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A B S T R A C T

Industry 5.0 has introduced a novel interpretation of sustainable supply chains (SSCs) that emphasizes the
importance of building a transparent and trustworthy network that can be continuously monitored and
controlled through stakeholder collaboration as well as the use of advanced, intelligent machinery. The
ultimate goal of SSCs is to meet specific economic, social, and environmental standards. The implementation of
blockchain technology can significantly improve the reliability, efficiency, and security of the information
exchanged among stakeholders in SSCs. However, these stakeholders inevitably possess varying informational
advantages and exhibit divergent perspectives regarding the adoption of blockchain technology. This paper
thus aims to examine the impediments to the adoption of blockchain technology in the context of SSCs with
the goal of promoting blockchain adoption. To achieve this objective, this study analyzes the barriers to block-
chain adoption from the perspectives of various stakeholders in SSCs and constructs a barrier severity assess-
ment model that utilizes group decision-making methods to integrate all stakeholders’ attitudes. This study
employs the PEEST (political, economic, environmental, social, and technological) framework to identify 27
barriers to the adoption of blockchain technology. Subsequently, an expertise-based group decision-making
approach is used to quantify the prominence of various barriers according to various types of stakeholders. The
results indicate that the five most intense barriers are storage constraints, insufficient economic incentives,
high integration costs, a lack of functional appeal, and ambiguity regarding data disclosure and public data
management regulations. This research makes novel theoretical and practical contributions, as it takes an
empirical and all-encompassing approach to identifying obstacles to the adoption of blockchain technology
and provides valuable insights for policymakers and practitioners to reference in overcoming these obstacles.
© 2023 The Author(s). Published by Elsevier España, S.L.U. on behalf of Journal of Innovation & Knowledge. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

Industry 5.0 seeks to capitalize on the cognitive abilities and crea-
tive potential of multiple stakeholders alongside the use of auto-
mated machinery to achieve mass customization (Maddikunta et al.,
España, S.L.U. on behalf of Journal of
2022). Industry 5.0 has emerged as a novel improvement to sustain-
able supply chains (SSCs) by utilizing advanced technologies such as
artificial intelligence and blockchain to continuously monitor and
manage manufacturing processes as a complement to traditional
management techniques. Developing trusted data recording, trans-
mission and storage methods are vital to this transition as diverse
stakeholders collaborate in SSCs, where blockchain technology is
viewed as a potential solution to existing information asymmetry
Innovation & Knowledge. This is an open access article under the CC BY-NC-ND license
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and transaction credibility problems owing to its decentralization,
nontamperability, traceability, collective maintenance, openness and
transparency (Crosby et al., 2016).

Blockchain is essentially a decentralized database that applies
cryptographic methods to the storage and management of data
blocks and thus guarantees transparency through consensus mecha-
nisms, encryption algorithms, and distributed storage (Nakamoto,
2008). Numerous companies such as Alibaba,1 Tencent,2 Inspur3 and
IBM4 have invested in blockchain technology to increase transpar-
ency in supply chains. Moreover, smart contracts enable automation
through the use of consensus protocols, which improves efficiency in
SSCs. However, blockchain is still in its infancy (Kouhizadeh et al.,
2021). Numerous studies have explored the factors that hinder the
use of blockchain in SSCs, including the energy consumption required
by high-intensity computing (Azzi et al., 2019) as well as the lack of
regulations and professional talent (Abeyratne & Monfared, 2016;
Saberi et al., 2019). In addition, the interrelationships between the
barriers to blockchain adoption have been investigated (e.g., Biswas
& Gupta, 2019; Kamble et al., 2019, 2020). Existing studies offer
numerous insights into the reasons underlying the limited uptake of
blockchain technology in SSCs, and thus overcoming the barriers
to blockchain adoption is a subject that holds major academic inter-
est.

SSCs involve multiple stakeholders that possess varying attitudes
toward the adoption of blockchain, as its use will impact them in
varying ways. The transparency it offers may confer advantages upon
certain stakeholders while depriving others of specific informational
advantages. In this sense, the implementation of blockchain in SSCs
necessitates achieving a consensus view throughout the entirety of
the SSC. The identification and intensity of the barriers to the adop-
tion of blockchain in SSCs necessitates a comprehensive analysis of
the entire SSC rather than an isolated section thereof.

This study systematically identifies the use of blockchain in SSCs
using the political, economic, environmental, social and technological
(PEEST) framework and develops an expertise-based information
aggregation model to evaluate the intensity of those barriers from
the perspectives of multiple stakeholders. The proposed model also
considers the professionalism of each stakeholder to mitigate the
specific preferences and private interests of certain stakeholders.

The remainder of this study is organized as follows. Section 2
reviews the related literature on blockchain technology, sustainable
supply chains and group decision-making (GDM) methods. Section 3
identifies the barriers to blockchain adoption in SSCs from the per-
spectives of multiple stakeholders. Section 4 develops an expertise-
based GDM that accounts for probabilistic preference information.
Section 5 demonstrates the intensity of each barrier to blockchain
adoption in SSCs. Finally, Section 6 concludes.
Literature review

This study aims to investigate the adoption of blockchain in SSC
management using the GDM method. This section reviews two rele-
vant streams of literature: that on the use of blockchain in SSCs as
well as that on the application of GDM in evaluating problems.

Blockchain and SSCs

With the emergence of Industry 5.0, the importance of SSCs has
been further highlighted. The integration of cutting-edge technolo-
gies such as artificial intelligence and the Internet of Things has
1 https://www.alibabacloud.com/zh/product/baas
2 https://technode.com/2021/08/03/tencent-launches-nft-platform-a-local-chinese-

court-builds-judicial-blockchain-blockheads/
3 https://www.inspursystems.com/tsc/
4 https://www.ibm.com/blockchain
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allowed for the continuous monitoring and intelligent management
of SSCs, as pointed out by Maddikunta et al. (2022). Moreover, the
use of blockchain technology has been regarded as a powerful tool
for mitigating the risks associated with agent credibility owing to its
as immutability, transparency, and traceability. In light of this, a
growing number of enterprises have introduced blockchain into SSCs
to enhance the transparency of their sustainability practices (Kouhi-
zadeh et al., 2021). As technological advancements and sustainability
continue to merge, blockchain technology is poised to revolutionize
how SSCs are managed in the future.

The current studies on blockchain and SSCs can be categorized
into two distinct categories. The first is centered on the integration of
blockchain technology into SSCs and focuses on the various benefits
that arise from such an integration (e.g., Kouhizadeh et al., 2021; Lin-
ton et al., 2007; Nikolakis et al., 2018; Saberi et al., 2019). Blockchain
technology can create a robust information traceability system that
provides the relevant actors with access to critical data relating to
sustainability and environmental protection (Azzi et al., 2019; Klein-
dorfer et al., 2005; Kshetri, 2018; Linton et al., 2007). Similarly, smart
contracts can be leveraged to enhance the operational efficiency of
SSCs. In international trade, inefficient business practices and geo-
graphic differences often result in the excessive use of manpower
and capital. Smart contracts can authenticate commodity transac-
tions such that trade details are posted to a blockchain ledger only
upon meeting contractual obligations. As such, smart contract-based
SSCs record trading data that is unmodifiable, which enhances their
efficiency, security, and economic viability (Kamble et al., 2019).

The second category is devoted to evaluating the current applica-
tion of blockchain in SSCs. The barriers to the adoption of blockchain
in SSCs can be sorted into four categories as follows. (1) Privacy risk.
The issue of privacy has been identified by several studies (e.g., Kou-
hizadeh et al., 2021; Liu et al., 2021; Sadhya & Sadhya, 2018; Zhao et
al., 2017) and include vulnerability to a 51% attack, private key secu-
rity, criminal activity, double spending, transaction privacy leakage,
and hazards related to smart contracts (Li et al., 2020). (2) Lack of pro-
fessional talent. The introduction of blockchain has changed the rela-
tionships among and even the hierarchical structures within
enterprises. It is thus worthwhile to explore how enterprises can
manage the challenges brought about by this technology (Li et al.,
2020; Mangla et al., 2017) as well as how coordination among organi-
zations in the supply chain can be improved (Kouhizadeh et al.,
2021). (3) High cost of blockchain. The cost of introducing blockchain
includes hardware and integration expenses (Zhao et al., 2017), sys-
tem maintenance, and training (Kouhizadeh et al., 2021; Sadhya &
Sadhya, 2018). (4) The lack of supervision. Blockchain is a double-
edged sword. While it offers the potential to improve trust and oper-
ational efficiency by virtue of its traceability and transparency, it also
poses the risk of privacy leakage. However, the regulations and
standards governing data disclosure and privacy protection are still
in their developmental stages (Acquisti et al., 2012; Stewart, 2017)
and thus most enterprises have little confidence in blockchain-based
businesses.

GDMmethods

Examining the barriers to the adoption of blockchain in SSCs is a
multifaceted undertaking that warrants the consideration of various
stakeholders and their specialized knowledge. GDMs have demon-
strated notable efficacy in addressing problems of this nature. The GDM
method leverages the collective intelligence of a decision-making group
that comprises multiple stakeholders with diverse backgrounds and
expertise. The group is tasked with evaluating and selecting the most
optimal decision and ranking alternative options (Liang et al., 2017).
Multistakeholder decision-making methods have been in used practice
since the ranking of group alternatives was proposed by the French
mathematician Borda in 1781. The longitudinal procedure of GDM can

https://www.alibabacloud.com/zh/product/baas
https://technode.com/2021/08/03/tencent-launches-nft-platform-a-local-chinese-court-builds-judicial-blockchain-blockheads/
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be condensed into the following three steps: (1) collecting preference
information; (2) clustering preference information; and (3) aggregating
the preference information at a high-level.

The most commonly used preference representation formats can
be divided into two types: deterministic preference information (i.e.,
representing utility values on the basis of multiple attribute utility
theory (Butler et al., 2001) and numerical preference values (Shi et
al., 2018)) and uncertain preference information (i.e., incomplete
fuzzy linguistic preference information (Cabrerizo et al., 2010), fuzzy
preference relations (Chiclana et al., 1998), and intervals in linguistic
preference information 2-tuples (Chen et al., 2012)). Uncertain pref-
erence information is more adaptable and closer to reality than other
types of preference information because its decision-making process
is limited by multiple factors. There are three main kinds of uncertain
preference information. (1) Preference ordering, defined as fuzzy
binary relations that satisfy the conditions of reciprocity and max-
min transitivity (Tanino, 1984). This type of information expression is
commonly used to handle the fuzzy information caused by the diver-
sity of individual opinions. Then, the preference orderings are used to
capture the preference of the whole group. (2) Linguistic preference is
used for vague or ambiguous information such as the measurement
of linguistic preference relations (Xu, 2005) and their consistency
(Dong et al., 2008). (Herrera and Herrera-Viedma, 2000) established
a framework for solving the multi-criteria decision-making problems
under linguistic information. And (3) probabilistic preference, defined
as a probability or cumulative distribution function that can be used
for uncertain information. Lu and Boutilier (2011) constructed a vote
elicitation model under conditions of probabilistic preference to esti-
mate cost trade-offs. Ji et al. (2021) proposed a bio-objective optimi-
zation model for aggregating stakeholder opinions with probabilistic
preference to improve their objectivity and reliability. Chen et al.
(2023b) proposed a fairness-aware large-scale collective opinion
generation model, then further considered individuals’ behavioral
characteristics and constructed a multiobjective optimization-
driven collective opinion generation model to improve the accu-
racy of the results. Probabilistic preference has advantages in
terms of information collection, which has been adopted in the
measurement of Building information modeling (BIM)-based proj-
ects (Chen et al., 2023a,c). In this study, we adopt probabilistic
preference to express stakeholders’ opinions for the following
two reasons. First, in the barriers to blockchain adoption, the
preference information given by stakeholders is imprecise and
likely to depict a preference for uncertainty degrees. Second,
probability theory lays a mathematical foundation for future
research to rely upon in optimizing resource allocation in SSCs.

