the normal MRI-linac workflow [29]. Sequence details are listed in Table A2.1 in 

Appendix IIa. DWI were acquired twice in succession while the patient remained in 

position, to obtain test-retest data for repeatability estimation.  

4.3.4 Delineation 

T2W images and DWI images with b-values 150 and 500 s/mm2 were available for 

delineation. Provided with brief clinical case descriptions, the oncologists delineated the 

gross tumour volume (GTV), clinical target volume (CTV) (prostate only) and the viable 

tumour volume (VTV) (except for prostate) in a mutually blinded manner using the 

ProKnow platform (Version 1.32.0, Elekta Solutions AB, Stockholm, Sweden). The VTV was 

defined as the GTV excluding cystic and necrotic parts. A description of the technical data 

preparation is given in Appendix IIb. 

4.3.5 ADC calculation 

Each centre provided a brief description of their local calculation method, including 

software implementation, choice of b-values, and whether a ROI- or voxel-based 

calculation was used. The ROI-based method refers to ADC calculation using the mean or 

median ROI signals of DWIs, whereas the voxel-based method refers to calculating ADC  
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Figure 4.2. Examples of delineations. Delineations made by the nine participating centres for 
prostate and adrenal gland, shown on b=500 /mm2 DWI images, cropped to an area of 7.7×7.7 cm2 
(prostate) and  4.9×4.9 cm2 (adrenal gland) around the tumour. For the prostate, not all delineated 
contours included the shown slice, thus, only five contours are visible.   

 

within each voxel, after which the mean or median value is calculated within the ROI. If a 

centre’s standard approach was to use the scanner software for ADC calculation, that  

centre was provided with ADC maps calculated with the scanner software using all b-

values, the lowest and the highest value, and b≥150 s/mm2, respectively. They were asked 

to choose the set best representing their normal choice.  

Each centre provided ADC values for both their own and other centre’s delineations. The 

calculation was based on 1: the centre’s own calculation method, and 2: all combinations 

of the following calculation conditions: all b-values vs. b≥150 s/mm2, ROI-based vs. voxel-

based and mean vs. median (referred to as pre-specified calculation conditions). 

4.3.6 Data analysis and statistics 

Delineations were compared pairwise to calculate the Dice similarity coefficient (Dice) and 

mean surface distance (MSD). ADC variation across delineations and calculation methods 

was assessed using the mean coefficient of variation (CV), calculated in the following way 

(Cf. Figure 4.1): The CV describing variation across calculation methods was calculated for 

each of the nine delineations, and the average of these nine values was used as a measure 

of variation across calculation methods (CVC). Likewise, the CV describing variation across 

delineations was calculated for each of the nine calculation methods, and the average was 

used as a measure of variation across delineations (CVD). 
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Figure 4.3. Delineation-related ADC variation. Delineation-related ADC variation (mean coefficient 
of variation, CVD) as a function of mean Dice Similarity Coefficient (A), Mean Surface Distance, MSD 
(B), and volume (C), for the different clinical cases (marker colors) and types of ROIs (marker types).  

 

Retest ADC values were calculated using rigid contour propagation of GTVs between test- 

and retest-scans. Median ADC values within the GTVs were extracted from ADC maps 

calculated with the scanner software using b≥150 s/mm2. The within-subject coefficient 

of variation (wCV) was calculated as a measure of test-retest ADC variation (ADC 

repeatability), as recommended by the Quantitative Imaging Biomarkers Alliance (QIBA) 

[30].  

The ADC difference between the sets of b-values, ROI/voxel-based analysis and 

mean/median values, respectively, were evaluated using Friedman tests with a 5 % 

significance level and with Bonferroni correction for multiple testing. Only GTVs were used 

for this purpose. 

 Results  

A total of 69 out of 72  expected delineated volumes (9 centres x 8 volumes) were available 

for the analysis. Within these volumes, a total of 4483 ADC values were obtained out of 

5589 (69 delineation x 9 centres x 9 combinations of calculation conditions). The reasons 

for the reduced number were the following: One centre omitted calculation within two 

prostate volumes and two centres omitted the ROI-based calculations due to technical 

difficulties or limitations of their local software. One centre omitted ADC calculation using 

the pre-specified calculation conditions due to limited time and resources. One centre used 

software that reported only one decimal, which in some cases led to CV’s of zero. CV’s of 

zero were excluded before calculating the mean CV.  

Representative delineations are presented in Figure 4.2. The delineation variation was 

large for pancreas VTV and prostate GTV (Dice: 0.20-0.22 and MSD: 9.09-9.23 mm) 

compared to  



37 
 

 

Figure 4.4. ADC variation. ADC mean coefficient of variation across delineations (CVD) and 
calculation methods (CVC) from the nine MR-linac centres, with the centres’ own choice of 
calculation conditions (A), and with pre-specified calculation conditions (B-I). Median ADC values 
were used in (A). The marker colours and types represent the different clinical cases and types of 
ROIs. The dotted line at x=y represents the points where delineation- and calculation-related ADC 
variation are the same. For the prostate GTV, CVD is outside the axis range, and therefore, the true 
coordinates are indicated next to the marker. 

 

the remaining cases (Dice: 0.48-0.88 and MSD: 1.52-4.09 mm) (Figure 4.3.A-B). A closer 

inspection of the prostate delineations revealed that some GTV delineations did not 

overlap (Figure 4.2). The prostate CTV delineation variation was smaller (Dice: 0.80, MSD: 

2.68 mm), despite not all centres included the seminal vesicles in the delineation. The CVD 

was comparable between GTV and VTV, although the delineation variation was slightly 

smaller for GTV compared to VTV (Figure 4.3.A-B). There was a clear correlation between 

delineation variation and ADC variation (Figure 4.3.A-B). 
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 All b-values b ≥ 150 s/mm2 Mean difference (%) 

 ROI-based Voxel-based ROI-based Voxel-based 

 Mean Median Mean Median Mean Median Mean Median b-
sets 

ROI/ 
vox 

Mean/ 
median 

Adrenal 
gland 

           

GTV 1.27 1.37 1.21 1.24 0.90 0.97 0.88 0.90 32.86 5.84 -4.91 

VTV 1.26 1.34 1.23 1.24 0.88 0.96 0.87 0.90 33.69 4.40 -4.47 

            

Pancreas            

GTV 0.95 0.95 0.88 0.96 0.88 0.85 0.81 0.82 11.05 4.30 -1.59 

VTV 1.08 1.08 1.03 1.07 1.03 1.06 0.98 1.00 4.59 3.90 -2.18 

            

Oligo 
metastasis 

           

GTV 1.51 1.41 1.44 1.34 1.33 1.33 1.29 1.19 10.35 5.99 5.48 

VTV 1.49 1.39 1.43 1.32 1.33 1.31 1.29 1.18 9.58 5.45 6.33 

            

Prostate            

GTV 1.41 1.37 1.35 1.34 1.07 0.99 1.03 1.02 28.41 1.85 3.09 

CTV 1.56 1.52 1.49 1.46 1.31 1.29 1.27 1.29 15.62 3.00 1.13 

            

Mean 
value 

1.32 1.30 1.26 1.25 1.09 1.09 1.05 1.04 18.27 4.34 0.36 

Table 4.1. Mean ADC values (x 10-3 mm2/s) across nine centres for different combinations of 
calculation conditions. The mean %-wise ADC differences between b-sets (all-b-values minus b ≥
 150 s/mm2), ROI/voxel-based analysis (ROI-based minus voxel-based) and mean/median values 
(mean minus median) are shown.  

 

All centres used a voxel-based approach as their local calculation method. One centre used 

ADC maps generated by the scanner software, while remaining centres used in-house 

software for ADC calculation with a mono-exponential Stejskal-Tanner model [31]. The 

main differences between the local calculation methods were the choice of b-values, fitting 

method, and applied filtering. A full comparison of the centres’ local calculation methods 

is presented in Table A2.2 in Appendix IIc. 

With the centres’ own calculation methods, the median (range) CVD and CVC were 0.06 

(0.02 – 0.32) and 0.17 (0.08 – 0.26), respectively (Figure 4.4.A). The delineation-related 

variation was larger for pancreas VTV and prostate GTV (CVD: 0.15-0.32) compared to the 

remaining cases (CVD: 0.02-0.06). In comparison, the ADC repeatability (wCV) based on 

test-retest scans was estimated to 4.0% (adrenal gland), 6.6% (pancreas), 1.3% (oligo 

metastasis), and 15.2% (prostate). A detailed overview of the ADC variation for each 

delineation and calculation method is shown in Figure A2.1-3 in Appendix IId.  

When centers aligned their calculation methods according to any of the pre-specified 

calculation conditions, the calculation-related ADC variation was clearly smaller than 
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when centres used their own choice of calculation conditions (Figure 4.4.B-I compared to 

Figure4.4.A), with a reduction of median (range) CVC to 0.04 (0.01 - 0.16) (or 0.04 (0.01 - 

0.08) with the low-agreement prostate GTV excluded). 

In terms of absolute ADC, there was a trend towards larger values for calculation methods 

that included b-values below 150 s/mm2, (calculation methods no. 1, 4 and 9 in Figure A2.1 

and A2.3 and Table A2.2 in Appendix IIc-d). Averaged across all combinations of the pre-

specified calculation conditions, ADC estimates were 18% larger for the full b-set 

compared to b≥150 s/mm2 (p<0.01) and 4% larger for ROI-based analysis compared to 

voxel-based (p<0.01) (Table 4.1). There was no significant difference between mean and 

median values (p = 0.64).  

 Discussion 

This study evaluated the ADC variation related to differences in delineation and calculation 

methods between centres. The calculation-related variation was generally larger than 

delineation-related variation (Figure 4.4.A), and was primarily driven by different choices 

of b-values. When calculation conditions (all b-values vs. b≥150 s/mm2, ROI-based vs. 

voxel-based, and mean vs. median) were aligned between centres, the calculation-related 

variation was reduced to about the same level as the delineation-related variation. 

Furthermore, the delineation- and calculation-related ADC variation was comparable to 

the ADC repeatability, indicating that acquisition and post-processing of the images 

contribute equally to the ADC variation. The GTV and VTV performed comparably with 

respect to ADC reproducibility.  

Overall, the observed delineation-related ADC variation largely agreed with other studies, 

showing CV of 0.1 and inter-observer coefficient of repeatability of 1.9-14% in pancreas 

[57] [86], and 9.5-13.7% in prostate [34], although not directly comparable due to 

differences in methods. The large delineation variation of the pancreas VTV was likely due 

to the higher sensitivity to delineation of small volumes (Figure 4.3.C). For the prostate 

GTV, the large delineation variation could arise from the GTV not being a standard 

delineation type. In fact, large variation in definitions of intra-prostatic lesions has been 

reported in earlier studies [88] [89]. Potentially, the use of a higher b-value would have 

improved the conspicuity of the intra-prostatic lesions. To comply with the MRI-linac 

recommendations, a maximum b-value of 500 s/mm2 was used [51]. The delineation 

variation in prostate may also have been overestimated as not all centres included the 

vesicles in the CTV (as case descriptions indicated). 
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Other studies have shown that the type of ROI influences both absolute ADC values, 

relative ADC changes during treatment, and the reproducibility of delineations 

[35,55,56,85]. Therefore, this study included two types of ROIs. The GTV, because it has 

the advantage of being available before the start of treatment in both the standard and 

MRI-linac radiotherapy workflow. The so-called VTV was included because it excludes 

non-viable parts of the tumour and may be relevant for probing the cellular response 

directly and assessing treatment response, as suggested by Padhani et al. [35]. Further, one 

study showed that ADC based on VTV was superior to GTV in stratifying between 

responding and non-responding patients [58]. An advantage of the VTV is that, by 

definition, it contains only high signal-to-noise-ratio (SNR) voxels. For tumours with no 

significant necrotic/cystic components, e.g. prostate, the VTV corresponds to the GTV.  

Since the choice of ROI type did not influence the ADC reproducibility in the current study, 

selection of ROI type depends on its application in radiotherapy. While the VTV may define 

radio-resistant regions and be relevant for dose painting, it is not obvious which ROI is 

best suited for response prediction. The literature investigating the potential benefits of 

using GTV vs. VTV is limited [58,65]. In general, the results of the current study advocate 

improving delineation consistency (Figure 4.3.A-B), which underlines the importance of 

having as precise consensus guidelines as possible. In the future, delineation variation may 

be reduced by automatic delineation tools including AI models, as indicated in several 

studies [69–71,83].  