Preference information clustering is of great significance in
enhancing the robustness and efficiency of GDM. First, the preference
information clustering process reduces data dimensionality, which
allows for the collation of preference information. Second, preference
information clustering is an efficacious way to decompose the deci-
sion-making community into several small subgroups, which is vital
in the aggregation process (which we discuss in detail in the next
paragraph). Numerous clustering methods have been employed in
GDM such as the classic k-means algorithm (Tang et al., 2019; Wu &
Xu, 2018) and the fuzzy c-means algorithm (Palomares et al., 2014;
Tang et al., 2019). Dong et al. (2018) employed the gray clustering
method in reaching group consensus for noncooperative behaviors.
The alternative ranking-based clustering for hesitant fuzzy prefer-
ence has also been proposed (Liu et al., 2019). A nonnegligible feature
of these algorithms (except for the fuzzy c-means-based algorithm) is
that the grouping results depend upon the threshold (Liu et al., 2014).
Specifically, a group may be divided into any number of categories,
which determines the threshold. It is difficult to set accurate thresh-
old values, and thus the partial binary tree DEA-DA cyclic classifica-
tion model was developed to circumvent threshold selection (Liu
et al., 2014).
3

The consensus reaching process (CRP) is a critical process in GMD
that is used to generate aggregated preference information with a
high degree of consistency among stakeholders. Many consensus-
reaching approaches have been proposed. Some studies use the dif-
ferences in preference information to characterize the consensus
among stakeholders. A novel consensus measurement based on the
Pearson correlation coefficient has been constructed to evaluate the
degree of concordance among stakeholders’ preferences for pairs of
alternatives (Gonz�alez-Arteaga et al., 2016). A distance-based con-
sensus measurement and a minimum distance aggregation model
was proposed for multiple attribute GDMwith hesitant fuzzy linguis-
tic term sets. The model aims to protect the initial preference of
stakeholders to the degree possible during the CRP by minimizing
the maximum of the distance between each stakeholder’s individual
opinion and the collective opinion (Zhang et al., 2018). Other studies
have designed consensus-reaching mechanisms based on the behav-
ior of and interaction between stakeholders. A social network trust
−consensus approach was proposed to illustrate the trust relation-
ships between stakeholders (Wu & Chiclana, 2014). A visual interac-
tion consensus model was constructed to proceed with the
aggregation in accordance with stakeholders’ degree of trust (Wu et
al., 2017). A self-management mechanism in CRP was designed to
dynamically generate stakeholder weights in managing noncoopera-
tive behaviors (Dong et al., 2016). The above studies provide a wealth
of consensus-reaching methods, but ignore the impact of stakeholder
heterogeneity on information aggregation.

Research gap and contribution

Existing studies not only provide a comprehensive view of the use
of blockchain in SSCs but also identify several barriers that hinder it.
The impact of these barriers varies, and evaluating their impact is
essential for barrier removal under limited resources. This study fills
this research gap in the following two ways. First, this study uses the
PEEST framework to analyze the barriers to blockchain adoption
from five dimensions: policy, economy, environment, society, and
technology. This effort not only classifies the existing barriers but
identifies new barriers. Second, this study evaluates the intensity of
these barriers from a multistakeholder perspective.

The use of blockchain in SSCs requires support from multiple
stakeholders. Therefore, it is essential to integrate the opinions of
multiple stakeholders in evaluating the barriers to the use of block-
chain in SSCs. GDM is an effective method for fusing information and
has great potential to generate aggregated evaluations. To clearly
illustrate the contributions of this study to GDM, Table 1 compares
the current GDM-related literature with this study.

Table 1 reveals the identification of three additional research gaps.
The extant GDM literature primarily attains consensus through lin-
guistic preference or fuzzy information, and insufficient emphasis is
placed on the development of consensus achievement strategies that
are rooted in probabilistic preferences. The existing GDMs thus fail to
incorporate the influence of stakeholder characteristics on decision
outcomes, which weakens their robustness. Current clustering meth-
ods require that clustering thresholds be predetermined, which usu-
ally requires a significant number of experimental trials, thereby
resulting in the consumption of substantial computational resources.
To fill these three research gaps, this study describes stakeholders
according to their hesitancy and preference and constructs an exper-
tise-based weight allocation to facilitate the amalgamation of diverse
viewpoints. Moreover, a novel cyclic classification method with prob-
abilistic preference is developed to solve the threshold selection
problem in the clustering process.

The findings of this study can serve as a practical reference for
stakeholders in SSCs and policymakers, thus enabling them to opti-
mize their resource allocation. This study serves as a precursor to
investigating how expertise and design consensus can be reached in



Table 1
Studies on GDM and this study

Reference Methodology Summary Preference Type Expertise Clustering method

Chen et al., 2020 Fuzzy linguistic QFD approach Identifies and prioritizes factors
that affect in-cabin passenger
comfort on high-speed trains
in China

Fuzzy linguistic information

Zhang et al., 2020 Case validation A distance-based consensus
reaching process

Intuitionistic multiplicative pref-
erence relations

Sellak et al., 2019 Expertise-based consensus-
building model

A novel expertise-based consen-
sus-building model for multi-
criteria group decision-
making under a hesitant fuzzy
linguistic model

Hesitant fuzzy linguistic
information

x

Wu and Xu, 2018 K-means based clustering
method

A consensus model for large-
scale group decision-making
that uses hesitant fuzzy infor-
mation and changeable
clusters

Hesitant fuzzy information K-means

Ji et al., 2021 Bio-objective Optimization
Model

A new criterion that contains
consensus and confidence to
improve both objectivity and
reliability

Probabilistic information

Dong et al., 2018 Self-management mechanism
for noncooperative behavior in
GDM

A self-management mechanism
is developed that considers
the noncooperative behavior
of experts

Any preference structures are
available

Gray clustering method

This study Expertise-based opinion aggre-
gation model

This paper measures stakeholder
expertise of by their hesitancy
and preference, and constructs
a consensus reaching process
under probabilistic
information

Probabilistic information x Cyclic classification method

1.x: relevant content is used in this study;
2 relevant content is not used in this study.
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the context of probabilistic preference and introduces an alternative
viewpoint on designing probabilistic preference-based GDM models.
Fig. 1 provides an overview of the technical model discussed herein.

Barriers to blockchain adoption in SSCs

The PEST analysis model is a commonly utilized framework that
encompasses four key domains, namely, political, economic, social,
and technological factors, and is frequently employed to evaluate the
internal and external factors that affect organizations in the face of
novel challenges. Environmental sustainability is a crucial component
of SSCs. As such, an environmental perspective should be taken into
account when examining the barriers to the adoption of blockchain
technology. However, it is noteworthy that this perspective is not
currently considered in the PEST framework. In this section, we pro-
pose the PEEST framework as an extension of PEST to analyze block-
chain adoption in SSCs, which is well-suited for identifying obstacles
that may affect adoption of blockchain technology. This study then
employs a systematic approach to identify and categorize the barriers
to blockchain adoption in SSCs through a comprehensive review of
the relevant literature.

Political barriers

Official policies not only affect stakeholders’ enthusiasm for block-
chain adoption but also are responsible for its ongoing management
and maintenance. Numerous empirical studies show that govern-
ment supervision and policy incentives are an important driving
force of SSCs (e.g., Govindan et al., 2014; Kouhizadeh et al., 2021;
Luthra et al., 2016; Martin & Murphy, 2017; Milberg et al., 2000;
Saberi et al., 2019; Sayogo et al., 2015). The first barrier in the political
context is that there are few incentives to adopt blockchain (Pol_1).
Second, multiple studies have presented that there is no official
4

evaluation standard for enterprises’ sustainability (Pol_2) (e.g.,
Govindan et al., 2014; Kouhizadeh et al., 2021; Luthra et al., 2016;
Saberi et al., 2019). Therefore, it is difficult to measure the positive
effect of blockchain on sustainability, which makes senior executives
skeptical of its value (Govindan et al., 2014). Third, there are no reli-
able references for blockchain adoption in SSCs (Pol_3). This uncer-
tainty and unpredictability discourages stakeholders from taking
action. Fourth, there is little government supervision of blockchain
adoption in SSCs (Pol_4). Governments can address the governance
and ethical considerations associated with blockchain adoption by
establishing frameworks for data protection, privacy, cybersecurity,
and the responsible use of blockchain technology. Moreover, govern-
ments can establish ethical guidelines and frameworks to ensure that
blockchain adoption aligns with societal values and safeguards the
rights of both individuals and organizations. Stakeholders are wor-
ried about the absence of effective government oversight (Kouhiza-
deh et al., 2021; Saberi et al., 2019; Sadhya & Sadhya, 2018). The fifth
political barrier to blockchain adoption in SSCs is the lack of regula-
tions or laws that concern data sharing (Pol_5) (Acquisti et al., 2012;
Stewart, 2017). Blockchain may bring about privacy risks that may in
turn affect corporate profits (Acquisti et al., 2012; Stewart, 2017).
Moreover, possible conflicts between data owners and users may
arise in the absence of government supervision (Sayogo et al., 2015).

Economic barriers

Blockchain improves the quality and credibility of SSCs. Many enter-
prises in SSCs have started investing in blockchain. Maersk utilizes block-
chain in its international logistics to track containers, instantly check the
status of cargoes, and avoid transportation fraud. Alibaba collaborated
with AusPost, Blackmores, and PwC to use blockchain to combat food
fraud (Kshetri, 2018). However, the cost of introducing blockchain is a sig-
nificant economic burden for many enterprises that includes the



Fig. 1. The technical model used in this research.
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following considerations. (1) High installation costs (Eco_6). Enterprises
need to develop software such as information encryption and tracking
technology (Sadhya & Sadhya, 2018) and buy additional hardware to con-
struct blockchain-based operating systems (Sayogo et al., 2015). (2) High
maintenance and administrative costs (Eco_7). The adoption of blockchain
in SSCs is in its infancy, and there is a dearth of professionals with the
appropriate technical skills, thus raising their labor (Kouhizadeh et al.,
2021; Saberi et al., 2019; Sadhya & Sadhya, 2018). (3) High production and
delivery costs (Eco_8). Blockchain technology can be used to bring trans-
parency to the entire supply chain. Therefore, it is imperative for compa-
nies to improve their sustainability performance throughout the entire
supply chain (Kleindorfer et al., 2005; Linton et al., 2007). (4)High training
costs (Eco_9). The implementation of blockchain technology has resulted
in significant advancements in various aspects of organizational culture,
processes, infrastructure, and other areas, but it has necessitated
employee training programs, thereby incurring substantial financial costs
(Kouhizadeh et al., 2021; Saberi et al., 2019). (5) High integration costs
(Eco_10). In general, existing systems are incompatible with blockchain
technology. It is imperative that blockchain-centric solutions be compati-
ble with existing legacy systems, which incurs substantial integration
expenses (Kaur et al., 2018; Kouhizadeh et al., 2021; Saberi et al., 2019)
(6) High information sharing costs (Eco_11). Stakeholders in blockchain-
based SSCs must disclose transaction information to maintain their credi-
bility. For example, companies need retain relevant documents to support
third-party certification (Sayogo et al., 2015) given the added risk of infor-
mation leaks.