The DWI-signal is sensitive to perfusion at low b-values (below ~100 s/mm2), and 

therefore, including low b-values in the analysis is expected to overestimate ADCs [35,41] 

as observed in this study also (all b-values compared to b≥150 s/mm2) (Table 4.1). 

Therefore, a previous publication by the Elekta MRI-linac working group, recommended 

that the lowest b-value should be 100-150 s/mm2 [51]. A maximum b-value of 500 s/mm2 

was also recommended to ensure sufficient SNR and a diffusion time comparable to that 

of a diagnostic scanner. Moreover, if notably higher b-values are included in the calculation 

(b>1000 s/mm2), non-Gaussian diffusion effects may result in an underestimation of ADC, 

as the mono-exponential model assumes a Gaussian diffusion behaviour [42].  

The ROI- and voxel-based approach have been used in previous studies and are therefore 

relevant from a reproducibility point-of-view [55,56,86,90,91]. It should be noted that 

strictly speaking, the average ADC across voxels within a ROI cannot be derived using the 

ROI-based approach, which is based on the mean DWI signal within the ROI. I.e. the ROI-

based method is mathematically inconsistent with the exponential model of ADC 



41 
 

calculation (when more than one voxel is present within a ROI). However, using the ROI-

based method may lead to better estimates of ADC as it is expected to be more robust to 

motion induced misalignment of individual DWI acquired at different b-values, which if 

not properly corrected can lead to invalid ADC values. Further, it may improve SNR which 

may give a better goodness of fit of data, as was confirmed using the current data (not 

shown) [20]. In the current study, the ROI-based approach led to larger ADC values 

compared to the voxel-based approach (Table 4.1), while the two approaches performed 

comparable with respect to ADC reproducibility (Figure 4.4.B-I). 

The residual calculation-related ADC variation present after aligning the pre-specified 

calculation conditions between centres (Figure 4.4.B-I) may be accounted for as use of 

different software implementations, including different fitting and filtering methods 

(Table A2.2 in Appendix IIc). Specifically, five centres used linear least squares fitting of 

ln(S) as a function of b-values to estimate the ADC (Table A2.2 in Appendix IIc). Since the 

SNR decreases with increasing b-value, the uncertainty of ln(S) also increases with b-

values, if not accounted for by averaging signals from multiple excitations. Thus, a better 

approach will be to use weighted linear least squares fitting (see Appendix IIe) [92]. For 

the voxel-based approach, five centres used filtering by excluding voxels containing non-

physical values, i.e. values outside a certain range (Table A2.2 in Appendix IIc). Alternative 

to this, voxels may be removed based on low SNR or poor quality of the fit, which is a more 

objective criterion. Contributions from fitting and filtering were not determined 

individually, nevertheless, in combination, they resulted in calculation-related ADC 

variations comparable to the delineation-related variations (points close to the dotted line 

in Figure 4.4.B-I). This stresses the importance of excluding sources of variation whenever 

possible, especially if the aim is to establish common ADC cut-off values, e.g. for response 

prediction. Making a platform-independent software available for public download might 

be a way to proceed such that in-house developed software can be validated against a 

common software. 

The SNR has also been shown to play a role in estimation of the ADC [51,93]. Although not 

specifically investigated in this study, it is worth mentioning a few implications. Low SNR 

levels lead to an underestimation of the ADC, due to the so-called noise floor present in 

magnitude reconstructed DWI-images [20,59]. Therefore, to allow a comparison between 

studies, the SNR should always be reported based on defined standards, e.g. published by 

the National Electrical Manufacturers Association (NEMA) [94] or QIBA [95]. For 

practicality, it may be sufficient to measure SNR once, if patient and coil positioning is 
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consistent between scans [20]. Applying noise correction has been shown to reduce the 

ADC bias [93].  

Other specific points of attention when calculating ADC include pre-processing of the 

image data. For example, to minimize the effect of motion, registration between b-values 

is recommended [96], and is available on most MRI scanner software, including the Unity 

MRI-linac. As a minimum, b-value images should visually be inspected for motion and 

artefacts. Further, as the intensity-histogram of DWI images may be “stretched” to fully 

utilize the storage bit depth, the stored pixel values should as a general rule be “unscaled” 

prior to quantitative analysis as described by Chenevert et al. [97].  

A main limitation of this study is that only one patient was included per tumour type. This 

was deemed a necessary compromise to increase the realizability of the investigation. 

However, by including four tumour types instead of e.g. four tumours of the same type, we 

were able detect differences in the analysis-related ADC variation between tumour types. 

Minor limitations include that no re-positioning of the patient was performed between the 

test and retest scans, which may underestimate the true repeatability. ADC reproducibility 

may also be affected by the sequence used to acquire the images (turbo-spin-echo (TSE) 

vs. echo planar imaging (EPI) [98]) and the diffusion time [60], but investigations of this 

was outside the scope of the current study where EPI based readout was used. Moreover, 

as EPI is notorious for low geometric accuracy [53], a high ADC reproducibility can still 

lead to a misinterpretation of the extent of the GTV. The effect of geometric distortions on 

ADC reproducibility and GTV misalignment should be investigated in a future study.  

 Conclusion  

This investigation provides recommendations for improving reproducibility of ADC 

calculations, based on observations and discussions within the Elekta MRI-linac 

consortium image analysis working group. These recommendations are focused towards 

future investigations of ADC as a potential imaging biomarker in radiotherapy. 

Investigations of other potential quantitative imaging biomarkers using a similar setup, 

and the geometric accuracy of these, are warranted.  

In summary, the calculation-related ADC variation was larger than the delineation-related 

ADC variation. Specifically, the calculation-related ADC variation can be attributed to the 

choice of b-values, ROI-based/voxel-based calculation, and software implementation 

including fitting and filtering method. Therefore, it is recommended to align these factors 

in multi-centre studies, and to report details of the ADC calculation method within a study 
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to allow comparison between studies. In general, delineation variation correlates with ADC 

variation, and should therefore be reduced as much as possible. Selection of GTV vs. a 

dedicated volume for ADC derivation seems less critical for ADC reproducibility, and 

should depend primarily on feasibility and the radiotherapy purpose. 
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5 Clinical validation 

 Survival analysis and the Cox proportional hazards model 
In order to do a clinical validation of DWI for RT purposes, it is essential to establish a 

relationship between DWI and clinical endpoints. An important step is to investigate 

whether DWI can be used to predict the prognosis of patients with cancer, and for this 

purpose, it is relevant to investigate the survival time of the patients, e.g. the time between 

diagnosis (starting point) and death (or other types of events such as recurrence of a 

disease or disease progression). In medical research, this is referred to as survival analysis. 

[99].  

When investigating the overall survival (OS) of a patient cohort, some patients are typically 

alive at the cut-off date of the study, meaning that the event time (time of death) is 

unknown for these patients. In survival analysis, this is referred to as censoring. Since it is 

known that the censored patients have had no event until their censoring time point (e.g. 

the time point of follow up), they contribute to determining the probability of survival up 

until this time point. As a note, censoring should be “uninformative”, meaning that the risk 

of a subsequent event should be the same for censored and uncensored patients, 

otherwise, censoring may introduce a bias [99].  

Typically, the survival probability, 𝑆(𝑡), describing the probability that a patient survives 

from the starting point to the time 𝑡, is estimated using the Kaplan Meier (KM) method 

[100]:  

𝑆𝐾𝑀(𝑡𝑗) = 𝑆(𝑡𝑗−1) (1 −
𝑑𝑗

𝑛𝑗
) 

Here, 𝑗 is an index running over the observed survival times in increasing order, both 

censored and uncensored, 𝑑𝑗 is the number of patients with an event at time 𝑡𝑗, and 𝑛𝑗 is 

the number of patients who have had no event just before 𝑡𝑗. This survival probability 

estimate, also referred to as the KM estimator, is a step function that is constant between 

the event time points. In medical research, the survival of a patient cohort is often 

described using the median survival time based on the KM estimator [99].  

The survival time of patients with cancer depends on multiple parameters related to the 

patient, the tumour and the treatment. Hence, in order to investigate the prognostic value 

of DWI, it is therefore relevant to study the correlation of both DWI parameters and clinical 

parameters with OS. The Cox proportional hazards model, a commonly used method for 

survival analysis, is suited for this purpose, as it can be used to describe the relationship 
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between event incidence and a set of parameters [101,102]. According to the Cox model, 

the hazard, ℎ, defined as the risk of an event per time at a given time, 𝑡, is expressed by:  

ℎ(𝑡) = ℎ0(𝑡) ⋅ exp (𝒙𝑖 ⋅ 𝜷) 

where 𝒙𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑛) contains the a set of parameter values for a patient and 𝜷 =

(𝛽1, 𝛽2, … , 𝛽𝑛) contains coefficients reflecting the impact of each parameter. The baseline 

hazard, ℎ0(𝑡) describes the time-dependent hazard for a patient with all parameters equal 

to zero. Positive values of the coefficients, 𝜷, mean that higher values of the corresponding 

parameters are associated with an increased hazard, and therefore a poorer survival, while 

the opposite is the case if the coefficients are negative.  

The term “proportional hazard” refers to the proportional relationship between the 

hazards for different sets of parameter values (𝒙𝒊 and 𝒙𝒋): 

ℎ(𝑡|𝒙𝒊)

ℎ(𝑡|𝒙𝒋)
=

ℎ0(𝑡) ⋅ exp(𝒙𝒊𝜷)

ℎ0(𝑡) ⋅ exp(𝒙𝒋𝜷)
= exp ((𝒙𝒊 − 𝒙𝒋) ∗ 𝜷) 

⇕ 

    ℎ(𝑡|𝒙𝒊) = exp ((𝒙𝒊 − 𝒙𝒋) ∗ 𝜷) ⋅ ℎ(𝑡|𝒙𝒋) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ⋅ ℎ(𝑡|𝒙𝒋) 

This proportionality means that the hazard in one patient or patient group with the 

parameter values 𝒙𝒊 is a constant times the hazard in any other patient or patient group 

with the parameter values 𝒙𝒋 [102]. The time dependence cancels out, and thus the 

relationship will remain proportional at all times. As a result of the proportionality, if one 

parameter, e.g. 𝑥1, increases by one unit while the other parameters are constant, the 

hazard increases with at factor of exp (𝛽1). For this reason, the exponential function of the 

coefficients are interpreted as so-called hazard ratios, i.e. exp (𝛽1) is the hazard ratio 

associated with increasing the parameter, 𝑥1, by one unit. 

The coefficients, 𝜷, are determined by maximizing the partial log likelihood, given by 

[101]:  

log(𝐿(𝜷)) = ∑ log(𝐿𝑖(𝜷))

𝑖

 

where 𝐿𝑖(𝜷) denotes the partial likelihood for the 𝑖’th patient: 

𝐿𝑖(𝜷) =
ℎ(𝑌𝑖|𝒙𝒊)

∑ ℎ(𝑌𝑖|𝒙𝒋)𝑗:𝑌𝑗≥𝑌𝑖
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Here, 𝑌𝑖  is the survival time for patient 𝑖, and 𝑗 is an index running over all patients who 

are still at risk when the event occurs for patient 𝑖. The partial likelihood, 𝐿𝑖(𝜷), describes 

the likelihood of an event for the 𝑖’th patient at the observed event time point, 𝑌𝑖 , according 

to the model. This term is maximized when the hazard predicted by the model is highest 

for the patient who actually experience an event at the time 𝑌𝑖 . Hence, the partial log 

likelihood can be interpreted as a measure of how well the Cox model fits the data for a 

given set of coefficients, 𝜷.  

The Cox model can be used to estimate the survival probability as a function of time by 

using the cumulative hazard, 𝐻(𝑡) [99]: 

𝑆𝐶𝑜𝑥(𝑡) = 𝑆0 ⋅ exp (− ∫ ℎ(𝑡)
𝑡

0

) = 𝑆0 ⋅ exp (−𝐻(𝑡)) 

 Contribution from study 3 
Study 3 contributes to the clinical validation of DWI by investigating the prognostic value 

of longitudinal DWI in patients with locally advanced pancreatic cancer (LAPC). For this 

purpose, a multivariable Cox proportional hazards model for overall survival is made 

based on best-subset selection using cross validation. To address the potential benefit of 

longitudinal DWI over pre-treatment DWI, the analysis includes both DWI at baseline and 

DWI changes during the RT course. Moreover, a model-free decomposition method for 

derivation of DWI parameters is investigated as an alternative to the standard, model-

based ADC.  

 

 

 

 

 

 

 

 

 

 

 



48 
 

6 Paper III 

Prediction of overall survival in patients with locally 
advanced pancreatic cancer using longitudinal diffusion-
weighted MRI  
   

Anne L. H. Bisgaard*
a,b, Carsten Brinka,b, Tine Schytteb,c, Rana Bahijc, Mathilde Weisz 

Ejlsmarkb,c, Uffe Bernchoua,b, Anders S. Bertelsena, Per Pfeifferb,c, Faisal Mahmooda,b. 
 

aLaboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark 

bDepartment of Clinical Research, University of Southern Denmark, Odense, Denmark 

cDepartment of Oncology, Odense University Hospital, Odense, Denmark 

*Corresponding author 

 

Manuscript ready to be submitted for publication. 

  



49 
 

 

 Abstract 

Introduction 

Biomarkers for prediction of outcome in patients with pancreatic cancer are wanted in 

order to personalize the treatment. This study investigated the value of longitudinal 

diffusion-weighted magnetic resonance imaging (DWI) for prediction of overall survival 

(OS) in patients with locally advanced pancreatic cancer (LAPC) treated with stereotactic 

radiotherapy (SBRT) on an MRI-linac. 

Materials and methods 

The study included 45 patients with LAPC who received five fractions of 10 Gy on a 1.5 T 

MRI-linac. DWI was acquired before each fraction. The analysis included the apparent 

diffusion coefficient (ADC) and DWI parameters obtained using a decomposition method 

within the gross tumour volume (GTV). Both the DWI parameters' baseline values and 

time-trends during the treatment course were investigated. A multivariable Cox 

proportional hazards model for OS was made based on best-subset selection, using cross-

validation based on Bootstrap. The model's discriminating power was assessed using the 

C-Harrel index. 

Results 

The median OS from the first day of SBRT was 15.5 months (95% CI: 13.2-20.6), and the 

median potential follow-up time was 19.8 months. The best-performing multivariable 

model for OS included two decomposition-based parameters: one baseline and one time-

trend parameter. The C-Harrel index was 0.754. An association between high baseline ADC 

values and reduced OS was observed, possibly due to the inclusion of necrotic regions in 

the GTVs. No association between the ADC time-trend and OS was observed.  

Conclusion 

Decomposition-based DWI parameters demonstrated prognostic value in LAPC. Results 

indicated that time-trends of DWI parameters are useful for response prediction, 

underlining the benefit of acquiring longitudinal DWI during the SBRT course. The 

investigated parameters may be potential predictive biomarkers for treatment response, 

and may thus be used to guide treatment interventions to improve the outcome in patients 

with LAPC.  
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 Introduction 

Pancreatic cancer is the fourth most common cause of cancer-related death in Europe, with 

a 5-year survival rate of less than 10% and an increasing incidence [103,104]. Twenty 

percent of the patients are eligible for curative-intend surgery, which increases the 

survival rate to about 20 % [105,106]. RT can be used to downstage tumours, making them 

eligible for surgery or as a definitive treatment. The development of IGRT, especially the 

recent introduction of hybrid MRI linear accelerators (MRI-linacs), have made 

hypofractionated stereotactic RT (SBRT) well-tolerated due to the ability to see and adapt 

the treatment to the position and daily shape of the sensitive organs at risk (OAR) 

surrounding the pancreas [11,16,107]. Still, the best RT treatment for patients with 

pancreatic cancer remains to be settled. A possible problem in interpreting the result from 

pancreatic cancer studies can be the considerable variation within the studied cohorts, 

which might relate to different responses to RT. Thus, biomarkers may allow a more 

informed treatment choice [108]. The impact of such biomarkers could be either dose 

escalation or de-escalation to obtain an optimal balance between survival and toxicity. 

One promising candidate for such a biomarker is the apparent diffusion coefficient (ADC) 

derived from diffusion-weighted MRI (DWI). ADC quantifies the motion of water 

molecules, which indirectly reflect the tissue microstructure [29]. Several groups have 

investigated the value of ADC in detecting pancreatic cancer [109–113] and the relation 

between ADC and pathological response [114–116]. The correlation between overall 

survival (OS) and ADC has also been investigated [106,117,118], with findings indicating 

that pre-treatment ADC might contain more predictive information than standard clinical 

parameters such as age and tumour size. However, the predictive power of these studies 

was limited. A potential improvement can be sought through the MRI-linac, where DWI 

can be naturally integrated into the workflow in each treatment fraction. This setup allows 

investigation of whether changes in DWI parameters during the treatment course could 

add independent information to the prediction of the outcome for the patients. 

The current study utilized longitudinal DWI data to investigate how baseline DWI 

parameters and changes in DWI parameters during the treatment course impact survival 

prediction in patients with locally advanced pancreatic cancer (LAPC). DWI parameters 

were derived using a data-driven method recently proposed by Rahbek et al. [31,119]. The 

potential advantage of data-driven approaches is that there are no initial model 

assumptions which could lead biased parameters. The standard ADC based on a mono-

exponential model was included as comparison. 
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The overall aim was to create a survival model for patients with non-resectable locally 

advanced pancreatic tumours treated with SBRT on an MRI-linac using DWI parameters 

and clinical parameters, with the long-term goal of potentially adapting the treatment 

based on the response of the individual patient.  

 Materials and Methods 

A multivariable Cox survival model was made to predict OS in patients with LAPC treated 

on a high-field MRI-linac (Elekta Unity). The model was based on both clinical parameters 

and parameters derived from DWI (the variable selection method is described in the 

statistics section below). The DWI parameters were extracted from the GTV volume using 

both a model-based method (ADC) and a model-free decomposition method (msNMF) (see 

the image analysis section below).  

Before data analysis of the outcome, a statistical analysis plan (SAP) was created (see 

Appendix IIIc). The SAP states time to local progression as a second endpoint. However, 

due to too few local progression events (8 events), it was impossible to derive stable 

models; thus, time to local progression is not included in the analysis.  

6.3.1 Patients and endpoints  

The current study included patients diagnosed with LAPC, treated with SBRT for 

downstaging or definitive (consolidation) SBRT. No tumours were resectable at the time 

of diagnosis. Three patients underwent surgery after SBRT. All patients had either primary 

tumour or recurrence in the pancreas, with no tumour-involved lymph nodes. All patients 

received induction chemotherapy prior to SBRT and were treated with five fractions of 10 

Gy on a 1.5 T MRI-linac (Unity by Elekta, Stockholm, Sweden). Only patients without visual 

artefacts in the GTV regions for at least two treatment fractions were included in the study. 

The follow-up after SBRT, including clinical examination and CT scan, was scheduled for 

every three months for two years. Only patients that attended the first three-month follow-

up were included in the study (i.e., they were alive three months after SBRT), due to the 

initial intention of using local progression as a second endpoint. OS was defined as the time 

from the first SBRT fraction to death for any cause. All patients were prospectively 

included in the MOMENTUM study (an international partnership between several 

hospitals and the industy partner Elekta (Elekta AB, Stockholm, Sweden) [18]), although 

the current investigation was not initially planned. Inclusion of data in MOMENTUM was 

approved by the research ethics committee at the local institutional board (26/68031) and 

storage of data was approved by the Region of Southern Denmark (20/35211). Informed 

consent was obtained from all patients. 
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6.3.2 MRI protocols 

Before treatment, all patients had T2-weighted MRI scans acquired on a 1.5 T diagnostic 

scanner (Ingenia, Phillips). Imaging before each treatment fraction at the MRI-linac 

included T2-weighted MRI scans and DWI scans. The majority of the patients (n=39) were 

DWI scanned using the b-values 0, 30, 80, 150 and 500 s/mm2 (sequence 1), while six 

patients were scanned using b-values of  0, 20, 60, 100, 300, 800 and 1000 s/mm2 

(sequence 2). Acquisition details are presented in Table A3.1 and A3.2 in Appendix IIIa.  

All DWI scans were visually inspected for artefacts. In some patients, an alternation of DWI 

signal between neighboring slices was observed, likely cross-talk due to magnetization 

saturation effects. The alternation was reduced by a pre-processing step in which all slices 

were convoluted with the neighboring slices with a weight of 0.25 on neighboring slices 

and 0.5 on the current slice. All evaluations were done by persons without knowledge of 

the clinical data. 

6.3.3 Region of interest 

GTV delineations from the treatment pre-plan (based on T2-weighted images from the 

diagnostic scanner) were used to measure the volume of the GTV at baseline. The GTV 

delineations from the daily adapted treatment plans (based on T2-weighted images from 

the MRI-linac) were the basis for extracting all DWI parameters.  

The GTVs were transferred to DWIs without translational adjustment. A 5 mm margin was 

added to the GTVs to account for delineation uncertainty and possible misalignment of the 

GTV between T2-weighted images and DWIs. In the following, all DWI information 

obtained from the "GTV" refers to the GTV with the 5 mm margin. All image analysis was 

performed in Matlab (R2020b, Mathworks ab, Sweden). 

6.3.4 ADC calculation 

ADC was included in the current study as a standard, model-based method. ADC values 

were calculated using a mono-exponential Stejskal-Tanner model [33], using the b-values 

150 and 500 s/mm2 (DWI sequence 1) and 300 and 800 s/mm2 (DWI sequence 2), to 

adhere as closely as possible to recommendations from the Elekta MRI-linac Consortium 

[51]. The b-value of 1000 s/mm2 in DWI sequence 2 was excluded from the analysis, as the 

noise floor present for high b-values (b>=1000 s/mm2) may lead to an underestimation of 

the ADC. The median ADC within the GTV was extracted. 
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6.3.5 Data-driven DWI decomposition 

The monotonous slope non-negative matrix factorization (msNMF) method was included 

as a data-driven alternative to the standard model-based ADC analysis described above. A 

detailed description of msNMF is provided by Rahbek et al. [31]. The main idea is to extract 

the "typical" behaviour of the DWI signals using the observed data, which is somewhat 

similar to principal component analysis. However, in the msNMF, the aim is to obtain 

"typical" physically meaningful components, i.e., non-negative, monotonous, and with a 

monotonous slope as a function of the b-values of the DWI scans. The DWI signals over all 

the b-values can be described as a combination of the msNMF components (linear 

combination with only positive weights). Thus each DWI voxel (across all b-values) is 

represented by weights, one for each component. Mathematically, the components can be 

represented by a matrix, 𝑾, and the corresponding weights by a matrix, 𝑯. The 

decomposition can be written as: 

𝑿𝑚𝑥𝑛 = 𝑾𝑚𝑥𝑘𝑯𝑘𝑥𝑛 + 𝑬𝑚𝑥𝑛 

Here 𝑿 contains the DWI signal for 𝑚 b-values and 𝑛 voxels, 𝑾 contains 𝑘 msNMF 

components, 𝑯 describes the weights associated with each component for each voxel, and 

𝑬 is the residual left in case the number of components is less than the number of b-values 

(which is the typical case to perform data reduction). The decomposition can be used to 

reduce data since 𝑘 components can describe 𝑚 b-values. 

The components (𝑾) were determined based on data from all patients scanned with DWI 

sequence 1 (n=39). For this purpose, all GTV voxels from all patients and all fractions were 

pooled to create the matrix 𝑿. In the current study, a two, three and four components 

described 86%, 94%, and 96% of the initial data variance, respectively. Based on these 

values, the current study used three msNMF components (𝑘=3). 

The DWI signal within each voxel was normalized by dividing by the signal intensity in b=0 

s/mm2, as the signal behavior is of interest and not the absolute signal intensity. Overall, 

DWI signals should decrease as a function of the b-value, however, image noise can disturb 

the measured signal between b-values, particularly for voxels with low signal values. To 

reduce the impact of noise, voxels with normalized signal values above 1 for b≥80 s/mm2 

were excluded before calculating the msNMF components. Further, voxels were excluded 

if a linear fit to the logarithm of the signal had a positive slope (voxels with a non-

decreasing signal). As a result, 22% of the voxels were excluded based on this noise 

reduction approach. Details regarding the use of msNMF in the current study are provided  
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Figure 6.1. Example of T2-weighted image (a), DWI images (b-f) and ADC map (g) for a patient. 
Example of weight maps (H) corresponding to the three components (W) (h-j). Components (W) 
resulting from decomposition analysis (msNMF) based on a total of 190 DWI scans from 39 patients 
(k). 