Environmental barriers

Environmental barriers
Blockchain requires significant energy consumption to support an

enormous number of transactions (Ecology_12). The high number of
5

linkages in SSCs have caused the number of transactions to surge.
The energy consumption of blockchain-based systems will increase
exponentially with the growth of SSCs, which comes at a high envi-
ronmental cost. Environmental protection laws require enterprises to
take steps to protect the environment. Accordingly, businesses are
apprehensive that the high energy consumption of blockchain poses
serious legal and social risks.
Organizational barriers
The organizational barriers to the use of blockchain in SSCs can be

divided into intra- and inter-organizational barriers.
Intra-organizational barriers. (1) Blockchainmay change organizational

cultures and practices, which may be met with resistance frommembers
of the organization (Org_intra_13) (Kouhizadeh et al., 2021; Sayogo et
al., 2015). When blockchain is introduced as an innovative technology, it
will attack existing procedures, delivery mechanisms, and personnel. For
example, financial personnel need to become familiar with the operating
procedures of blockchain-based systems such as smart contracts. (2) The
lack of support from corporate executives greatly hinders blockchain
adoption in SSCs (Org_intra_14) (Kouhizadeh et al., 2021; Mangla et al.,
2017; Sayogo et al., 2015). Corporate executives make investment deci-
sions that directly affect blockchain adoption in SSCs. (3) The tolerance of
new technologies has a significant impact on blockchain usage in enter-
prises (Org_intra_15).

Inter-organizational barriers. The coordination of all stakeholders
is critical for blockchain adoption in SSCs. (1) Different stakeholder
cultures make it difficult for them to coordinate blockchain adoption
(Org_inter_16). (2) The lack of professional talent also restricts block-
chain adoption in SSCs (Org_inter_17). (3) Stakeholders in SSCs hold
different opinions on blockchain adoption due to the following two
points (Org_inter_18). First, stakeholders in SSCs have diverse goals
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and sustainability practices. Second, the impact of the information
transparency brought about by blockchain varies by stakeholder.

Social barriers

This section elaborates the social barriers to blockchain adoption
in SSCs from the three aspects of consumer values, businesses values,
and blockchain’s social reputation.

(1) Consumers’ enthusiasm for green products varies, which
implies that the profits associated with blockchain usage are uncer-
tain. Blockchain technology can improve the sustainability and thus
the credibility of enterprises which expands the markets for green
products served by SSCs. The products and services provided by
blockchain-based SSCs are accompanied by higher prices that are
borne by customers (Tseng et al., 2013). Customers will make trade-
offs between greenness, product reliability, and high prices, which
increases uncertainty in blockchain-based SSCs (Soc_19). (2) Trans-
parency enhances transaction credibility, which in turn enhances
enterprises’ reputation. However, blockchain also increases the possi-
bility of data leakage (Milberg et al., 2000; Sayogo et al., 2015). Many
companies argue that the costs of data leakage are greater than the
reputational benefits afforded by blockchain (Soc_20). (3) The nega-
tive impact brought about by “the Bitcoin scandal” such as OneCoin
event has limited the use of blockchain in SSCs (Soc_21).

Technological barriers

The lack of technical standards and mainstream applications for
blockchain indicates that it is still in its inception. The technological
barriers to blockchain adoption in SSCs include: (1) data security
(Tech_22); (2) handleability (Tech_23), (3) storage capacity
(Tech_24), (4) scalability (Tech_25), (5) permission (Tech_26), and
(6) data immutability (Tech_27).

Data security There are two main data threats associated with the
use of blockchain. (1) A 51% Attack. Blockchain follows the POW con-
sensus mechanism based on hashing power. When the hashing
power of a miner exceeds half of the total, or the miner owns more
than half of the Bitcoin in the entire blockchain, the miner can
employ its computing capacity to modify the ledger, affect other min-
ers, and further control the entire consensus network (Abeyratne &
Monfared, 2016; Li et al., 2020; Sayogo et al., 2015). (2) Private key
security. A user’s private key is the digital identity used for verifica-
tion, which is generated and managed by the user. Hackers can utilize
loopholes to illegitimately access private accounts and tamper with
confidential information. Moreover, this criminal behavior is difficult
to track, and the modified information cannot be recovered.

Handleability

Blockchain realizes the self-verification, transmission, and manage-
ment of nodes through distributed accounting and storage. Also, block-
chain excludes third-party institutions from point-to-point electronic
transactions, which improves the credibility and efficiency of transact-
ing (Nakamoto, 2008). Private and public keys are used to ensure the
security of users’ information. Nevertheless, blockchain-based trading is
complicated and fallible. Also, errors are irreversible due to the immuta-
bility of the ledger. Therefore, for most operators without expertise in
blockchain, the blockchain’s ease of use is relatively low.

Limited storage capacity

The blockchain records the log data of each transaction. Numerous
participants bring an enormous number of tasks to be performed,
which in turn creates great storage requirements (Kamble et al.,
2020; Sadhya & Sadhya, 2018; Tseng et al., 2013).
6

Scalability

Each block in the blockchain carries the complete record of transac-
tions, and each new transaction will be accompanied by a block that is
newly added to the ledger. As transactions increase, the amount of data
rises exponentially, which slows the network’s response speed (Kouhiza-
deh et al., 2021; Sadhya & Sadhya, 2018; Yaga et al., 2018). Additionally,
the high number of participants in SSCs require a formative technical
architecture to support their massive throughput.

Permission

Blockchain systems are divided into two types: public and private
systems. The public blockchain is a completely centralized system
with higher openness in which all users can enter and exit the system
voluntarily. Private blockchains apply access control mechanisms to
limit access (Dinh et al., 2018). We thus pose the following questions:
What are the benefits and challenges that public and private block-
chain systems bring to SSCs? What factors need to be considered in
choosing the system type? Is the decision of a blockchain system
affected by the supply chain type? And if so, what is the mechanism?
(Henry et al., 2018; S. Kamble et al., 2019). These questions have yet
to be addressed by either scholars or practitioners, and thus we seek
to do so in this study.

Data immutability

Data immutability ensures data authenticity and improves the
reliability of SSCs. However, it is problematic that data that have neg-
ative effects cannot be modified (Biswas & Gupta, 2019; Kouhizadeh
et al., 2021; Saberi et al., 2019). For instance, bad supply behavior will
remain on the ledger, even if it is discovered that it was caused by a
natural disaster rather than supplier negligence.

Expertise-based GDM for ordering the barriers to blockchain
adoption in SSCs

The introduction of blockchain in SSCs requires the coordination
of multiple stakeholders. Therefore, it is necessary to integrate multi-
ple views in evaluating the intensity of the barriers to blockchain
adoption. GDMs can be used to form a group opinion with a high con-
sensus level. Therefore, GDMs are suitable for assessing the intensity
of the barriers to blockchain adoption. However, it should be noted
that stakeholders are affected differently by blockchain technology.
As a result, they may have divergent attitudes toward its use. Addi-
tionally, stakeholders possess varying professional expertise, knowl-
edge, backgrounds, skills, personalities, and experiences, which
contributes to their ability to assess the adoption of blockchain. These
factors have a significant influence on the final outcome of this evalu-
ation process (Cheng et al., 2018). To address this issue, an expertise-
based GDM approach is proposed that aims to mitigate the impact of
stakeholder attributes on the assessment of blockchain adoption.

By incorporating expertise-based criteria, the proposed method
seeks to ensure a fair and balanced evaluation process that involves
five steps: (1) collecting decision information; (2) determining stake-
holder weights; (3) clustering based on the cyclic classification
model; (4) performing the consensus management and polymeriza-
tion process; and (5) obtaining expertise-based feedback and the
aggregated opinions. Fig. 2 shows a roadmap of the expertise-based
GDM.

Compared with previous GDMs, the advantages of the exper-
tise-based GDM can be summarized as follows: (a) this work is
the first attempt to measure the expertise of stakeholders using
probabilities and an expertise-based weighting method, which
greatly enhances the robustness of the results; (b) this study
extends the partial binary tree DEA-DA cyclic classification model
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to probabilistic information, thus eliminating the model’s depen-
dence on the threshold; (c) this study proposes a novel consensus
achievement model that uses probabilistic information, which
enriches the existing GDM methods.

Expertise-based weight allocation method

The expertise-based weight allocation method is utilized to rank
stakeholders based on their professional expertise. This approach
aims to mitigate potential errors resulting from stakeholder attrib-
utes in the evaluation process. By assigning weights based on exper-
tise, this method ensures that the results are not driven by individual
characteristics but instead by the collective knowledge of multiple
stakeholders. This helps to enhance the accuracy and reliability of the
results.

The expertise of a decision-maker can be defined as her/his ability
to distinguish similar but not identical situations and to apply her/his
judgment coherently (Sellak et al., 2019). It is essential to assign
diverse weights to decision-makers in accordance with their exper-
tise. The existing weighting methods can be classified into two cate-
gories: (i) direct weighting methods, which are distributed by the
moderators (Leyva-L�opez & Fern�andez-Gonz�alez, 2003; P�erez et al.,
2014) or through peer inspections, and (ii) indirect weighting meth-
ods, which assign weights in accordance with endogenous character-
istics such as consistency (Alonso et al., 2010; Liang et al., 2017),
social connections (Liang et al., 2017), or trust (Wu et al., 2015; Wu et
al., 2017; Wu & Chiclana, 2014). The weights allocated through the
direct methods are affected by the familiarity among moderators and
decision-makers. The higher the familiarity, the more reliable the
results will be. Nonetheless, due to the complexity of familiarity con-
trol (Dong & Cooper, 2016), the direct methods are not always accu-
rate when the group is large or the criteria are multidimensional.
Furthermore, the indirect methods are only applicable to specific sce-
narios, which limits their usage.

This study proposes an expertise-based approach to overcome
these challenges. Effectively measuring the expertise of a
7

decision-maker is at the core of the expertise-based weighting
approach. This study exploits hesitancy and preference to delineate
stakeholders’ ability to evaluate the intensity of the barriers to block-
chain adoption in SSCs.
Preliminaries

Suppose there arem stakeholders engaged in the decision-making
process and their assessments over a certain event are extracted as
probability distributions. Let x denote the decision variable and
D ¼ fd1;d2;⋯;dmgdenote the set of stakeholders. The opinion of
stakeholder i on decision space X can be formulated as the probabi-
listic distribution function (PDF) fiðxÞ; ð1;2;⋯;mÞ:
f xð Þ ¼ f f1 xð Þ; f2 xð Þ;⋯; fm xð Þð Þ; ð1Þ
where f is a mapping function Rm!Rþ; which is used to fuse indi-
vidual PDFs into group PDFs. f ðxÞ is the opinion of the group, which
should satisfy the unity condition

Rþ1
�1 f ðxÞdðxÞ ¼ 1.
Weight formulation

The presence of diverse stakeholders with varying levels of
knowledge, social connections, professional backgrounds, and other
factors contributes to a wide range of perspectives within the group.
The assignment of weights to stakeholders based on their varying
levels of expertise is therefore a crucial aspect of this study. Let λiði ¼
1;2;⋯;mÞ; λi 2 ½0;1� denote the weight vector. The weight of stake-
holder di can be formulated as follows:

λi ¼ W g1i ; g
2
i ;⋯; gzi

� � ¼
Pz

y¼1 v
ygyiPm

i¼1
Pz

y¼1 vyg
y
i

; ð2Þ

where gyi 2 ½0;1� denotes the performance of stakeholder di under
featureyth; vy 2 ½0;1� represents the weight of featureyandPz

y¼1 v
y ¼ 1.
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The proposed expertise-based weighting approach incorporates
two distinct features—specifically, thatz ¼ 2 and the feature set is
G ¼ fg1; g2g. These two features represent hesitancy and preference,
respectively.
Hesitancy
Hesitancy reflects stakeholders’ confidence. If stakeholder di 2D

expresses a preference over alternatives with more certainty, the PDF
will have a smaller variance/standard deviation, which implies that
his/her expertise is higher. On the contrary, when the PDF of stake-
holder di has a greater variance/standard deviation, his/her hesitancy
is higher, which indicates lower expertise.

This study uses the coefficient on variation to measure hesitancy.
Variance/standard deviation is not used to measure hesitancy
because it depends on the average value of the variable, which causes
it to lose its significance when the dimensions and means of multiple
random variables are distinct. The measurement of hesitancy in this
study is as follows.

Assume there are n alternatives. Let A ¼ fa1; a2;⋯; ang be the
alternative set, D ¼ fd1; d2;⋯; dmgbe the stakeholder set, and PDF f ji ði
¼ 1;2;⋯;m; j ¼ 1;2;⋯;nÞ denote the preference distribution of stake-
holder di on alternative aj. The hesitancy of stakeholder di for alterna-
tive aj is:

Hj
i ¼

d dið Þ
mean f ji

� � : ð3Þ

The overall hesitancy of stakeholder di is:

g1i ¼ Hi

Pn
j¼1 H

j
i

n
; ð4Þ

where Hj
i 2 ½0;1�;Hi 2 ½0;1�; 8 i2 f1;2;⋯;mg; j2 f1;2;⋯;ng. It is evi-

dent that there exists a positive correlation between the level of hesi-
tancy and the standard deviation. A heightened degree of hesitancy
and a lower level of expertise can be inferred from the increased
degree of fluctuation.
Preference
Preference is the second feature of expertise, which describes

stakeholders’ ability to evaluate all alternatives. The more clearly
stakeholder di can appraise the best (worst) option, the higher his/
her preference score will be, which indicates that he/she has a high
level of expertise.

The Kolmogorov−Smirnov test is a classic statistical method used
to test whether two empirical distributions are divergent or whether
one empirical distribution is identical to another paragon distribu-
tion. This study applies the Kolmogorov distance to examine the dif-
ference between the preference distributions of stakeholder di over
alternatives aj; ak. The result will be used to formulate preference
score, which is given as follows. The Kolmogorov distance between
alternatives aj and ak is:

P j;kð Þ
i ¼

Z ����f ji xð Þ � f ki xð Þ
����dx: ð5Þ

The preference score of stakeholder di is:

g2i ¼ Pi ¼
2

Pn�1
j¼1

Pn
k¼2 P

j;kð Þ
i

� �
n n� 1ð Þ ; ð6Þ

where Pðj;kÞ
i ;Pi 2 ½0;1�; 8 i2 f1;2;⋯;mg; i; j; k;n2Nþ. The higher the

Kolmogorov distance among preference distributions, the greater the
preference level is, which implies that the stakeholder can differenti-
ate the alternatives more clearly and is thus more professional. The
weight of stakeholder di is:
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λi ¼ W g1i ; g
2
i

� � ¼
P2

y¼1 v
ygyiPm

i¼1
P2

y¼1 vyg
y
i

; ð7Þ

where vy 2 ½0;1� indicates the weight of characteristics gyi . The weight
of each stakeholder is defined as:

λi ¼
v1Hi þ v2PiPm
i¼1 g1i ; g

2
i

� � : ð8Þ
The cyclic classification method for probabilistic preference

The classification process is of great importance for reducing data
dimensionality in GDM. This section introduces a novel cyclic classifi-
cation method for probabilistic preference. The novel classification
method holds two advantages: (1) it can solve the challenges in
threshold selection, and (2) it is based on preclassification. The pre-
classification accounts for the background of each stakeholder, which
can significantly improve the efficiency of the classification process
and the validity of the results.

Mixed integer programming data envelopment analysis discrimi-
nant analysis (MIP-DEA-DA) is a nonparametric discriminant analysis
method that compares the estimated discriminant score of the sam-
ple with the evaluation score obtained by the discriminant function
to classify the new sample and minimize the total number of misclas-
sifications using mixed integer programming. We utilize MIP-DEA-
DA to improve the threshold selection of traditional classification
algorithms (Gonz�alez-Arteaga et al., 2016). However, MIP-DEA-DA
cannot be directly employed to classify information in this paper for
two reasons. First, MIP-DEA-DA can only divide the sample observa-
tions into two groups and thus cannot be used for multigroup classifi-
cation. Second, potential calculation errors in any algorithmmake the
results unstable. The partial binary tree DEA-DA cyclic classification
model proposed by Liu et al. (2014) converts an h-type classification
problem into an h� 1 binary classification problem through the use
of a partial binary tree, and then repeats the MIP-DEA-DA method for
grouping. This method not only improves the robustness of the clas-
sification results, but also achieves multigroup classification. This
study further extends the work of Liu et al. (2014) to probabilistic
information environments and proposes the probability-based MIP-
DEA-DA cyclic classification method.

For convenience, two critical concepts are put forward for prefer-
ence aggregation and consensus level (CL). Preference aggregation
represents the opinions of all stakeholders in a group. CL describes
the similarity between samples. The higher the CL, the reliable the
grouping results are. Therefore, CL is often used to categorize samples
with high similarity and thus improve the CL by adjusting the group-
ing of individuals.
Preference aggregation

Suppose that the weighting vector of stakeholders is l ¼ λiði ¼ 1;
2;⋯;mÞ; f ji ðxÞ denotes the PDF of stakeholder di in space X and f ji
ðxÞ�1 is the inverse of function f ji ðxÞ. f jQA is the aggregated PDF for the
alternative aj of one group. f jQA is a QA function formulated as follows
(Ji et al., 2021):

f jQA ¼
Xm
i¼1

λi f ji xð Þ�1
� �

; j ¼ 1;2;⋯; nð Þ: ð9Þ

Then, the aggregated opinion is expressed as follows.
fQA ¼ ff 1QA; f 2QA;⋯; fnQAg; ðf jQA 2 ½0;1�Þ; where fQA represents the

aggregated preference set of all alternatives for the particular deci-
sion problem.
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CL

CL is used to measure the cohesiveness between stakeholders in a
group. We use the Pearson correlation coefficient to describe the CL
of a group.

Given two PDF sets fp ¼ ff 1p ; f 2p ;⋯; fnpg and fq ¼ ff 1q ; f 2q ;⋯; fnqg;
which respectively represent the opinions of stakeholders dp and dq
on n alternatives, then the Pearson correlation coefficient on the two
n-dimensional vectors p ¼ ðcp1; cp2;⋯; cpnÞ and q ¼ ðcq1; cq2;⋯; cqnÞ is
computed as follows:

cor p;qð Þ ¼

Pn
j¼1

cpj � cpj‾
� � � cqj � cqj‾

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP27
j¼1

cpj � cpj‾
� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP27

j¼1
cqj � cqj‾
� �2s ; ð10Þ

where cpj and cqj respectively represent the opinions of stakeholders
dp and dq. For the sake of simplicity, we use mean of PDF to approxi-
mate the aggregated stakeholder opinion. cpj‾ and cqj‾ are calculated
as follows:

cpj
‾ ¼

Pn
j¼1

cpj

n
and cqj

‾ ¼

Pn
j¼1

cqj

n
: ð11Þ

The typical properties of the Pearson correlation coefficient
include (Gonz�alez-Arteaga et al., 2016):

(a) Haphazardness: corðp;qÞ ¼ corðp; qÞ; 8 p; q2Rn;

(b) Range: corðp; qÞ2 ½�1;1�; 8 p;q2Rn;

(c) Self-Robustness: corðp; pÞ ¼ 1; 8 p2Rn;

(d) Linearity: if corðp; qÞ ¼ 1; then there is a perfect positive linear cor-
relation between p and q—that is, 9 a2R; b2Rþ : q ¼ a�1þ b�p;
where 1 ¼ ð1;1;⋯;1Þ is a vector of n ones. Inversely,corðp; qÞ ¼ �1
indicates a perfect negative correlation between p and q (i.e.,
9 a2R; b2R� : q ¼ a�1þ b�p), and

(e) Linear Stability: given that p0 ¼ a�1þ b�q and
q0 ¼ c�1þ d�q;a; b; c; d2R; b and d are nonzero and have the same
sign (i.e., both are positive or negative). Then, corðp0; q0Þ ¼ corðp;qÞ.

corðp;qÞ ¼ 0 indicates there is no correlation between p and q. The
closer the value of jcorðp; qÞj is to 1, the stronger the correlation is.

From the perspective of social choice theory, the CL falls within ½0;
1�; where 0 portrays a complete lack of consistency among members
and 1 presents unanimous agreement (Alcantud et al., 2013;
Gonz�alez-Arteaga et al., 2016). To convert the threshold of the Pear-
son correlation coefficient from ½�1;1� to ½0;1�; the mapping function
for CL is proposed as follows:

CL p;qð Þ ¼ 1
2

1þ cor p;qð Þð Þ; ð12Þ

where corðp;qÞ2 ½�1;1�;CLðp;qÞ2 ½0;1�. CL still satisfies the above
properties of the Pearson correlation coefficient.

(a) Haphazardness: CLðp; qÞ ¼ CLðq; pÞ; 8 p;q2Rn.

(b) Self-Robustness: CLðp; pÞ ¼ 1; 8 p2Rn.

(c) Linear Stability: given that p0 ¼ a�1þ b�q and q0 ¼ c�1þ d�q; also
that a; b; c; d2R; b and d are nonzero and have the same sign
(i.e., both are positive or negative). Then, CLðp0; q0Þ ¼ CLðp;qÞ.
9

Proposition 1. Given p;q2Rn; CLðp; qÞ ¼ 1
�
resp:CLðp; qÞ ¼ 0

�
, then

9 a2R; b2Rþðresp:b2R�Þ : q ¼ a�1þ b�p.
Proof. Known CLðp; qÞ ¼ 1; using Eq. (12) we can obtain that corðp;

qÞ ¼ 1; according to Property (d) of the Pearson correlation coeffi-
cient, where 9 a2R; b2R : q ¼ a�1þ b�p being 1 ¼ ð1;1;⋯;1Þ is a
vector of ones with appropriate dimensionality. The proof for the
case CLðp;qÞ ¼ 0 is also acquired.

Proposition 2. Given p; q2Rn, CLðp; qÞ ¼ 1, then 8 o2Rn, that
CLðo; pÞ ¼ CLðq; oÞ.

Proof. Given CLðp; qÞ ¼ 1; employing Proposition 1,
9 a2R; b2Rþ : q ¼ a�1þ b�p. Given 8 o2Rn;

9 c; e2R; d; f 2Rþ : p ¼ c�1þ d�o; q ¼ e�1þ f �o. Using Property (e) of
the Pearson correlation coefficient, we can obtain corðp; oÞ ¼ corðq; oÞ
;which, according the definition of CL, is equal to CLðp; oÞ ¼ CLðq; oÞ.

The above propositions provide the conditions for the measure-
ment of the consistency in a decision-making group. Then, we intro-
duced a probability-based MIP DEA-DA cyclic classification (P-MIP
DEA-DA) model.

Probability-based MIP DEA-DA cyclic classification (P-MIP DEA-DA)
model

MIP DEA-DA contains two linear programming process (i.e., Stage
1 and Stage 2). Given two groups G1 and G2; Stage 1 identifies the
overlap areas that contain both groups’ members using two hyper-
planes and also generates two new groups that are outside those
areas. Stage 2 constructs another two hyperplanes to classify mem-
bers within the overlap areas into two groups.