 

in Appendix IIIb. In the following, H1, H2, and H3 refer to the weights associated with the 

components W1, W2 and W3, respectively. The extracted components can be seen in 

Figure 6.1 together with example scans.  

6.3.6 Derivation of DWI parameters  

As a result of msNMF analysis, each voxel within a DWI scan can be represented by three 

weights, one weight per component. These weights can be thought of as the "amount" of  
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Figure 6.2. Derivation of decomposition-based DWI parameters for outcome prediction. Examples 
of weight maps for a patient (a-c). The red contour represents the GTV. The distribution of weights 
within the GTV (3D volume) are presented using histograms (d-f). The red, vertical lines represent 
the 10th and 90th percentiles of the distributions. Temporal dynamics are extracted from each 
percentile using a linear fit to the data as a function of fraction number (g).   

 

each component within the voxel. The spatial distribution of weights can be presented in 

so-called weight maps, as presented in Figure 6.2 (a-c) (corresponding to H1, H2, and H3).  

The weight distributions within the GTV were extracted, and the 10th and 90th percentiles 

were calculated (Figure 6.2, d-f). The 10th and 90th percentiles were chosen in order to 

characterize changes in the shape of the weight distributions. The process was repeated 

for each of the five fractions, and a time-trend of each percentile was extracted using a 

linear fit, as illustrated in Figure 6.2, g. The slope of the linear fit and the value at fraction 

one were used as parameters in the statistical analysis. This resulted in a total of 12 

decomposition-based parameters (3 components x 2 percentiles x (slope + value at 

fraction one)). These decomposition-based parameters were given names referring to the 

component (H1, H2, or H3), the percentile (10th or 90th percentile), and whether the value 

represents the slope or the value at fraction one. For example, "H1_prc10_slope" refers to 

the slope of the 10th percentile of weights for component one.  

Likewise, a time-trend was extracted for the median ADC. The slope of the fit as well as the 

ADC value at fraction one were included in the statistical analysis.  

6.3.7 Statistical analysis 

The study aimed to create a multivariable Cox proportional hazards survival model with 

OS as the endpoint. Patients were censored if they were still alive at the cut-off date for 

data collection (30th March 2023). In total, 14 DWI-derived parameters (12 

decomposition-based and 2 ADC) and 6 clinical variables were included in the analysis. 

The clinical parameters at the time of SBRT were age, GTV volume at baseline, time 
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between diagnosis and SBRT, sex, performance status (PS), and primary 

tumour/recurrence, out of which the three latter were categorical variables. The 

continuous variables were standardized by subtracting the mean and dividing by the 

standard deviation.  

The parameter selection was based on best-subset selection using bootstrap-based cross-

validation. Thus, for each combination of potential variables for the multivariable model 

(2No. of parameters =220 ≈ 1 mio. models), a bootstrap of the initial data was made. Those 

patients included in the boot (in-boot patients) were used to calculate the regression 

constants, and the cross-validated model likelihood was subsequently calculated using the 

patients not included in the Bootstrap (out-of-boot patients). The number of out-of-boot 

patients will vary per boot, and the computed likelihood was divided by the number of out-

of-boot patients, as suggested by Schemper [120]. The entire bootstrap process was 

iterated 50 times, and the mean cross-validated likelihood was obtained. The selected 

multivariable model was the model performing the best during the cross-validation. For 

the best model, model regression constants (𝛽) and corresponding 2-sided 95% CI were 

established using 2000 bootstraps defined as the range of the 95% most central values (2.5 

% removed at each tail).  

The multivariable Cox model was validated by dividing the patients into low-, medium- 

and high-risk groups. Kaplan-Meier survival curves and model estimates were compared 

for each risk group. The risk groups were defined based on the value of the linear predictor 

for each patient (∑ 𝛽𝑖𝑥𝑖𝑖 ). The division was made such that the high- and low-risk groups 

each contained 25% of the patients, and the remaining 50% were in the medium-risk 

group. Besides such calibration plots, the model's ability to discriminate between patients 

with high and low risk (i.e. the linear predictor) was reported as the C-Harrell index, which 

measures the fraction of patient pairs in which the one with the lower risk survives the 

longest.  

The median survival time for the entire cohort was assessed using the Kaplan-Meier 

estimator, and the median potential follow-up time was calculated using the inverse 

Kaplan-Meier method. Although not needed for the multivariable model selection, 

univariable Cox models were performed to provide an overview of the entire data set. 

Statistical analysis was performed using R (Version 4.3.1). 
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 Results 

6.4.1 Included patients 

In total, 50 patients fulfilled the inclusion criteria (see section 6.3.1). Out of these, five 

patients were excluded before statistical analysis, as their DWI sequences differed 

substantially from those of the remaining patients (DWI sequence 1 and 2). No patients 

were excluded due to artefacts in the GTV region. For two patients, DWIs  were missing for 

two and three fractions, respectively, however, they were kept as part of the analysis. The 

analysis was thus based on 45 patients (demographics shown in Table 6.1).  

6.4.2 Decomposition 

The decomposition analysis (msNMF) resulted in three well-separated components (𝑾): 

one long lifetime component (W1), one intermediate lifetime component (W2), and one 

component mainly driven by b=0 s/mm2 (W3) (Figure 6.1, k). An example of weight maps 

(𝑯) associated with each component is shown for one patient (Figure 6.1, h-j). The weight 

maps reveal tissue heterogeneity, highlighting different regions within the GTV. Visually, 

the weight maps provide spatial information about the weight variation of the individual 

msNMF component extracted from the DWI images (Figure 6.1, h-j). It should be noted that 

the weight maps do not correlate 1:1 with the DWI images or the ADC map and thus 

provide complementary information (Figure 6.1, b-g).  

6.4.3 Overall survival 

The median OS was 15.5 months (95% CI: 13.2-20.6) (see Kaplan-Meier plot in Figure A3.1 

in Appendix IIIa). The median potential follow-up time was 19.8 months.  

A univariable analysis was performed to provide an overview of the association between 

each variable and OS (Figure 6.3). None of the clinical parameters showed a statistically 

significant association on a 5% level; however, the association between age and OS was 

borderline significant. Several of the DWI-derived parameters, including ADC at the first 

treatment fraction, showed a statistically significant association with OS. It might be noted 

that for the decomposition-based parameters H1 slope and H2 at fraction 1, the hazard 

ratio was similar for the 10% and 90% percentile values. 

The best-performing cross-validated multivariable Cox model for OS included two 

decomposition-based parameters ("H1_prc10_slope" and "H2_prc90_frac1") (Figure 6.4). 

The C-Harrell conformance index for the best model was 0.754. A calibration plot showing 

the Kaplan-Meier survival curve and the model performance divided into risk groups is 

presented in Figure 6.5, demonstrating good agreement between the model and data.  
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Clinically it can be of interest to make outcome predictions as early as possible (e.g., at 

fraction one and not after fraction five); thus, the individual performance of the two 

predictors in the best-performing model is shown in Figure A3.2 in Appendix IIIa. The 

model's performance is obviously reduced when the parameters are used separately and 

have C-Harrel indexes of 0.633 and 0.688 for H2_prc90_frac1 and H1_prc10_slope, 

respectively.  

Table 6.1. Patient demographics for 45 patients receiving SBRT for localized panctreatic cancer. 
The reported T-stage is at the time of diagnosis. No re-staging was performed at the time of 
recurrence.  
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Figure 6.3. Hazard ratios and 95% confidence intervals for univariable Cox proportional hazard 
models for overall survival. In the graphical representation, the confidence interval for the 
parameter "H3_prc10_frac1" was cut off at 0.10 in order to make a more well-balanced figure.  

 

 

Figure 6.4. Hazard ratios and 95% confidence intervals for the multivariable Cox proportional 
hazard model for overall survival. The variables included in this model were selected by the cross-
validation process.  
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Figure 6.5. Comparison of the multivariable Cox model and the Kaplan-Meier estimator for the 
best-performing model for overall survival. The model included the decomposition-based 
parameters “H1_prc10_slope” and H2_prc90_frac1” (see section 6.3.6). Patients were split into high, 
medium, and low-risk groups based on the 25% and 75% percentiles of the calculated linear 
predictors (-0.67 and 0.74), i.e. the high- and low-risk groups each contained 25% of the patients, 
and the medium-risk group contained 50% of the patients. The confidence intervals for each of the 
risk groups were overlapping (not shown).  

 Discussion 

This study aimed at predicting OS in 45 patients with LAPC utilizing parameters derived 

from longitudinal DWI using both a standard, model based approach (ADC) and a model-

free decomposition approach (msNMF). To our knowledge, this study was the first to 

investigate the value of longitudinal DWI in predicting OS in patients with LAPC. 

The best model for OS prediction was found to include only two parameters 

(H1_prc10_slope and H2_prc90_frac2), both of which were based on DWI decomposition. 

None of the clinical parameters were selected by the cross-validation process. The best 

model reached a C-Harrell index of 0.754 indicating that the model is good at determining 

which of two patients will survive the longest (a value of 0.5 corresponds to a random 

guess, and a value of 1 means that the model can perfectly rank the patients’ survival 

times). The best model represented both information from the baseline (H2_prc90_frac1) 

and the longitudinal change of the DWI signals (H1_prc10_slope). Moreover, the C-Harrell 

index was markedly reduced if the model was based on just one of the parameters 

compared to the best model (Figure A3.2 in Appendix IIIa), indicating that both baseline 

and temporal information is important for the best survival prediction. 

The fact that decomposition-based parameters were selected by the cross-validation 

process instead of the ADC information indicates that the decomposition-based 
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parameters might be more stable than the standard ADC values. Increased stability could 

be related to the fact that the extracted components are based on data from all patients 

and fractions, hereby reducing the impact of noise. The C-Harrell index for a model based 

on ADC and ADC-slope was 0.623 (data not shown), indicating that the discriminating 

power was reduced if the model was based only on the standard ADC value. That being 

said, it can be seen in Figure A3.4 in Appendix IIIa that the Pearson correlation between 

ADC_frac1 and H2_prc90_frac1 is 0.78 showing that most of the information in 

H2_prc90_frac1 is also present in the ADC signal. Thus the main difference between the 

standard ADC approach and the msNMF approach is mainly within the longitudinal 

changes in which msMNF predict survival much better than the temporal ADC signals 

(ADC_slope). 

It is seen that H2_prc90_frac1 is a risk factor indicating that increasing values of 

H2_prc90_frac1 will reduce the expected lifetime. This is in line with the univariable result 

in Figure 6.3, showing that a high baseline ADC value also is a risk factor. Initially, these 

results seem to contradict the finding in some other studies, in which an association 

between low ADC and poor survival was reported [117,118,121]. However, the 

explanation is likely related to the GTV region from which the DWI parameters were 

derived. The current study aimed to use the clinically available GTV so that no additional 

delineation was needed. In contrast,  the previous studies focused on the delineation of the 

“viable” part of the tumour, excluding necrotic and cystic parts. The different results 

regarding outcome might be due to inclusion of necrotic regions in the GTV used in the 

current study. This explanation is supported by a study by Lyng et al. [122], which shows 

that some necrotic regions are related to increased ADC values. Further, necrosis has been 

related to worse outcomes in patients with LAPC [123]. Thus, the initial counterintuitive 

behavior might be related to the volume used for the DWI analysis. 

It may be important to note that the univariable results of the two parameters in the best-

performing model have very similar hazard ratios. Furthermore, the correlation of the 

10% and 90% percentile values for H2 frac1 and H1 slope is 0.70 and 0.61, respectively 

(Figure A3.4 in Appendix IIIa). This indicates that they contain quite similar information. 

The average of the 10% and 90% percentile values for symmetrical distributions will be 

very close to the median. Therefore, it is likely that it was unnecessary to focus on the tails 

of the distribution and that the median values could have been used instead. To test this 

assumption, a calibration plot of a model based on the related median values of the best 

model is shown in Figure A3.5 in Appendix IIIa (i.e. a model based on "H1_prc50_slope" 

and H2_prc50_frac1"). This model had a C-Harrell index of 0.757, similar to the C-Harrel 
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index of the best model (0.754). For future studies, it is likely as good (and simpler) to 

focus on the median value and not include the tails of the weight distributions.  