Stage 1: Classification and overlap identification (COI)

Min sþ 0 � λþj þ 0 � λ�j þ 0 � d

s:t:

Xn
j¼1

λþj � λ�j
� �

cij � dþ s�0; i2G1;

Xn
j¼1

λþj � λ�j
� �

cij � d� s�0; i2G2;

Xn
j¼1

λþj þ λ�j
� �

¼ 1;

ξþ
j �λþj �eξþ

j andξ
�
j �λ�j �eξ�

j ; j ¼ 1;2;⋯; n

ξþ
j þ ξ�

j �1; j ¼ 1;2;⋯;n

Xn
j¼1

ξþ
j þ ξþ

j

� �
¼ n

3�d�4:5
s : unrestricted; ξþ

j ¼ 0;1f g; ξ�
j ¼ 0;1f g

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð13Þ
All other variables are nonnegative. The notations in the above
COI model are described as follows. cijði ¼ 1;2;⋯;m; j ¼ 1;2;⋯; nÞ
represents the value of the ith stakeholder for the jth alternative.
Namely, cij is equal to the mean of f ji . λj ¼ λþj þ λ�j ; λ

þ
j ¼ ðjλjj þ λjÞ=2;

λþj ¼ ðjλjj � λjÞ=2; jλjj ¼ λþj þ λ�j represents the weight of the jth alter-
native. ξþ

j �λþj �eξþ
j ; ξ

�
j �λ�j �eξ�

j andξ
þ
j þ ξ�

j �1; j ¼ 1;2;⋯; n is the
nonlinear condition. e is a small number (0.0005). d indicates the dis-
criminant score and ssignifies the deviations of the linear discrimi-
nant function from the discriminant score d. n is the number of
alternatives.

The optimal solutions of the COI model are λþ�
j ; λ��

j ;d�; s�. (a) If s�

<0 (i.e., there is no overlap area), then the computation of P-MIP-
DEA-DA is stopped. All members are clearly classified into G1 or G2

according to
Pn
j¼1

λ�j � cij ¼ d�. (b) If s��0 (i.e., there is an overlap area),
then we proceed to Stage 2. All members can be classified into the
following subset using the COI model:
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(1)New�G1 ¼ fi2New�G1j
Pn
j¼1

ðλþj � λ�j Þcij >d� þ s�g;

(2)New�G2 ¼ fi2New�G2j
Pn
j¼1

ðλþj � λ�j Þcij <d� � s�g;

(3) K1 ¼ G1 � New�G1;

(4) K2 ¼ G2 � New�G2;

(5)Overlap ¼ K1 [K2 ¼ fi2Overlapjd� � s��Pn
j¼1

ðλþj � λþj Þcij�d� þ s�g.

Fig. 3 shows the classification of all members into five subgroups,
where the triangles depict members of G1; the dots depict members
of G2; the green triangles depict members of New�G1; the orange
dots depict members of New�G2; the blue triangles depict members
of K1; and the blue dots depict members of K2. The overlap area is the
area between the two lines.

Stage 2: Handling overlap (HO)

Min
P

i2G1
yi þ

P
i2G2

yi þ 0 � λþj þ 0 � λ�j þ 0 � c

s:t:

Xn
j¼1

λþj � λ�j
� �

cij � c þMyi�0; i2G1;

Xn
j¼1

λþj � λ�j
� �

cij � c �Myi�� e; i2G2;

Xn
j¼1

λþj þ λ�j
� �

¼ 1;

ξþ
j �λþj �eξþ

j andξ
�
j �λ�j �eξ�

j ; j ¼ 1;2;⋯;n

ξþ
j þ ξ�

j �1; j ¼ 1;2;⋯; n

Xn
j¼1

ξþ
j þ ξ�

j

� �
¼ n;

c : unrestricted; ξþ
j ¼ 0;1f g; ξ�

j ¼ 0;1f g; yi ¼ 0;1f g

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð14Þ
All other variables are nonnegative. The notion instructions of the
HO model are as follows. M is a given large number (M ¼ 10000in
this paper). yi is a binary variable. The meanings of other variables
are the same as in the COI model.

The optimal solutions of the HO model are λþ�j ; λ��j ; c�. The overlap area
identified in the COI stage can be further classified as follows:
(1)New�G1 ¼ fi2New�G1ji2Overlap;
Pn
j¼1

ðλþ�
j � λ��

j Þcij�c�g;

(2)New�G2 ¼ fi2New�G2ji2Overlap;
Pn
j¼1

ðλþ�
j � λ��

j Þcij�c� � eg.
Fig. 3. Classification and overlap identification stage (COI).

10
For clarity, Fig. 4 shows the classification of the HO model. In
Fig. 4, the overlap area is separated into two subsets by Lines 3 and 4
that indicate the discriminant function

Pn
j¼1

ðλþ�
j � λ��

j Þcij ¼ c� and
Pn
j¼1

ð
λþ�
j � λ��

j Þcij ¼ c� � e; respectively. Fig. 4 shows the final groups,
where all triangles depict members of G1; all dots depict members of
G2; all yellow points depict members of New�G1; and all pink depict
members of New�G2.

Compared with traditional classification methods, the newly pro-
posed circular classification method makes two significant improve-
ments. The first is that it eliminates the threshold limit, where the
stability of the classification result stops the cyclic classification pro-
cess. That is, the categories use in the rth generation are identical to
those of r � 1th;which implies that there is no need for a threshold to
be used as a signal to stop the cycle. The second is that multiple clas-
sification cycles ensure the robustness of the results. The specific clas-
sification processes are as follows:

Step 1 Preclassification (first-phase classification): Suppose we col-
lect Z decision samples through questionnaires or surveys. These
samples are preclassified into h aggregations in accordance with
the existing information (e.g., seniority, expertise), which are
denoted by S1; S2;⋯; Sh when the corresponding quantities of
aggregated integrations are u1;u2;⋯; uh .

Step 2 Presetting and classification (first-phase classification):
Since the P-MIP DEA-DA model can only handle two groups, the
presetting of h aggregations is essential. We denote S1 by G1 and
group the others into G2. Then, the P-MIP-DEA-DA model can be
utilized to discriminate and separate G1 and G2; which leads to
the new classifications of Gð1Þ

1 and Gð1Þ
2 . After ensuring that the

new categories are consistent with the original categories, (i.e.,
Gð1Þ
1 ¼ G1 and Gð1Þ

2 ¼ G2), we proceed to Step 3; otherwise, we pro-
ceed to the next round of discrimination and classification
employing the P-MIP-DEA-DA model until the result of the rth
classification is the same as that of the r � 1th classification. The
conditions that must be met for the loop to stop are when Gðr�1Þ

1 ¼
Gr
1 and Gðr�1Þ

2 ¼ Gr
2. G

ð1Þ
1 is the first classification, denoted by G�

1;

and GðrÞ
2 is the initial value for the next stage of classification.

Step 3 Preclassification (second-phase classification): In this step,
we preclassify the group GðrÞ

2 ¼ fS01; S02;⋯; S0hg obtained in Step 2.
Suppose that the numbers of samples in G�

1 are v1; v2;⋯; vh and
those in GðrÞ

2 are u01;u
0
2;⋯; u0h. S

0
i denotes the samples in Si minus

those in G�
1. Accordingly, the number of samples S0i is u0i ¼ ui � vi.

Samples in S0i will be allocated to S01;⋯; S0i�1; S
0
iþ1;⋯; S0h according

to Eq. (12). The probability matrix of samples from S0i is denoted
by Pu0 ðu0 ¼ 1;2;⋯;u0iÞ according to Eq. (9). The aggregated proba-
bility vectors of S01;⋯; S0i�1; S

0
iþ1;⋯; S0h can be obtained by

Yq
�
q ¼ ði;⋯; i� 1; iþ 1;⋯; hÞ

�
. Eq. (12) can be used to obtain the

consensus level CLðPu0 ;YqÞ to measure the consistency between S0i
andS01;⋯; S0i�1; S

0
iþ1;⋯; S0h. Let us assume that
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CLðPu0 ;YqÞ ¼ maxfCLðPu0 ;YqÞ; q ¼ 1;⋯; i� 1; iþ 1;⋯; hg. Then, Yt

is most consistent with Pu0 and thus the sample Pu0 will be distrib-
uted to S0t . Similarly, the other preferences P1;P2;⋯; Pu0 are allo-
cated to S01;⋯; S0i�1; S

0
iþ1;⋯; S0h. Ultimately, we can obtain h� 1

reassigned aggregations denoted as S1; S2;⋯; Sh�1 that contain u01;
u02;⋯;u0h�1 samples.

Step 4 Presetting and classification (second-phase classification):
Similar to Step 2, we denote S1 by G1 and assign all others to G2.
We adopt the P-MIP-DEA-DA model to conduct the new classifica-
tion procedure and apply the discriminant conditions until the
stop conditions are met. Suppose that we obtain G�

1 and GðrÞ
2 ;

where G�
1 is the desired category. Then, CL can be used to establish

the classification used in the third-phase classification.
Step 5 Sorting of classification results: The above classification pro-

cesses are repeated to the h� 1th iteration. We obtain h aggrega-
tions that are reassigned through the novel classification method
(i.e., G�

1;G
�
2;⋯;G�

h) and contain u�
1;u

�
2;⋯;u�h samples.

We use Eq. (12) to obtain the CL between stakeholders in the
same group. Then, we calculate the mean of consistency as the CL of
the group. We denote the CL between stakeholder di and stakeholder
dj in group G�

h as CLðdi;djÞ and the CL of group G�
h as CLðG�

hÞ. Follow-
ing:

CL G�
h

� � ¼ 2 � ∑
u�h−1ð Þ
i¼1

CL di;diþ1ð Þ

u�
h u�

h−1
� � ; ð15Þ

where u�
h is the number of samples in group G�

h and CLðG�
hÞ satisfies

Propositions 1 and 2.
It is essential to invite stakeholders to judge whether the consis-

tency in each new group is acceptable. If the consistency passes the
test, then we proceed to the aggregation process (Section 4.3); other-
wise, we proceed to the consensus management process (Section
4.4).

Aggregation

This section introduces the method used to obtain the aggregated
opinion of the group. The aggregation process aims to aggregate all
individual opinions and commonly includes both intra- and inter-
group aggregation. The QA function is used for the aggregation pro-
cess. The intra-group aggregation is given by:

f jp ¼
Xu�p
i¼1

λi f ji xð Þ�1
� �

; j ¼ 1;2;⋯;nð Þ; ð16Þ

fp ¼ f 1p ; f
2
p ;⋯; fnp

n o
; p ¼ 1;2;⋯; hð Þ; ð17Þ

where f ji ðxÞ�1 is the inverse of f ji ðxÞ. f jp 2 ½0;1� describes the PDF of the
pth group for the jth alternative, and the pth group contains u�

p stake-
holders. fp represents the aggregated opinions of the pth group on all
alternatives, and h is the number of stakeholder groups obtained in
Section 4.2.

The inter-group aggregation derives the final decision-making
result by integrating all intra-group aggregations. The calculation is
as follows:

f jQA ¼
Xh
p¼1

f jp xð Þ�1
� �

; j ¼ 1;2;⋯; n; p ¼ 1;2;⋯; hð Þ; ð18Þ

fQA ¼ f 1QA; f
2
QA;⋯; fnQA

n o
;

where f ji ðxÞ�1 is the inverse of f jpðxÞ; f jQA 2 ½0;1� represents the final
decision on the pth alternative, and fQA is the collection of aggregated
opinions on all alternatives.
11
Consensus management & adjustment

Consensus management and adjustment is an important proce-
dure for improving consistency that consists of two successive tasks:
(1) identifying the samples that differ the most from the collective
preference, and (2) applying expertise-based feedback mechanisms
to adjust individual assessments. The proposed rules aim to not only
bring individual opinions closer to the consensus, but also to further
assist stakeholders in improving their assessments.