Finally, it should be noted that none of the two variables in the best model correlated with 

any of the six included clinical parameters. The largest Pearson correlation between the 

model variables and the continuous clinical variables was 0.24, and the lowest p-value of 

a Mann–Whitney U test of best model variables between the levels of the categorical 

clinical variables was 0.53. So there is no indication that the DWI parameters could be a 

proxy for any of the clinical variables.   

Although a careful variable selection based on cross-validation was performed to avoid 

overfitting, it is important to underline that the entire cohort consists of only 45 patients. 

This is considered a relatively large cohort compared to other RT studies within LAPC, but 

it is still a poor representation of the overall cohort of patients with LAPC treated 

worldwide. We thus hope that people with access to independent LAPC patient cohorts 

will be interested in performing validation of the presented findings.  

 Conclusion 

A model predicting survival after SBRT for patients with LAPC based on only two DWI 

parameters has been developed. The model contains both baseline information and 

longitudinal DWI changes during the SBRT course and can quite clearly separate the 

patients into high- and low-risk groups. It is the hope that in the future, the model can 

assist in stratifying patients for individual treatment (e.g. dose escalation) based on their 

individual DWI responses. Furthermore, the model might help identify differences 

between LAPC cohorts, which might be needed to get a common understanding of the best 

treatment option for specific groups of patients with LAPC. 
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7 Discussion and perspectives 

In the three papers presented in this thesis, steps have been taken towards an integration 

of DWI into the MRI guided RT workflow. Each paper investigated a different aspect of the 

technical and clinical validation of DWI, with the end goal of translating DWI into clinical 

use. This chapter includes a discussion of the findings under different topics regarding the 

technical and clinical validation, as well as future perspectives. 

 

 Delineation 
Delineation of a ROI is an important aspect of ADC measurements, however, manual 

delineation gives rise to both inter-and intra-observer ADC variation, hampering both 

repeatability and reproducibility [54,55,57,124]. Further, manual delineation is time-

consuming and must be performed by someone with a high level of expertise, e.g. a 

radiologist, making ADC measurements less feasible in a busy clinic. Study 1 investigated 

semi-automatic delineation as a potential solution to these challenges using an easy-to-

implement, threshold-based approach. Automated delineation based on artificial 

intelligence (AI) was also considered an option, since it might allow fully automated 

delineation, however, it would require training on large data sets [69,70]. A threshold-

based tool has the advantages that it does not require training, and that it is more 

transparent in in terms of the criteria for inclusion of voxels in the ROI, which might help 

translation of the tool to other tumour sites. Thus, a threshold-based approach was 

preferred. 

The semi-automatic delineation tool (SADT) presented in study 1 performed comparable 

to manual delineation by a radiologist in terms of ADC repeatability and slightly better in 

terms of intra-observer ADC variation, demonstrating its potential for a more robust 

derivation of ADC values. Further, it did not require the same level of expertise as manual 

delineation, and might thus save time for the medical doctors in future investigations of 

ADC as a response biomarker.  

One of the strengths of Study 1 is the use of test-retest DWI scans, which allowed 

comparison between the ADC repeatability and temporal ADC changes. The SADT 

demonstrated the ability to detect temporal ADC changes larger than ADC repeatability, 

which is crucial if the tool should prove useful for detection of RT-induced biological 

changes. An important question that remains unanswered is whether the observed ADC 

values and temporal changes of these correlate with clinical outcome. Further, although 

previous studies have investigated the use of temporal ADC changes for response 
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prediction [26,67,125–127], the literature is limited regarding ADC changes during SBRT 

treatments on the MRI-linac which have a shorter duration compared to conventional RT 

[128].  

Another important aspect of delineation which impacts ADC measurements is the 

delineation strategy, i.e. which type of ROI is delineated. The SADT delineated the so-called 

viable tumour volume (VTV) defined as the GTV excluding necrotic and cystic parts 

[35,58]. The VTV has been recommended for ADC calculation [35], however, it still remains 

unanswered if it is the best ROI for detecting RT-induced biological changes. For example, 

RT leads to cell death e.g. via necrosis, which is normally associated with an increase in the 

ADC value [122]. By excluding necrotic parts from the delineation, this ADC increase might 

not be detected, and hence information on RT-induced biological changes is lost [35]. 

Another option might be to use the GTV which is already available from the clinical RT 

workflow. However, since the GTV is usually based on a T2-weighted image, this requires 

registration between T2-weighted images and DWI, which introduces a registration error 

and uncertainties related to the geometric distortions in MRI (especially in DWI). 

Therefore, it might be preferable to delineate the ROI directly on the DWI. So far, very few 

studies have investigated the potential benefits of using the VTV in comparison to the GTV, 

thus, investigations of both are relevant [35,58].  

It is the hope that the SADT (or similar tools) can be implemented and aid ADC 

measurements at other centres. However, the SADT has not yet been tested using other 

data sets, and thus, external validation of the SADT is needed. One concern in this regard 

is that the tumour-to-background ratio might differ between DWI sequences and tumour 

sites. It should be noted that the current data were acquired on a diagnostic scanner with 

a maximum b-value of 1100 s/mm2, whereas the maximum b-value recommended for the 

MRI-linac (Unity, Elekta) is 500 s/mm2 due to limitations of the MRI-linac hardware. 

Consequently, the tumour-to-background ratio is probably reduced on MRI-linac data, 

which might impact the ability of the SADT to distinguish between tumour and normal 

tissue. If the tumour-to-background ratio is too low, a threshold-based approach is unfit, 

and other delineation approaches should be considered instead, e.g. based on AI [129]. 

In the future, the SADT might become useful for dose painting purposes [22]. The idea of 

using a focal boost to improve chances of local control has already been investigated in 

prostate cancer, where the dose was escalated to a prostate sub-region defined using 

multi-parametric MRI, including DWI and dynamic contrast-enhanced MRI [28]. In rectum 

cancer, a homogeneous dose is normally prescribed to the entire rectum and mesorectum, 
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however, chances of local control might be improved by using a focal boost to VTV, as it is 

represents a region of high tumour load [22,130].  

Repeatable and reproducible ADC measurements are essential for detecting differences 

between time-points or patients, and are thus critical if ADC should be used for response 

prediction purposes. The SADT (or similar tools) may improve both repeatability and 

reproducibility of ADC measurements by reducing the delineation-related uncertainty, and 

therefore aid technical and clinical validation of ADC. It may also save time for the medical 

doctors who would normally perform the manual delineation, and hence make ADC 

measurements more feasible, both for research purposes and future clinical purposes.  

 Multi-centre reproducibility 
Currently, there is a large variation in the methods used for ADC measurements across 

studies, which results in a poor reproducibility and hampers technical validation of ADC 

[20]. Many factors are known to impact ADC reproducibility, such as acquisition, 

delineation, and ADC calculation method, however, the relative importance of these factors 

is less clear. Study 2 aimed at providing recommendations for improved reproducibility of 

ADC measurements by evaluating the ADC variation between centres with respect to two 

categories: delineation and calculation method. The study was focused towards multi-

centre ADC validation studies for the MRI-linac, and hence included nine MRI-linac centres 

across different countries. Recommendations regarding DWI acquisition for ADC 

measurements published by the image analysis working group within the Elekta MRI-linac 

consortium were followed in Study 2 [51].  

The study design of Study 2 allowed a direct comparison of the different sources of 

variation in a multi-centre setting. Interestingly, it was found that the variation in 

calculation methods between centres had a larger impact on the ADC reproducibility 

compared to the delineation variation. A closer look revealed that the choice of b-values 

was the most important factor, but also choice of voxel-based versus ROI-based calculation 

and factors related to the software implementation such as filtering and fitting methods 

were important. Hence, the findings advocate reducing the calculation-related ADC 

variation between centres in order to improve reproducibility. 

One could argue that differences in calculation methods between centres are less 

important for multi-centres studies, as long as the data analysis is performed in a 

centralized manner. However, it is important to be aware of calculation-related ADC 

variation if findings should be compared between studies. Further, if ADC should be used 

in the future as a decision making tool in a clinical setting, it might be necessary to establish 
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common cut-off values to discriminate between good and poor responders, which may be 

difficult to do with varying methods across centres. Since the tools available for ADC 

calculation differs between centres, it might be useful to validate local tools against a 

commonly available algorithm in order to detect biases [19,35,131].  

Besides reducing calculation-related ADC variation, Study 2 indicated that it is worthwhile 

to reduce the delineation variation in order to improve ADC reproducibility. One way to 

achieve this is to adhere strictly to delineation guidelines, and to ensure that delineation 

procedures are aligned between centres [124,132]. Automated delineation might be 

another way to reduce the delineation-related ADC variation, which also has the potential 

benefit of saving time compared to manual delineation. The potential benefit of using 

delineation guidelines and semi-automatic delineation was investigated as a sub-analysis, 

utilizing the same data as in study 2, although the results were not included in the 

publication (see Figure A4.1 in Appendix IV). Here, a slight improvement in delineation 

agreement was observed when using the SADT developed in Study 1, supporting semi-

automatic delineation as a potential solution. No clear benefit was observed when manual 

delineation was performed using a set of instructions (“guidelines”) for VTV delineation. 

However, these instructions did not represent detailed delineation guidelines, which 

might still be useful [35].  

The main limitation of Study 2 is the small number of patients (only one per cancer 

diagnosis). As a result, the findings may not be directly translatable to other patients with 

the same diagnoses. However, the underlying trend regarding the relative contribution 

from delineation and calculation methods to the ADC variation is still informative.  

Study 2 did not provide a specific recipe for ADC calculation, but rather sought to bring 

awareness of the factors, which are important for ADC reproducibility. This might aid 

comparison between studies, as well as future multi-centre validation studies of ADC as a 

response biomarker. As described by van Houdt et al., important steps towards a technical 

and clinical validation of imaging biomarkers are the integration of a technical validation 

into clinical trials as well as the collection of multi-centre data (e.g. the MOMENTUM 

database [18]) [48]. In this context, the recommendations provided in study 2 could be 

used as a checklist to obtain reproducible ADC measurements across centres.  

 Longitudinal DWI for response prediction 
The MRI-linac has made acquisition of longitudinal DWI feasible, which holds a great 

potential for detecting biological changes. Both pre-treatment ADC values and changes in 

ADC values have shown potential for response prediction [26], and but only a few studies 
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included ADC measurements from more than two time-points during the RT course 

[67,125–127]. Hence, the potential benefit of using longitudinal DWI for response 

prediction still needs to be investigated.  

Study 3 showed that longitudinal DWI has prognostic value for overall survival in patients 

with LAPC treated with stereotactic RT on the MRI-linac. Interestingly, both DWI 

parameters derived before RT and time trends during the RT course seemed to be 

important to obtain the best prediction, suggesting that a combination of pre-treatment 

and longitudinal DWI is useful for response prediction, compared to only pre-treatment 

DWI. 

Although the ADC has been widely studied as a biomarker, it does not necessarily 

represent the most optimal way to derive information from DWI data for response 

prediction purposes. Study 3 investigated a data-driven alternative to the model-based 

ADC, namely a method based on decomposition of the DWI signal [31,119]. The 

considerations behind the choice of the decomposition method were the following:  The 

use of models to derive parameters generally introduces a risk of violating the model 

assumptions, which might lead to biased parameters. For example, the mono-exponential 

model used for ADC derivation assumes a mono-exponential DWI signal decay as a 

function of b-values, however, in reality, the DWI signal within a voxel often does not 

exhibit a mono-exponential decay. This is both due to partial volume effects, i.e. the fact 

that each voxel may contain sub-compartments with different tissue types [133], perfusion 

effects which causes a more rapid decay [41,51], and non-gaussian diffusion behaviour due 

to restricted diffusion [42]. Therefore, it might be desirable to decompose the DWI signal 

into signal components, reflecting the different sub-compartments within a voxel, in order 

to better characterize the tissue. A decomposition method might be less sensitive to partial 

volume effects compared to the model-based ADC, and moreover, it might be more robust 

to image noise within individual DWI acquisitions, as the components are extracted based 

on a pooled dataset consisting of DWI images from all patients and all RT fractions. 

Interestingly, Study 3 found that the best prediction of survival was obtained using only 

two parameters, both of which were based on decomposition of the DWI signal. This 

indicates that the decomposition-based parameters carry information that is useful for 

response prediction, and may even be a better choice compared to the ADC. Moreover, 

none of the clinical parameters showed a statictically significant association with overall 

survival, suggesting that DWI could be a more useful predictor compared to standard 

clinical parameters. This is in agreement with a previous study reporting no association 
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between age, sex or tumour size and overall survival [118]. A negative correlation between 

ADC and overall survival was observed, whereas previous studies have found a positive 

correlation [117,118]. A possible explanation of this difference might be the inclusion of 

necrotic regions in the ROI used for ADC measurements in Study 3, as necrosis has been 

associated with high ADC values and poor overall survival [122] [123]. In contrast, the 

previous studies used ROIs delineated on DWI images excluding necrotic regions.  

One of the strengths of the study was the use of cross validation for selection of parameters 

for the best prediction of overall survival, which was performed to avoid the risk of 

overfitting. It should be kept in mind however, that the patient cohort was relatively small 

(45), and may not be representative of all patients with LAPC. Therefore, the findings need 

external validation. 

Overall survival depends on several factors related to both the patient, the tumour-type 

and -stage and the treatment. The correlation found between DWI parameters and overall 

survival could indicate a relation between the tumour microstructure and the 

aggressiveness of the tumour. Indeed, previous studies have shown that DWI provide 

information of cell density and necrosis, factors that could be related to the aggressiveness 

of the tumour and response to RT [122]. Moreover, one study found that ADC is correlated 

with the development of distant metastasis in patients with LAPC [117], indicating a 

possible relation between DWI and the aggressiveness of the disease.   

Since RT is a local treatment with the purpose of achieving local control, it would be 

interesting to study if early changes in DWI during RT could be used to predict time to local 

progression. In the initial statistical analysis plan (Appendix IIIc), time to local progression 

was included as an endpoint in addition to overall survival. However, due to a small 

number of events (8 out of 45), it was not possible to develop a prediction model for time 

to local progression. Hence, it could be a topic for future investigations.  

Study 3 demonstrated the prognostic value of longitudinal DWI, which is an important step 

towards a clinical validation of longitudinal DWI for response prediction in patients with 

LAPC. It still remains unanswered if longitudinal DWI has predictive value, e.g. if it can be 

used to predict the patients’ response to RT. If this is the case, longitudinal DWI could 

potentially be used in the future to discriminate between poor and good responders, and 

thereby help select patients for intensified RT treatment to improve outcome.   
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 Resources 
Besides the challenges of standardizing methods for biomarker measurements, as 

described in section 7.1-2, it is worth mentioning a few practical challenges in performing 

biomarker studies. Investigations of quantitative imaging biomarkers require time and 

resources, both for the acquisition and the analysis of functional MRI images and the 

collection of clinical data. Although daily acquisition has become much easier with the MRI-

linac, the image analysis pipeline itself can make it time-consuming to derive quantitative 

imaging biomarkers. The analysis steps may include anonymization of data, data storage, 

image registration, visual inspection of the images, delineation of ROIs performed by 

experts and processing using mathematical models or other analysis tools. The analysis 

may be partly or completely performed using in-house software, which it requires 

resources to develop. Commercial softwares can be used for analysis purposes, however, 

they may be less transparent, and may not allow for advanced analysis methods. A more 

streamlined analysis pipeline would be a great help for biomarker investigations, as it 

would allow a more efficient use of the researchers’ time. Based on experiences during the 

current Ph.D., investigations of ADC (or other DWI parameters) might benefit from a more 

systematic approach with respect to data storage and processing. An integration of semi-

automatic delineation tools in the image analysis pipeline, such as the tool presented in 

study 1, might also be useful in saving time and resources, and thus make biomarker 

research more feasible.  

 Geometric accuracy 
An important topic which has not been addressed in the three papers is the geometric 

accuracy of ADC (and MRI biomarkers in general) [30]. While “accuracy” often refers to the 

true ADC value, geometric accuracy refers to the spatial information of the ADC 

measurements.  The geometric accuracy may be impacted by geometric distortions 

present in DWI, which might lead to a misalignment of voxels in relation to the patients 

anatomy. Hence, besides repeatability and reproducibility, an evaluation of the geometric 

accuracy of ADC is important for a successful translation of ADC into the clinic. 

Geometric distortions in MR images are due to inhomogeneities of the magnetic field which 

arise from the scanner itself, e.g. inhomogeneities of the so-called B0-field, and from 

magnetic susceptibility differences within the patient. DWI is acquired using echo planar 

imaging (EPI) readout scheme, which allows fast acquisition, but suffers from a large 

sensitivity to field inhomogeneities [53,134]. This makes DWI is more prone to geometric 

distortions compared to e.g. T2-weighted MRI. Geometric distortions can be expressed as 

compression, dilation, shift and shear of the images. Further, due to the different magnetic 
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susceptibility of tissue and air, signal may be “displaced” near tissue/air interfaces, which 

can result in signal voids and signal pile-up, i.e. false dark and bright regions in the image. 

Susceptibility artefacts are often observed in the rectum or the intestines due to the 

presence of gas [135].  

The geometric distortions of DWI can cause a misalignment of the tumour between T2-

weighted images and DWI. As a result, propagations of ROIs from a T2-weighted image to 

a DWI image may lead to missing tumour voxels or inclusion of non-tumour voxels in the 

ADC calculation. On the other hand, ROIs delineated on DWI might not have the correct 

position in relation to the patient’s anatomy. This could cause problems if the idea is to use 

DWI to delineate regions for dose escalation. Geometric inaccuracies may be less 

important for ADC measurements for response prediction, however, since geometric 

distortions can vary between DWI acquisitions, they might impact the repeatability and 

reproducibility of ADC.  

It is possible to reduce the geometric distortions DWI acquired using EPI to some degree, 

by using appropriate acquisition settings (e.g. parallel imaging or segmented k-space 

acquisition [136]), and the use of post-processing steps such as B0-field map correction 

[137], correction of susceptibility distortions [138], and deformable image registration 

[19,139]. Nevertheless, studies investigating the impact of geometric distortions on ADC 

measurements are wanted, as the literature on this topic is still limited.  

 The next step 
Study 2 has contributed to a technical validation of ADC by providing recommendations 

regarding the image analysis of DWI in order to improve the multi-centre ADC 

reproducibility. A natural next step would be to move towards multi-centre validation 

studies with the aim of determining the ADC repeatability and reproducibility in larger 

cohorts, and correlating ADC with clinical outcomes to validate its prognostic value. This 

requires collaboration and sharing of data between centres. An example of such a 

collaboration is the MOMENTUM study [18], an international partnership which facilitates 

the sharing of both clinical and technical data between institutions, and thus might aid a 

technical and clinical validation of ADC and other potential MRI biomarkers. 

One way to obtain the necessary DWI data for assessment of repeatability and 

reproducibility could be to integrate a quality assurance step and acquisition of test-retest 

DWI data in clinical trials, as suggested by van Houdt et al. [48]. Such an approach could 

also be used to establish the DWI reproducibility between diagnostic MRI scanners and 

MRI-linacs, and hereby improve the generalizability of the findings.  
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Further down the line, the predictive value of DWI must be validated in relation to RT, 

since only predictive biomarkers can be used to predict which patients will benefit from 

specific treatments [48]. For this purpose, large interventional clinical trials are needed. 

Such trials could be designed to test the potential benefit of selecting patients for dose 

escalation, dose de-escalation or online treatment adaptation (i.e. dose painting) based on 

DWI. When designing such trials, there are a some challenges that must be solved. One is 

to develop a strategy for translation of biomarker measurements into treatment 

interventions. E.g. for dose painting, quantitative biomarker maps need to be translated 

into dose-plans [23,48]. Secondly, the time-point at which biomarker changes can be 

detected during the treatment course should be determined, in order to choose the optimal 

time point for stratification of patients based on treatment response [48,65].  

In order to ensure scalability of the findings from investigations of DWI biomarkers, it 

would be an advantage to use DWI sequences available on clinical MRI-guided RT systems, 

and to make a common image analysis available, to make biomarker measurements 

feasible at both expert and non-expert centres [19,35,131].  

 Bridging the gap - the future role of DWI 
In the future, DWI might play a role both before, during and after RT [48]. Pre-treatment 

DWI might provide prognostic and predictive information, and hereby aid decisions 

regarding the treatment strategy for the patients. During the on-line plan-adaptation in the 

daily MRI-linac workflow, DWI could be used as a tool for dose painting, e.g. by using ADC 

maps to define biological target volumes within the tumour. Thus, a heterogeneous dose 

distribution might be shaped to match the tumour biology, to obtain the most optimal 

tumour control. Potentially, early changes in the tumour ADC might be used to predict 

response to RT, and might thus be used to guide treatment interventions, such as 

escalation or de-escalation of the dose. Lastly, DWI might help guide the next treatment 

steps after RT. It is the hope that DWI will help personalize the treatment, in order to 

improve tumour control and reduce toxicity for the patients. 
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8 Conclusions 

This thesis addressed some of the challenges regarding a technical and clinical validation 

of DWI. One challenge is the manual delineation, which is observer-dependent and 

requires time and expertise. Study 1 showed that the use of semi-automatic delineation 

can reduce the intra-observer ADC variation compared to manual delineation in patients 

with rectal cancer. Moreover, it can be used to detect temporal ADC changes larger than 

the uncertainty associated with the measurements, indicating that changes in the tumour 

biology can be captured. These findings suggest that simple, threshold-based delineation 

tools could aid future ADC investigations by improving the consistency of ADC 

measurements and by saving time during the delineation process.  

Study 2 investigated the delineation-related and calculation-related ADC variation in a 

multi-centre setting, in order to provide recommendations for improved multi-centre ADC 

reproducibility. Interestingly, the largest contributor to the ADC variation was differences 

between calculation methods. The calculation-related ADC variation was mainly driven by 

different choices of b-values, but also choice of voxel-based vs. ROI-based calculation and 

software-related factors such as fitting and filtering methods were important. The results 

show how important it is to carefully consider the ADC calculation procedure when 

planning multi-centre studies, and that a detailed description of the calculation procedure 

is needed in order to compare results across studies. It is the hope that awareness of the 

factors causing ADC variation can help improve ADC reproducibility, and hereby aid future 

multi-centre investigations of ADC as a biomarker for biologically guided RT.  

Study 3 demonstrated the prognostic value of longitudinal DWI in patients with LAPC 

treated with SBRT on an MRI-linac. The best prediction of overall survival was obtained 

when both a baseline parameter and a time-trend DWI parameter were included in the 

prediction model, indicating that longitudinal DWI is beneficial compared to pre-treatment 

DWI only. Moreover, study 3 also indicated a potential benefit of deriving parameters using 

decomposition of the DWI signal, since the decomposition-based parameters had a larger 

discriminating power compared to the standard ADC parameter.  