(A) Identify the most differentiated individual. We calculate the
mean of f ji ði ¼ 1;2;⋯;m; j ¼ 1;2;⋯; nÞ using f jQAðj ¼ 1;2;⋯; nÞ;
where Cij denotes the mean matrix of f ji ðxÞ and CQA_j denotes the
mean matrix of fQA.

Cij ¼
c11 ⋯ c1n
⋯ cij ⋯
cm1 ⋯ cmn

2
4

3
5; i ¼ 1;2;⋯;m; j ¼ 1;2;⋯; nð Þ; ð19Þ

CQA_j ¼ cQA_1; cQA_2; ⋯ cQA_2½ �; i ¼ 1;2;⋯;m; j ¼ 1;2;⋯; nð Þ: ð20Þ

We then compute the Euclidean distance between Cij and CQA_j.
The pairwise comparison matrix can be delineated as follows.

Dij ¼
D11 ⋯ D11

⋯ Dij ⋯
Dmn ⋯ Dmn

2
4

3
5; i ¼ 1;2;⋯;m; j ¼ 1;2;⋯; nð Þ; ð21Þ
Dij ¼
����cij � cQA_j

����; i ¼ 1;2;⋯;m; j ¼ 1;2;⋯; nð Þ: ð22Þ

If Dpq ¼ MaxðDijÞði ¼ 1;2;⋯;m; j ¼ 1;2;⋯; nÞ; the opinionf qp of stake-
holder dp is the farthest from the group consensusf qQA.

(B)Adopt the expertise-based consensus adjustment regulations.
Expertise-based consensus adjustment is used to improve stake-
holders’ level of expertise. Suppose that the individual farthest
from the group is identified as di. Then, decision-makers can be
classified into two categories according to their expertise as
follows:

Dþ ¼ di 2D : λi�mean λ1; λ2;⋯; λmð Þf g;D�

¼ di 2D : λi <mean λ1; λ2;⋯; λmð Þf g;
where Dþ and D� denote the subgroups of stakeholders with higher
and lower levels of expertise, respectively. The proposed adjustment
regulations (ARs) are as follows.

AR. 1 If cij < cQA_j; then increase cij according to:
AR. 1.1 If di 2D�; 9D0 ¼ fdo 2Dþ : cij�coj�cQA_jg;D0 6¼ ;;
then, f ji  f jo.
AR. 1.2 If di 2Dþ; 9D0 ¼ fDo 2Dþ : cij�coj�cQA_j ^ λi�λo; di 6¼ dog;D0 6¼ ;;
then, f ji  f jo.
AR. 2 If cij > cQA_j; then decrease cij according to:
AR. 2.1 If di 2D�; 9D0 ¼ fdo 2Dþ : cQA_j�coj�cijg;D0 6¼ ;;
then, f ji  f jo.
AR. 2.2 If di 2Dþ; 9D0 ¼ fdo 2Dþ : cQA_j�coj�cij ^ λi�λo;di 6¼ dog;D0 6¼ ;;
then, f ji  f jo.



Table 2
Profile of the stakeholders.

Stakeholder Highest Academic Qualification Positions Area/Domain Blockchain experience (Years) SSC experience (Years)

stakeholder1 M.Eng.Mgt Advisory agent Marketing 7 7
stakeholder2 Ph.D- Senior data scientist Operation management 5 7
stakeholder3 Ph.D blockchain researcher Financial service 4 6
stakeholder4 Ph.D Associate professor Academic 5 8
stakeholder5 M.Eng.Mgt Marketing directors SCM 3 6
stakeholder6 M.Eng.Mgt Freight forwarders SCM 4 6
stakeholder7 Ph.D Associate professor Academic 4 6
stakeholder8 M.B.A Senior manager Enterprise culturel 4 4
stakeholder9 Ph.D Associate professor Academic 3 5
stakeholder10 M.Eng.Mgt Freight manager Logistics and Storage 4 7
stakeholder11 B.CS Software engineer Software development 5 5
stakeholder12 Ph.D Associate professor Academic 3 4
stakeholder13 M.CS Senior IT architect Software 5 8
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The expertise-based consensus adjustment rules pay more atten-
tion to stakeholders with lower levels of expertise, which makes the
consensus-building process more credible.

The GDM decision-making process under probabilistic preference
conditions can be summarized as follows.

Step 1 Preference collection: Collect stakeholders’ preference infor-
mation for n alternatives and fit the set of probability distribution
functions for all stakeholders.

Step 2 Weighting: Apply the expertise-based weighting method to
obtain the weight vector W ¼ ðλ1; λ2;⋯; λmÞ.

Step 3 Classification: Obtain h aggregations S1; S2;⋯; Sh by adapting
the cyclic classification method for probabilistic preference.

Step 4 Consensus reaching: Achieve a consensus by satisfying the
consistency requirement set forth in the expertise-based consen-
sus adjustment guildelines.

Step 5 Opinion aggregation: Through QA aggregation, the final
result is obtained such that fQA ¼ ff 1QA; f 2QA;⋯; fnQAg.
The GDM proposed above can be widely applied to decision-mak-

ing problems in various scenarios. This study focuses on the barriers
to blockchain adoption in SSCs, the details of which are presented in
Section 5.

Data analysis

In this section, we apply the expertise-based GDM introduced in
Section 4 to evaluate the intensity of the barriers to blockchain adop-
tion in SSCs.
Fig. 5. Stakehold

12
Background

In Section 3, we identified 27 barriers to blockchain adoption in
SSCs using the PEEST framework. We surveyed 13 stakeholders with
knowledge of blockchain adoption in SSCs. The stakeholders include
marketing directors, operating consultants, freight forwarders, soft-
ware executives, financial supervisors, and academics. Table 2 shows
the characteristics of the stakeholders

Stakeholders may have idiosyncratic preferences and evaluations
of the intensity of each barrier to bockchain adoption. Estimating the
expertise level of each stakeholder is beneficial to improving the reli-
ability of the decision-making process. Section 5.2 introduces the lev-
els of expertise of the 13 respondents.

Assigning weights to stakeholders

Data on the intensity of the barriers to blockchain adoption were
gathered from 13 stakeholders with backgrounds in blockchain tech-
nology, supply chain management, and business management. Fig. 5
shows the backgrounds of the respondents.

Fig. 5 presents a comprehensive overview of the backgrounds of
the 13 interviewed stakeholders. The inclusion of this background
information is crucial as it serves as the basis for the preclassification
of the stakeholders outlined in Section 5.3. This classification process
ensures that the perspectives and insights provided by the experts
are relevant and aligned with their respective expertise domains.

As mentioned in Section 2, stakeholders’ assessments are impre-
cise rather than vague or ambiguous. Therefore, this study extracts
er expertise.



Fig. 6. The probability distribution of 13 stakeholder opinions on Barrier 1.

Fig. 7. Preclassification results.
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the assessment information as probabilistic data. We use MATLAB to
fit the probability distribution of the assessments on 27 barriers. We
denote the ith stakeholder by di and the probability distribution of
the ith stakeholder on the jth barrier by f ji .

Fig. 6 presents the probability distribution of opinions from 13
stakeholders on Barrier 1 (Pol_1). Compared to other stakeholders, d6
gave the highest attention to (Pol_1), followed by d1 and d5.

According to the expertise-based weighting method proposed in Sec-
tion 4.1, we evaluate stakeholder according to their hesitancy and prefer-
ence. Here, we suppose that both features are equivalent and thus
allocate them equal weights—that is, w1 ¼ w2 ¼ 1. Table 3 shows the
intermediate parameters andweight estimates of 13 stakeholders.

Classifying stakeholders’ decision preference

This section aims to reduce data dimensionality using the cyclic
classification method proposed in Section 4.2.

Step 1: Preclassification:

We first divided the 13 stakeholders into three groups as follows: a
supply chain management group S1 that contains stakeholders 2, 6, 9, 10,
and 12; a blockchain technology group S2 that contains stakeholders 3, 4,
11, and 13; and a business management group S3 that contains stake-
holders 1, 5, 7, and 8. Fig. 7 presents the preclassification results.

The numbers of samples from S1; S2; S3 are u1 ¼ 5; u2 ¼ 4; and
u3 ¼ 4.
Table 3
The intermediate parameters and weight estimates of 13
stakeholders.

Stakeholder Hesitancy Preference Weight

Stakeholder 1 0.21 1.24 0.09
Stakeholder 2 0.4 0.43 0.05
Stakeholder 3 0.34 0.96 0.08
Stakeholder 4 0.44 0.61 0.07
Stakeholder 5 0.22 1.31 0.09
Stakeholder 6 0.31 1.3 0.1
Stakeholder 7 0.38 1.13 0.09
Stakeholder 8 0.42 0.55 0.06
Stakeholder 9 0.41 0.54 0.06
Stakeholder 10 0.21 1.41 0.1
Stakeholder 11 0.41 0.56 0.06
Stakeholder 12 0.33 0.49 0.05
Stakeholder 13 0.25 1.38 0.1

13
Step 2: Presetting and classification (first-phase classification):

Presetting: We denote S1 by G1 and S2 and S3 by G2. Namely, G1 ¼
fd2; d6;d9;d10; d12g andG2 ¼ fd1; d3; d4;d5; d7; d8;d11; d13g.

Classification: We use the P-MIP DEA-DA model to classify the
assessments into two groups. Tables 4 and 5 (shown in Appendix A)
present the parameters and the cyclic classification results of the
first-phase classification (denoted by Gð1Þ

1 and Gð1Þ
2 ; respectively).

Obviously, G1 6¼ Gð1Þ
1 and thus we take Gð1Þ

1 and Gð1Þ
2 as the initial

groups and reuse the P-MIP DEA-DA model for reclassification. The
second grouping results are denoted by Gð2Þ

1 and Gð2Þ
2 . We check the

loop stop condition and find that Gð1Þ
1 ¼ Gð2Þ

1 . Accordingly, the final
result of the first-phase classification is Gð1Þ

1 ¼ Gð2Þ
1 ¼ fd2; d12g and

Gð1Þ
1 ¼ Gð2Þ

1 ¼ fd1; d3;d4; d5; d6;d7;d8; d9; d10; d11g. Gð2Þ
2 is the first clas-

sification, denoted by G�
1. In G�

1; the number of samples belongs to S1;
S2; S3 and is denoted as v1 ¼ 2; v2 ¼ v3 ¼ 0. In Gð1Þ

2 ; the samples
from S1; S2; S3 are denoted by S01; S

0
2; S
0
3; namely,

S01 ¼ fd6; d9; d10g;S02 ¼ fd3; d4;d11; d13g; and S03 ¼ fd1;d5;d7; d8g; and
the number of samples belongs to S01; S

0
2; S
0
3 and is denoted as

u01 ¼ 3;u02 ¼ 4; and u03 ¼ 4; respectively. After completing this process,
the classification process enters the third step.

Step 3 Preclassification (second-phase classification):

In this step, we preclassify the group Gð1Þ
2 ¼ fd1; d3; d4; d5;d6; d7;

d8;d9; d10;d11g obtained in Step 2. We utilize the CL function to dis-
tribute the samples in S01 ¼ fd6; d9;d10g into S02 ¼ fd3;d4;d11;d13g



Table 9
The cyclic classification results of stakeholders in the second-phase classification.

Stakeholder di Preclassification First-stage classification (r ¼ 1) Second-stage classification (r ¼ 2)

COI model HO model COI model

d1 G2 G2 - G2 (Denoted byG�
3)

d3 G1 G1 - G1 (Denoted byG�
2)

d4 G1 Overlap G1 G1 (Denoted byG�
2)

d5 G2 G2 - G2 (Denoted byG�
3)

d6 G1 Overlap G1 G1 (Denoted byG�
2)

d7 G2 Overlap G2 G2 (Denoted byG�
3)

d8 G2 G2 - G2 (Denoted byG�
3)

d9 G1 Overlap G2 G2 (Denoted byG�
3)

d10 G1 Overlap G1 G1 (Denoted byG�
2)

d11 G1G1 G1 - G1 (Denoted byG�
2)

d13 G1 Overlap G1 G1 (Denoted byG�
2)
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and S03 ¼ fd1; d5; d7;d8g. We denote the probability matrix of samples
from S01 as Pu0 ðu0 ¼ 1;2;3Þ (shown in Table 6) and employ the QA
function to calculate the aggregated probability matrix of S02 and S03 as
Y2 and Y3 (shown in Table 6). Then, use the CL function to evaluate
the consensus level of Y2 and each sample in S01 as well as the consen-
sus level of Y3 and each sample in S01 (shown in Table 7). Finally, we
obtain two new groups denoted as S1 ¼ fd3;d4;d6; d9; d10; d11;d13g
and S2 ¼ fd1; d5;d7;d8g.

Step 4 Presetting and classification (second-phase classification):

We proceed with the second-phase discrimination and classifica-
tion based on the preclassification obtained in Step 3.

Presetting: We denote the new S1 by G1 and S2 and S3 by G2;

namely, G1 ¼ fd3; d4; d6;d9; d10;d11; d13g and G2 ¼ fd1;d5; d7; d8g.
Classification: We use the P-MIP DEA-DA model to classify the

assessment information into these two groups. Table 8 in Appendix A
presents the parameters and estimated weights of each barrier in the
second-phase classification, which are denoted by Gð1Þ

1 and Gð1Þ
2 ;

respectively. Obviously, G1 6¼ Gð1Þ
1 ; and thus we take Gð1Þ

1 and Gð1Þ
2 as

the initial groups and reuse the P-MIP DEA-DA model to for reclassifi-
cation. The second grouping results are denoted by Gð2Þ

1 and Gð2Þ
1

(shown in Table 9). We check the loop stop condition and find that
Gð1Þ

1 ¼ Gð2Þ
1 . Accordingly, the final classification is Gð1Þ

1 ¼ Gð2Þ
1 ¼ fd3; d4;

d6; d10;d11;d13g and Gð1Þ
2 ¼ Gð2Þ

2 ¼ fE1; E5; E7; E8; E9g. Gð2Þ
1 is the second

classification that we need, denoted by G�
2; and Gð2Þ

2 is the third classi-
fication that we need, denoted by G�

3.
Table 9 shows the results of second-phase classification where

G�
1 ¼ fd2; d12g;G�

2 ¼ fd3; d4; d6;d10; d11; d13g; and G�
3 ¼ fd1;d5; d7; d8;

d9g. The interviewed stakeholders were divided into three
groups based on their profile. Specifically, S1 ¼ fd2;d6;d9; d10;d12g
includes stakeholders primarily focused on supply chain manage-
ment, S2 ¼ fd3;d4;d11; d13g includes those primarily focused on
blockchain technology, and S3 ¼ fd1;d5;d7; d8g includes those pri-
marily focused on business management. After conducting the P-MIP
DEA-DA model, d6 and d10 are adjusted to the second group and d9 is
transferred to the third group. The decision to adjust the categoriza-
tion of certain stakeholders was made based on an analysis of their
viewpoints and characteristics. While these stakeholders originally
had a background in supply chain management, their expressed
viewpoints demonstrated similarities to members of the blockchain
and business management groups. Therefore, to ensure a more accu-
rate representation of their perspectives, it was deemed appropriate
to adjust their categorization.

Step 5 Sorting of classification results:

The final classification results of the P-MIP DEA-DA model are G�
1

¼ fd2;d12g; G�
2 ¼ fd3;d4; d6;d10; d11;d13g; and G�

3 ¼ fd1; d5; d7;d8; d9g.
The full classification process is shown in Fig. 8.
14
Identifying the intensity of the barriers to blockchain adoption in SSCs

This section aims to identify the intensity of the barriers to block-
chain adoption. To do so, we evaluate the CL of three stakeholder
groups and aggregate the opinions of all stakeholders.

Consensus. We use the CL function in Eq. (12) to obtain the consis-
tency between each set of two stakeholders in the same group. We
use Eq. (15) to calculate the CLs of G�

1; G�
2; and G�

3; as shown in
Table 10.

We assess the consensus level by consulting stakeholders in the
field of decision-making and find that the consensus levels displayed
above are satisfactory. The next step is to aggregate stakeholder opin-
ions, which includes both intra- and inter-group aggregation.

(1) Intra-group aggregation. In Step 5.3, stakeholders are clustered
into three groups: G�

1; G
�
2; and G�

3. Then, we utilize the QA function
to obtain the intra-group aggregated opinions. Fig. 9 (shown in
Appendix A) shows the probability distributions of the intra-
group aggregated opinions. Table 11 shows the mean of the
aggregated probability distributions of the three groups.

Table 11 shows the aggregated opinions of G�
1; G

�
2; and G�

3; whose
industry backgrounds are supply chain management, blockchain,
and business management, respectively. According to the stake-
holders in the field of supply chain management, the five most
significant barriers to blockchain adoption are the lack of support
from corporate executives, market uncertainty, data security, and
a lack of consensus among stakeholders. According to the stake-
holders in the field of blockchain technology, the five most signif-
icant barriers to blockchain adoption are data security, data
immutability, the lack of professional talent, a resistance to new
technology adoption and the lack of support from corporate exec-
utives. According to the stakeholders in the field of in business
management, the five most significant barriers to blockchain
adoption are privacy breaches, data security, high information
sharing costs, energy consumption, and high maintenance and
administration costs. An important finding is that all stakeholder
groups share a common belief in the urgent need for data secu-
rity. The absence of support from corporate executives is per-
ceived as the most severe barrier by stakeholders in both the
supply chain management and blockchain technology groups.
Stakeholders in both the blockchain technology and business
management groups underscored the significance of the high
maintenance and administration costs of blockchain-based sys-
tems.

Inter-group aggregation. Based on the intra-group results, we uti-
lize the QA function to obtain the aggregated inter-group opinions,
which also represent the final decision of the group. Fig. 10 shows



Fig. 8. The stakeholder classification process.
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the probability distributions of all opinions in the group. Table 12
shows the mean of all PDFs.

We obtain the priority ranking of the barriers to blockchain adop-
tion in SSCs from the means of the aggregated opinions from 13
stakeholders, as shown in Table 12. The five most severe barriers to
blockchain adoption are Tech_24, Pol_1, Eco_10, Pol_2, Pol_5.
15
Conclusions and discussion

Practical implications

The adoption of blockchain in SSCs faces significant resistance.
In this paper, a thorough literature review was conducted to first



Table 10
The consensus levels of individual samples and groupsG�

1; G
�
2; and G�

3.

Stakeholderdi Group G�
1 Group G�

2 Group G�
3

d2 d12 d3 d4 d6 d10 d11 d13 d1E1 d5 d7 d8 d9

d1 - - - - - - - - - - - - -
d2 - 0.11 - - - - - - - - - - -
d3 - - - - - - - - - - - - -
d4 - - 0.18 - - - - - - - - - -
d5 - - - - - - - - 0.07 - - - -
d6 - - 0.25 �0.06 - - - - - - - - -
d7 - - - - - - - - �0.11 �0.19 - - -
d8 - - - - - - - - 0.05 0.29 �0.04 - -
d9 - - - - - - - - 0.38 0.41 0.11 �0.03 -
d10 - - �0.16 0.15 �0.3 - - - - - - - -
d11 - - 0.21 0.24 0.14 0.17 - - - - - - -
d12 0.11 - - - - - - - - - - -
d13 - - 0.09 0.31 �0.06 0.3 0.28 - - - - - -
Consistency 0.11 0.12 0.06

Table 11
The means of the aggregated probability distributions of the three groups.

Group Barrier

1 2 3 4 5 6 7 8 9 10 11 12 13 14

G�
1 1.8 1.93 1.81 2.12 2 2.17 2.31 1.79 1.63 1.99 2.04 1.97 1.94 2.56

G�
2 2.28 2.29 2.33 2.14 1.72 1.98 2.79 2.46 2.67 1.85 2.45 2.73 2.55 2.82

G�
3 1.85 2.39 2.13 1.75 2 2.7 2.74 2.03 2.29 1.94 2.9 2.8 2.45 2.19

15 16 17 18 19 20 21 22 23 24 25 26 27 -

G�
1 1.75 2.01 2 2.44 2.54 1.9 2.01 2.48 2.04 1.72 2 2.14 1.94 -

G�
2 2.86 2.59 2.94 2.63 2.77 2.35 1.87 3.44 1.96 2.18 2.47 2.63 3.25 -

G�
3 2.31 2.53 1.75 2.19 1.84 3.06 2.01 3.02 1.91 1.93 2.2 2.72 2.73 -

Fig. 10. The probability distributions of multiple stakeholder opinions.
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identify the barriers to blockchain adoption. These barriers were
then categorized into different dimensions, namely, political, eco-
nomic, environmental, social, and technological barriers, in accor-
dance with the proposed PEEST framework. Moreover, this study
is the first to analyze the intensity of the barriers to blockchain
adoption in the SSC context. By doing so, this research provides
16
valuable insights and reference material for both practitioners
and policymakers in overcoming and eliminating the barriers that
impede the adoption of blockchain technology in SSCs.

The five most severe barriers to blockchain adoption are: (1) stor-
age constraints (Tech_24), (2) the lack of economic incentives
(Pol_1), (3) high integration costs (Eco_10), (4) the lack of



Table 12
The means of the aggregated probability distributions of multiple stakeholder
opinions

Barriers 1 2 3 4 5 6 7 8 9

Mean value 9.88 9.855 9.783 9.658 9.844 9.6 9.27 9.52 9.53
Ranking 2 4 7 10 5 13 23 16 15

Barriers 10 11 12 13 14 15 16 17 18
Mean value 9.86 9.44 9.25 9.44 9.3 9.5 9.64 9.47 9.55
Ranking 3 20 24 19 22 17 11 18 14

Barriers 19 20 21 22 23 24 25 26 27
Mean value 9.41 9.21 9.83 8.45 9.78 10.17 9.74 9.63 8.87
Ranking 21 25 6 27 8 1 9 12 26
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sustainability guidelines (Pol_2) and (5) the lack of regulations on
data sharing (Pol_5).

The most prominent barrier to blockchain adoption is storage
constraints (Tech_24). Enterprises in SSCs often handle large
transaction volumes and thus face substantial storage require-
ments. The storage capacity of a blockchain-based system directly
impacts the operating efficiency of SSCs, thus making it a critical
concern. The second major barrier is the lack of economic incen-
tives (Pol_1). The government has strong control over the alloca-
tion of social resources. Economic incentives can not only
enhance stakeholders’ confidence in blockchain-based solutions,
but also make them more financially viable. The third barrier is
the high integration costs of blockchain (Eco_10). Incompatibility
between traditional systems and blockchain technology poses sig-
nificant challenges and incurs additional costs during integration.
This barrier highlights the need for seamless compatibility and
interoperability between blockchain technology and legacy sys-
tems. The lack of sustainability guidelines (Pol_2) is another sig-
nificant barrier that casts doubt on the potential benefits offered
by blockchain. Furthermore, the lack of regulations or laws
regarding data sharing (Pol_5) is a crucial concern for practi-
tioners, which is consistent with previous studies conducted by
Liu et al. (2021) and Tseng et al. (2013).