All in all, study 1 and 2 have contributed to the technical validation of ADC, study 1 by 

providing a semi-automatic delineation tool for robust extraction of ADC values from DWI 

images, and study 2 by providing recommendations for improving the ADC reproducibility 

in a multi-centre setting. Study 3 demonstrated a relation between parameters derived 

from longitudinal DWI and clinical outcome, which is a step towards clinical validation of 

DWI.  
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If DWI crosses the translational gaps to the clinic, it may become a useful tool for decision-

making in the MRI-guided RT workflow. Potential uses include dose painting and 

prediction of response to RT, which could be used to guide treatment interventions. It is 

the hope that DWI might help personalizing the RT treatment, in order to improve the 

outcome for patients with cancer.  
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 Appendix I: Supplementary materials for paper I 

 

 

Figure A1.1. 3-step process of the semi-automatic delineation tool (SADT): Step 1: manual input 

delineates roughly the region of interest, Step 2: two masks are created based on criteria of high 

DWI intensity and low ADC, Step 3: overlap between the masks from step 2 defines the resulting 

VTV. In this example, the manual mask was defined by the non-radiologist. The image is transaxial 

and has been cropped to a size of (92.8x92.8) mm2. Note that semi-automatic delineation is 

performed on 3D images. 
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Appendix II: Supplementary materials for paper II 

Appendix IIa: MRI sequence details 

Table A2.1. Details on DWI and T2W sequences. Abbreviations: Spin echo (SE), echo planar imaging 
(EPI), spectral presaturation with inversion recovery (SPIR), spectral attenuated inversion 
recovery (SPAIR) 

 Adrenal gland Pancreas Oligo 

metastasis 

Prostate 

T2W: 

Sequence 3D SE 3D SE 3D SE 3D SE 

Fat saturation No No No No 

TE/TR (ms) 137/1400 137/1400 151/1400 151/1400 

Parallel imaging 

(SENSE factor) 

3.7 3.7 3.7 3.7 

No. of excitations 

(NEX) 

3 3 2 2 

In-plane 

resolution (mm) 

1x1  1x1  0.81x0.81  1x1  

Field of view (mm) 448x448 448x448 544x544 448x448 

Slice thickness 

(mm) 

2 2 2 2 

Slice gap (mm) 0 0 0 0 

Scan duration  6 min and 4 s  6 min and 4 s  5 min and 32 s  3 min and 51 s  

DWI: 

Sequence  Monopolar 

diffusion 

encoding, 2D 

SE with single 

shot EPI 

readout 

Monopolar 

diffusion 

encoding, 2D 

SE with single 

shot EPI 

readout 

Monopolar 

diffusion 

encoding, 2D SE 

with single shot 

EPI readout 

Monopolar 

diffusion 

encoding, 2D SE 

with single shot 

EPI readout 

Diffusion gradient 

encoding 

Three 

orthogonal 

directions 

along the 

imaging plane 

axes 

Three 

orthogonal 

directions 

along the 

imaging plane 

axes 

Three 

orthogonal 

directions along 

the imaging 

plane axes 

Three 

orthogonal 

directions along 

the imaging 

plane axes 

Fat saturation SPIR SPIR SPAIR SPAIR 

b-values (No. of 

excitations (NEX)) 

30 (2) 

80 (2) 

150 (4) 

300 (4) 

500 (16) 

30 (2) 

80 (2) 

150 (4) 

300 (4) 

500 (16) 

0 (2) 

30 (2) 

80 (2) 

150 (4) 

500 (16) 

0 (2) 

30 (2) 

80 (2) 

150 (4) 

500 (16) 
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Gradient duration 

(ms) (𝛿)  

22.47 22.47 20.22 20.22 

Effective diffusion time 

(ms) (Δ −
𝛿

3
)  

27.95 27.95 34.40 34.40 

TE/TR (ms) 70.90/559.43 70.90/559.43 82.30/4538.00 82.30/3354.17 

Parallel imaging 

(SENSE factor) 

2 2 2.3 2.3 

In-plane 

resolution (mm) 

1.22x1.22  1.22x1.22  1.92x1.92  1.92x1.92  

Field of view (mm) 351x351  351x351 430x430 430x430 

Slice thickness 

(mm) 

6 6 4 4 

Slice gap (mm) 0.6 0.6 0 0 

Scan duration  2 min and 23 s 2 min and 23 s  5 min and 40 s  4 min and 12 s  

  

Appendix IIb: Technical preparation of data 

DWI images were split into individual b-value-images with unique series UID’s using in-

house software (Matlab R2020b, Mathworks ab, Sweden) to accommodate delineation in 

ProKnow. For each b-value, a rigid registration between the DWI and T2W image was 

performed using MIM (MIM Software Inc., Cleveland, Ohio).  

The original, non-split DWI images were used for ADC calculation. A registration between 

b-values was performed using the built-in function of the scanner software (R5.7.1, Philips 

Ingenia, Philips Healthcare, Best, The Netherlands). All delineations were transferred to 

the original DWI images using the transfer matrix from the rigid registration between 

b=500 s/mm2 DWI and T2W images in MIM. 
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Appendix IIc: Calculation method details 

Table A2.2. Details on calculation methods used by the nine participating centres. 

Calculation 
method 
No. 

b-values 
(s/mm2) 

Fitting method Filtering Normally 
reported ADC 
metrics 

1 All Linear least 
squares 

Values below 10-

6 mm2/s were 
excluded 

Histogram 
distribution. 
Median (range). 
Mean  

2  ≥ 150  Linear least 
squares 

No Median + 25th 
and 75th 
percentiles 

3  ≥ 150  Linear least 
squares 

Values below 0 
mm2/s were 
excluded 

Median  

4 Adrenal gland 
+ pancreas: 
30, 80, 150, 
300, 500   
Oligo 
metastasis + 
prostate: 0, 
80, 150, 500  

Linear least 
squares 

Values below 0 
mm2/s were 
excluded 

Mean  

5 150 and 500  Direct solution (no 
fit): 
ADC[mm2/s]= -
ln(S(500)/S(150))/ 
(500-150) 

Limiting ADC 
values to range  
(0-4) × 10-3 
mm2/s. Values 
were not 
excluded. 

Mean + SD 
 

6  
 

 ≥ 150  Scanner software No Mean+SD (or 
Median + 5th/95th 
percentile if 
clinical software 
provided those) 

7  ≥ 150  Linear least square Values below 0 
mm2/s were 
excluded 

Median ADC + 
25th and 75th 
percentiles 

8  ≥ 150  Non-linear least 
squares 

Lower bound of 
0 and upper 
bound of 3.1×10-

3 mm2/s 

Mean ADC for 
GTV.  

9 All Weighted linear 
regression on 
function 
Weighting 
function: 1/S(b) 
 

No Change in median 
ADC + 75th 
percentile 

 



89 
 

Appendix IId: ADC variation boxplots 

 

Figure A2.1. ADC values within GTVs as a function of calculation method (left) and delineation 
(right) for the four clinical cases. The boxes represent variation across delineations and calculation 
methods, respectively. For comparison, calculation method no. 10 (red) represent the scanner 
software using b-values≥150mm/s2. The ‘o’ marker indicates outliers, defined as more than 1.5 
times the interquartile range away from the bottom or top edges of the box. 
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Figure A2.2. ADC values within VTVs as a function of calculation method (left) and delineation 
(right) for the four clinical cases. The boxes represent variation across delineations and calculation 
methods, respectively. For comparison, calculation method no. 10 (red) represent the scanner 
software using b-values≥150mm/s2. The ‘o’ marker indicates outliers, defined as more than 1.5 
times the interquartile range away from the bottom or top edges of the box. 

 

Figure A2.3. ADC values within CTVs as a function of calculation method (left) and delineation 
(right) for the prostate. The boxes represent variation across delineations and calculation methods, 
respectively. For comparison, calculation method no. 10 (red) represent the scanner software using 
b-values≥150mm/s2. The ‘o’ marker indicates outliers, defined as more than 1.5 times the 
interquartile range away from the bottom or top edges of the box. 
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Appendix IIe: Weighted least squares fitting 

The Stejskal-Tanner model for the DWI signal, S, is given by [1][33]:  

𝑆 = 𝑆0 ⋅ 𝑒−𝑏⋅𝐴𝐷𝐶  

By taking the logarithm on both sides, we get: 

ln(𝑆) = ln(𝑆0) − 𝑏 ⋅ 𝐴𝐷𝐶 

For one voxel, measurements are performed for 𝑁 different b-values of the MRI signal 

magnitude. 𝑆𝑖 denotes the signal at the 𝑖-th b-value, measured with 𝑛𝑖 measurements 

(number of measurements = number of excitations (NEX)).  

For each single measurement, we assume Gaussian noise, 𝜎, that is independent on signal 

and b-value. Linear fitting is performed for the logarithm to the signal: 𝑦𝑖 = ln (𝑆𝑖). To 

determine the variation associated with 𝑦𝑖 , we use uncertainty propagation. For a function 

of a single variable, f(x), the uncertainty propagation equation is given by: 

𝜎𝑓
2 = (

𝑑𝑓

𝑑𝑥
)

2

𝜎𝑥
2 

Applying this to 𝑦𝑖 , we get: 

𝜎𝑦𝑖
2 = (

𝑑𝑦𝑖

𝑑𝑆𝑖

)

2

𝜎𝑆𝑖

2 =
𝜎𝑆𝑖

2

𝑆𝑖
2  

Assuming that the measurements are uncorrelated,  

𝜎𝑆𝑖
=

𝜎

√𝑛𝑖

 

Combining the above expressions, 

𝜎𝑦𝑖
2 =

𝜎2

𝑛𝑖𝑆𝑖
2 

Thus, the weights used for the weighted least squares fitting are: 

𝑤𝑦𝑖
=

1

𝜎𝑦𝑖
2 =

𝑛𝑖𝑆𝑖
2

𝜎2
 

Since we assume that 𝜎 is constant over all measurements, it is left out:  

𝑤𝑦𝑖
= 𝑛𝑖𝑆𝑖

2 
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Appendix III: Supplementary materials for paper III 

Appendix IIIa: Figures and Tables 

MRI acquisition parameters 

Table A3.1. Acquisition parameters for T2-weighted images acquired on the MRI-linac and the 
diagnostic scanner. 

T2W: MRI-linac  Diagnostic scanner  

Sequence 3D SE 3D SE 

Fat saturation No No 

TE/TR (ms) 137/1400 137/1400 

No. of excitations (NEX) 3 3 

In-plane resolution (mm) 1x1  1x1 

Field of view (mm) 448x448 488x488 

Slice thickness (mm) 2 2 

Slice gap (mm) 0 0 

Scan duration  6 min and 4 s  6 min and 4 s 

 

Table A3.2. Acquisition parameters for DWI-sequences on the MRI-linac 

DWI:  Sequence 1 (39 patients)  Sequence 2 (6 patients)  

Sequence  Monopolar diffusion 

encoding, 2D SE with single 

shot EPI readout 

Monopolar diffusion 

encoding, 2D SE with single 

shot EPI readout 

Diffusion gradient encoding Three orthogonal directions 

along the imaging plane axes 

Three orthogonal directions 

along the imaging plane axes 

Fat saturation SPIR SPIR 

b-values (s/mm2) 0  

30  

80  

150  

500  

0  

20  

60 

100  

300  

800  

1000  

TE/TR (ms) 82.30/3354.17 84.72/628.58 

In-plane resolution (mm) 1.92x1.92  1.22x1.22 

Field of view (mm) 224x224 288x288 

Slice thickness (mm) 4 6 

Slice gap (mm) 0.00 0.60 

Scan duration  4 min and 11 s  3 min and 56 s 
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Kaplan-Meier plot for overall survival 

 

Figure A3.1. Kaplan-Meier plot for overall survival. The red curve represents the Kaplan-Meier 
estimator, while the shaded area represents the 95% confidence interval. The dotted line 
represents the median survival time. 

 

Univariable models for the parameters included in the best-performing model 

 

Figure A3.2. Comparison of the univariable Cox model and the Kaplan-Meier estimator for the 
variables "H1_prc10_slope" and "H2_prc90_frac1" respectively. Patients were split into high, 
medium and low-risk groups based on the 25% and 75% percentiles of the calculated linear 
predictors, i.e. the high and low-risk groups each contained 25% of the patients, and the medium-
risk group contained 50% of the patients. The division-coefficients of the linear predictor were -
0.34 and 0.36 for "H1_prc10_slope" and -0.36 and 0.41 for "H2_prc90_frac1".  
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Univariable model for ADC 

 

Figure A3.3. Comparison of the univariable Cox model and the Kaplan Meier estimator for ADC at 
fraction 1. Patients were split into high, medium and low-risk groups based on the 25% and 75% 
percentiles of the calculated linear predictors, i.e. the high and low risk groups each contained 
25% of the patients, and the medium-risk group contained 50% of the patients. The division-
coefficients were -0.40 and 0.35. 
 

Correlation between DWI parameters

 

Figure A3.4. Pearson's correlation coefficient for all pairs of DWI parameters.  
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Multivariable model including median values  

 

Figure A3.5. Comparison of the multivariable Cox model and the Kaplan Meier estimator for 
"H1_prc50_slope" and "H2_prc50_frac1". Patients were split into high, medium and low-risk groups 
based on the 25% and 75% percentiles of the calculated linear predictors, i.e. the high and low-risk 
groups each contained 25% of the patients, and the medium-risk group contained 50% of the 
patients. The division-coefficients were -0.68 and 0.82. 

Appendix IIIb: Image decomposition using msNMF 

To determine  𝑾 and 𝑯, the Frobenius norm of the residual, ‖𝑿 − 𝑾𝑯‖𝐹
2 , was minimized 

under the constraints that 𝑯 and 𝑾 are non-negative, and that the components and the 

slopes of the components are monotonous. Minimization was performed using an 

alternating non-negative least squares (ANLS) algorithm, where 𝑾 was optimized while 𝑯 

was kept constant and vice versa.  

A stochastic gradient descent framework was used to solve the non-convex optimization 

problem. 𝑿 was divided into bathes of 1000 voxels each, and for each batch, 𝑾 was 

initialized as the 𝑾 resulting from the previous batch while a random initialization was 

used for 𝑯. The optimization continued until convergence. Data was shuffled between each 

epoch, i.e. each batch did not contain the same voxels for each epoch. Based on the resulting 

components, 𝑾, a final optimization of 𝑯 was performed for each patient while keeping 𝑾 

constant, i.e. by solving min
𝑯≥0

‖𝑿 − 𝑾𝑯‖𝐹
2 . This was done both for patients scanned with 

DWI sequence 1 and 2. For patients with DWI sequence 2, 𝑾 was 

interpolated/extrapolated to match the set of b-values in DWI sequence 2 ranging from 0-

800 s/mm2. 



96 
 

Appendix IIIc: Statistical analysis plan 

Statistical analysis plan 

Title:  
Prediction of response in pancreas tumours using parameters derived from longitudinal 
diffusion-weighted MRI 
 

SAP number with dates:   

Version 2, date: 27.06.2023  

Protocol version:  
Project description of the Ph.D. project 
“DW-MRI as a decision making tool in the in-room MRI guided radiotherapy 

pipeline “ updated on the 10.01.2022 by Anne Bisgaard. See “Study 3”.  

SAP revision: This is the second version of the SAP. This SAP was completed on the 

27.06.2023, before any analysis was performed on the outcome variables.  

Roles and contributions:  

Author: Anne Bisgaard, Ph.D.-student. Laboratory of Radiophysics, Department of Oncology, 

Odense University Hospital. 

Main supervisor: Faisal Mahmood, Ph.D. Laboratory of Radiophysics, Department of 

Oncology, Odense University Hospital. 

Co-supervisor: Carsten Brink, Ph.D. Laboratory of Radiophysics, Department of Oncology, 

Odense University Hospital. 

Co-supervisor: Tine Schytte, Ph.D. Department of Oncology, Odense University Hospital. 

This plan is based on the TRIPOD Checklist for Prediction Model Development, item 1-3 and 

item 6a through 11. (http://www.tripod-statement.org/TRIPOD/TRIPOD-Checklists/TRIPOD-

Checklist-Prediction-Model-Development) 

 

Title and abstract 

Item 1. Title 
Prediction of response in pancreas tumours using parameters derived from longitudinal 
diffusion-weighted MRI 

 
Item 2. Abstract 

 

Introduction 
 
 

http://www.tripod-statement.org/TRIPOD/TRIPOD-Checklists/TRIPOD-Checklist-Prediction-Model-Development
http://www.tripod-statement.org/TRIPOD/TRIPOD-Checklists/TRIPOD-Checklist-Prediction-Model-Development
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Item3.a. Explain the medical context (including whether diagnostic or prognostic) 
and rationale for developing or validating the multivariable prediction model, 
including references to existing models.  
 
Pancreas cancer is the fourth most common cause of cancer-related death in the western 
world [2]. The 5-year survival rate is less than 10% [3]. The treatment include surgery, 
chemotherapy and radiotherapy (RT). Some patients have surgery after RT, however not all 
patients are suited for surgery. In any case, down-staging RT is used to achieve local control. 
 
Prediction of response to neo-adjuvant treatment would allow for treatment adaptation, 

which could potentially improve the outcome or reduce toxicity for the individual patient. 

The rationale for developing the prediction model is to allow treatment adaptation based on 

information from quantitative MRI. The model is prognostic. 

DWI is a potential biomarker for response to neo-adjuvant treatment for patients with 

pancreas cancer [4]. Typically, the “apparent diffusion coefficient” (ADC) is derived from DWI 

images using a mono-exponential model [4]. However, using models may lead to biased 

parameters, as they do not take into account partial volume effects. To overcome this 

problem, data driven approaches may be preferred. An example is the newly developed 

monotonous slope non-negative matrix factorization (ms-NMF), which uses a decomposition 

of the DWI signal to extract parameters [5]. The aim of this study is to test whether these 

parameters can be used to predict outcome in terms of time to local progression based on 

the RECIST criteria [6] and overall survival in patients with pancreas cancer treated with RT.  

 
Item 3b. Specify the objectives, including whether the study describes the 
development or validation of the model or both. 

 
Hypothesis:  

- Parameters derived from longitudinal DWI acquired on the MR-linac can be used to 

predict time to local progression based on the RECIST criteria and overall survival in 

patients with pancreas cancer  

Methods 
 
Item 6a. Clearly define the outcome that is predicted by the prediction model, 
including how and when assessed.  
 
The outcome is time to local progression based on the RECIST criteria and overall survival. 
According to the RECIST criteria, the patients are categorized in the following way, based 
on the longest tumour diameter (LD) at baseline and at follow up [6]: 

- Complete response (CR): no target volume left at follow up 
- Partial response (PR): at least 30% decrease in LD compared to baseline 
- Progressive disease (PD): at least 20% increase in LD compared to baseline 
- No change: no change in LD compared to baseline 
- Stable disease (SD): the patient does not qualify for any of the above statements 
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The above categories are chosen based on changes in both the tumour and lymph nodes. 
Hence, a patient may be categorized as a PR even if the tumour diameter does not 
change between baseline and follow up. Therefore, in addition to the above categories 
(CR, PR, PD or SD), we also collect information about whether the progression is local or 
distant, based on the tumour diameter to be able to evaluate the response of the tumour 
alone using the RECIST criteria. 
  
The following information is collected:  
 

- The time for diagnosis (primary tumour or recurrence) 

- The time for the start of the RT treatment. 

- The time of progression (PD), either local or distant, based on the RECIST criteria (based 

on both tumour and lymph nodes).  

- Local or distant progression? This is determined based on the RECIST criteria (based on 

tumour alone). 

- The time of resection of the tumour. 

- The time of death. 

 The endpoint is: 

- Time to local progression, defined as the time between start of RT to the time of local 

progression. 

- Overall survival, defined as the time from start RT to death.  

The censoring criteria, when looking at time to local progression is: 

- Distant progression (if the patient has distant progression, it is not possible to know if 

the patient also has local progression). 

- Tumour resection 

- Death 

- Patient moved to another hospital 

- None of the above and no progression at the cut-off date (30/03 2023) 

The censoring criteria, when looking at overall survival is: 

- Patient is alive at the cut-off date (30/03 2023) 

- Patient moved to another hospital 

Item 6b. Report any actions to blind assessment of the outcome to be predicted. 
 
No actions have been taken to blind assessment of the predictors for the outcome and other 
predictors. This is not expected to influence the data, as none of the predictors or endpoinds 
depend on subjective decisions.  
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Item 7a. Clearly define all predictors used in developing the multivariable 

prediction model, including how and when they were measured. 

 

Predictor Measured how and when 

Tumour GTV at 
baseline (cm3) 

Measured using MRI from Ingenia at baseline.  

Primary tumour or 
local relapse  

Whether the tumour being treated with RT is a local 
relapse or primary tumour. 

DWI derived 
parameters 

Parameters derived using the msNMF method developed 
by Sofie Rahbek.    

 

Sex M/F 

Age at time of 
inclusion 

 

Time from diagnosis to 
RT start 

 

Performance status 
before RT start 

Measured 0-4 weeks before RT 

 

Note: All patients had a T-stage>=T3, and all patients received chemotherapy before 

RT (some patients also received chemotherapy after RT, and this might lead to 

differences in the outcome, however, it is not possible to obtain these data). These 

are important factors to predict outcome, however, since they are identical for all 

patients, they are not included in the model.  

Item 7b. Report any actions to blind assessment of predictors for the outcome 
and other predictors. 
  
No actions have been taken to blind assessment of the predictors for the outcome 
and other predictors. This is not expected to influence the data, as none of the 
predictors or endpoints depend on subjective decisions.  
 
Item 8. Explain how the study size was arrived at. 
 
All patient data meeting the eligibility criteria available from our institution by the 
beginning of end of March 2023 was evaluated to reach as high statistical power as 
possible. The eligibility criteria are: 

- Primary tumour or relapse in pancreas, adenocarcinoma 
- Treated with 5 fractions radiotherapy on MRL 
- All five fractions were delivered 
- DWI scans were acquired from at least one fraction 
- The image quality of DWI scans is acceptable based on visual inspection. 
- Follow up data is available for at least the 3 months follow up scan. I.e. patients 
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who started RT before the 1st of January 2023 are included. 
 

Item 9. Describe how missing data were handled (for example, complete-case 

analysis, single imputation, multiple imputation), with details of any imputation 

method. 

 
Predictor n missing Reason for missingness – 

missing completely at 
random (MCAR)? 

Handling of missing 
values 

Tumour GTV 
volume at 
baseline (cm3) 

0   

DWI derived 
parameters 

5 scans Missing for some fractions 
if DWI was not acquired.  

If at least two fractions 
are available for a 
patient, the slope and 
intercept from a linear fit 
will be used.  

Primary 
tumour or 
local relapse 

0   

Sex 0   

Age 0   

Time from 
diagnosis to  
RT start 

0   

Performance 
status before 
RT start 

0   

 

Item 10a. Describe how predictors were handled in the analyses. 
 

Predictor Scale/unit Coding Test of coding 

Tumour GTV 
volume 

cm3 Continous  

DWI derived 
parameters 
Chosen based 
on best subset 
selection 
using CV 

mm2/s Continous   

Primary 
tumour or 
local relapse 

Primary tumour 
or local relapse 

Primary tumour: 0 
Local relapse: 1 

 

Sex M/F Factor:  
Male: 0  
Female: 1 
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Age Years Continous.   

Time from 
diagnosis to 
RT start 

Months Continous  

Performance 
status before 
RT start 

0, 1, 2 0, 1, 2  

 

Item 10b. Specify type of model, all modelbuilding procedures (including any 
predictor selection), and methods for internal validation. 
 
The prediction framework is based on a decomposition of the DWI signal into components. 
This method produces “mixture maps”, showing the weights of each component for each 
voxel. The 10th and 90th percentiles of each component within the GTV (plus a 5 mm margin) 
are extracted. A linear fit is performed for each percentile as a function of fraction number. 
The slope of this fit as well as the value at fraction 1 are used as predictors. Likewise, the 
slope and value at fraction one of the median ADC are included. 
 
Apart from the above-mentioned DWI predictors, 6 clinical predictors were included: tumour 
GTV volume at baseline, relapse (yes/no), sex, age, time from diagnosis to RT and 
performance status are included. Predictor selection is the best subset method utilizing 
bootstraping for cross-validation  

- All subsets of variables are tested. 
- For each subset, a Cox proportional Hazard model is build and tested using 

bootstrapping. 
- The best-performing model in terms of the cross-validated likelihood is chosen   
- Seedpoint used for bootstrapping: 42 
- Number of bootstraps: 50 

 

Item 10d. Specify all measures used to assess model performance and, if 
relevant, to compare multiple models. 
One model will be chosen for each endpoint based on maximal likelihood.  
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Appendix IV: Variation reduction strategies  

Detailed instructions on VTV delineation:  

The VTV is delineated on the high b-value DWI image (b=500) following these steps:  

1. Localize the target region (target region is described in the provided case 

descriptions)  

2. Delineate hyper-intense regions, avoiding obvious artifacts or signal from a 

different location than the tumour site.  

3. Exclude any regions that are hyper-intense on the T2W image. For this, overlaying 

of the co-registered images may be convenient. (T2W hyper-intense regions often 

reflect necrotic/cystic parts)  

4. Ensure delineated regions respect anatomical boundaries, which are better 

visualized in the T2W images.) 

 

 

Figure A4.1. Variation reduction strategies. Delineation-related ADC variation (CVD) as a function 
of Dice similarity coefficient and mean surface distance (MSD) for VTV delineations performed 
manually without instructions, manually with instructions, and semi-automatically using a tool. The 
ADC values used for comparison are median ADC values within the VTVs based on ADC maps 
calculated using b≥150 s/mm2 using the scanner software. 
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