Official policies play a crucial role in promoting the use of block-
chain in SSCs. The barriers Tech_24 and Eco_10 also have policy
implications as the challenges they pose can be addressed through
proactive economic policy support. These findings emphasize the
role of governments as catalysts in blockchain implementation. Gov-
ernments can stimulate innovation and investment in blockchain
technology by offering economic incentives, establishing demonstra-
tion projects, and implementing effective data governance measures.
Enterprises, on the other hand, should prioritize the development of
blockchain-related technologies, including expanding storage capac-
ity, integrating systems, and enhancing data management capabili-
ties. Ultimately, a collaborative approach between governments and
enterprises is essential for successful blockchain implementation in
SSCs.

Theoretical implications

First, this paper constructed the PEEST framework to identify the
barriers to blockchain adoption in the SSC context. Second, this paper
constructs an expertise-based GDM model to evaluate the intensity
of the barriers to blockchain adoption in SSCs. Our work classifies
expertise according to two dimensions—hesitancy and preference—
and constructs the expertise-based GDM model to identify the bar-
riers that impede the implementation of blockchain in SSCs. More-
over, the proposed expertise-based GMD model is based on
probabilistic preference, which provides a reference for the probabi-
listic preference information aggregation method, which remains
under researched.
17
Third, this study contributes to the literature on blockchain
implementation in SSCs and GDM model design. Several scholars
have explored the challenges of the use of blockchain in SSCs.
The most relevant study (Kouhizadeh et al., 2021) identified 22
barriers to blockchain adoption using the technology−organiza-
tion−environment framework and DEMATEL to analyze the causal
relationships between them. Supply chain and technological bar-
riers have been found to be the most critical barriers by both aca-
demics and industry experts. This article supplements the
findings of Kouhizadeh et al. (2021) by discussing the intensity of
the barriers to blockchain adoption. Regarding GDM model
design, existing models have primarily focused on handling vague
or ambiguous information, often utilizing fuzzy logic techniques
to do so (e.g., Cabrerizo et al., 2010; Chen et al., 2012; Herrera &
Herrera-Viedma, 2000). Probabilistic information has an advan-
tage in the expression of imprecise information. However, there
are few studies related to GDM model design under probabilistic
preference. Our work does so by considering individual differen-
ces among decision-makers. Thus, this study makes novel contri-
butions to the literature by extending the understanding of the
barriers to blockchain adoption in SSCs from a multistakeholder
perspective and by providing a novel approach to GDM model
design that incorporates probabilistic preference.

Limitations and future research

Despite its contributions, there are several limitations in this
study. First, the barriers are based on a review of the existing litera-
ture. Thus, the set of barriers may not be comprehensive. Future stud-
ies are therefore encouraged to further supplement the barriers to
blockchain adoption using the PEEST framework. By engaging with a
wider range of stakeholders, a more comprehensive understanding
of the barriers can be achieved.

Second, the small number of stakeholders limits the generaliz-
ability of the results. The scarcity of individuals with expertise in
blockchain makes it difficult to collect a large dataset. In the
future, it will be beneficial to conduct a social network-based
review of blockchain adoption in SSCs to include a wider range of
analyzable data.

Third, exploring the impact of the relationships among the
various stakeholders in SSCs is an important area for future
research. Understanding how these relationships influence stake-
holders’ decision-making processes can provide valuable insights
and contribute to a more comprehensive understanding of the
factors influencing the successful adoption of blockchain in SSCs.
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Table 4
The parameters and estimated weights of barri

The first-time classification (r ¼ 1)

λ�j COI model HO model

λ�1 5.0000E-04 5.0000E-04
λ�2 5.0000E-04 5.0000E-04
λ�3 5.0000E-04 5.0000E-04
λ�4 5.0000E-04 5.0000E-04
λ�5 2.7970E-01 1.8943E-01
λ�6 5.0000E-04 5.0000E-04
λ�7 5.0000E-04 5.0000E-04
λ�8 3.1522E-01 2.1731E-01
λ�9 5.0000E-04 5.0000E-04
λ�10 4.0148E-02 1.9399E-01
λ�11 5.0000E-04 5.0000E-04
λ�12 5.0000E-04 5.0000E-04
λ�13 5.0000E-04 5.0000E-04
λ�14 5.0000E-04 5.0000E-04
λ�15 5.0000E-04 5.0000E-04
λ�16 5.0000E-04 5.0000E-04
λ�17 5.0000E-04 5.0000E-04
λ�18 5.0000E-04 5.0000E-04
λ�19 5.0000E-04 5.0000E-04
λ�20 2.2019E-01 3.0368E-01
λ�21 5.0000E-04 5.0000E-04
λ�22 5.0000E-04 5.0000E-04
λ�23 5.0000E-04 5.0000E-04
λ�24 1.3373E-01 8.4595E-02
λ�25 5.0000E-04 5.0000E-04
λ�26 5.0000E-04 5.0000E-04
λ�27 5.0000E-04 5.0000E-04
d� 3.5000E+00 -
s� 8.2363E-02 -
c� - 3.5000E+00

Table 5
The cyclic classification results of stakeholders in the fi

DMs
di

Pre-group The first-time classification (r ¼

COI model HO model

d1 S3;G2 G2 -
d2 S1;G1 Overlap G1

d3 S2;G2 Overlap G2

d4 S2;G2 G2 -
d5 S3;G2 Overlap G2

d6 S1;G1 Overlap G2

d7 S3;G2 G2 -
d8 S3;G2 G2 -
d9 S1;G1 Overlap G2

d10 S1;G1 Overlap G2

d11 S2;G2 G2 -
d12 S1;G1 G1 -
d13 S2;G2 G2 -
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The appendix section includes Tables 4-8 and Fig. 9.
ers in the first-phase classification.

The second-time classification (r ¼ 2)

COI model

5.0000E-04
5.0000E-04
5.0000E-04
5.0000E-04
5.0000E-04
5.0000E-04
5.0000E-04
5.0000E-04
2.7262E-01
5.0000E-04
5.0000E-04
5.0000E-04
5.0000E-04
5.0000E-04
4.3676E-01
5.0000E-04
5.0000E-04
5.0000E-04
5.0000E-04
2.7863E-01
5.0000E-04
5.0000E-04
5.0000E-04
5.0000E-04
5.0000E-04
5.0000E-04
5.0000E-04
3.5000E+00
-2.1034E-01
(s� <0; there is no HOmodel)

rst-phase classification.

1) The second-time classification (r ¼ 2)

COI model

G2

G1 (Denoted by G�
1)

G2

G2

G2

G2

G2

G2

G2

G2

G2

G1ðG�
1Þ

G2



Table 7
Consensus level of each sample in S01 and Y2 & Y3 and the distribution results.

Aggregated decision information of S02 and S03 Samples from S01

d6 d9 d10

Y2 0.5282 0.7092 0.5689
Y3 0.4250 0.6710 0.5429
Distribution results S02 (newS1) S02 (newS1) S02 (newS1)

Table 6
Probability matrix of samples from S01 and aggregated probability matrix of S02 and S03

Barriers
NO.

Samples from S01 Aggregated DMs group

d6 d9 d10 S02 (Y2) S03 (Y3)

1 [0,0,0.8,0,0.2] [0.21,0.22,0.24,0.18,0.15] [0.8,0,0,0,0.2] [0.2,0.37,0.32,0.1,0] [0.41,0.44,0.15,0,0]
2 [0,0,0,0.69,0.31] [0.19,0.3,0.26,0.13,0.12] [0.8,0,0.2,0,0] [0.24,0.39,0.28,0.1,0] [0.14,0.4,0.38,0.1,0]
3 [0,0,0,0.75,0.25] [0.18,0.25,0.25,0.2,0.12] [0,0.6,0.2,0.2,0] [0.34,0.38,0.24,0.04,0] [0.35,0.32,0.23,0.1,0]
4 [0,0,0.54,0,0.46] [0.28,0.28,0.22,0.16,0.06] [0.8,0,0,0.2,0] [0.35,0.33,0.23,0.1,0] [0.44,0.42,0.14,0,0]
5 [0,0,0.72,0,0.28] [0.27,0.32,0.21,0.13,0.07] [0.9,0,0.1,0,0] [0.56,0.28,0.13,0.03,0] [0.35,0.37,0.23,0.05,0]
6 [0,0,0.72,0,0.28] [0.06,0.1,0.22,0.3,0.32] [0,0.8,0.2,0,0] [0.47,0.31,0.17,0.05,0] [0.1,0.35,0.41,0.15,0]
7 [0,0,0.89,0,0.11] [0,0.04,0.17,0.34,0.45] [0,0,0.8,0, 0.2] [0.14,0.24,0.31,0.21,0.1] [0.14,0.36,0.33,0.15,0.02]
8 [0.72,0,0,0,0.28] [0.28,0.28,0.23,0.15,0.06] [0,0,0.6,0.4,0] [0.19,0.31,0.31,0.16,0.03] [0.36,0.34,0.22, 0.08,0]
9 [0,0,0,0.78,0.22] [0.19,0.26,0.27,0.17, 0.11] [0,0.8,0.2,0,0] [0.17,0.27,0.31,0.19,0.06] [0.28,0.32,0.27,0.12,0.02]
10 [0,0,0.82,0.18,0] [0.2,0.26,0.29,0.15,0.1] [0.8,0.2,0,0,0] [0.4,0.32,0.21,0.06,0] [0.36,0.42,0.2,0.02,0]
11 [0,0.74,0,0.26,0] [0.13,0.15,0.27,0.27,0.18] [0,0,0,0.8,0.2] [0.22,0.43,0.27,0.1,0] [0.03,0.27,0.45,0.22,0.03]
12 [0,0,0.78,0,0.22] [0,0.1,0,0.17,0.38,0.35] [0,0.8,0.2,0,0] [0.07,0.23,0.36,0.25,0.1] [0.15,0.29,0.34,0.18,0.04]
13 [0,0,0,0.87,0.13] [0.09,0.2,0.3,0.32,0.09] [0.8,0,0,0.2,0] [0.15,0.34,0.3,0.2,0.05] [0.25,0.31,0.27,0.14,0.04]
14 [0.15,0.25,0.1,0.3,0.2] [0.06,0.1,0.12,0.38, 0.34] [0,0,0,0.2,0.8] [0.17,0.36,0.34,0.13,0] [0.33,0.39,0.23, 0.05,0]
15 [0.2,0.4,0.1,0,0.3] [0.1,0.22,0.34,0.27,0.07] [0,0,0,0.1,0.9] [0.19,0.29,0.31,0.17,0.04] [0.18,0.42,0.31,0.1,0]
16 [0,0.75,0.25,0,0] [0.01,0.21,0.3,0.27,0.21] [0,0,0,0.5,05.5 [0.19,0.36,0.32,0.13,0] [0.19,0.33,0.33,0.14,0.02]
17 [0,0,0,0.37,0.63] [0.11,0.33,0.25,0.16,0.15] [0,0,0,0.2,0.8] [0.33,0.33,0.23,0.1,0.01] [0.53,0.33,0.14,0.01,0]
18 [0,0,0.24,0,0.76] [0.15,0.31,0.24,0.16, 0.14] [0,0,0,0.8,0.2] [0.36,0.4,0.21,0.03,0] [0.28,0.37,0.27,0.1,0]
19 [0,0,0,0.87,0.13] [0.14,0.15,0.32, 0.25,0.14] [0,0,0,0.8,0.2] [0.28,0.36,0.28,0.1,0] [0.5,0.32,0.16,0.03,0]
20 [0.86,0,0,0.14,0] [0.18, 0.17,0.19,0.29,0.17] [0,0,0,0.5,0.5] [0.17,0.31,0.33,0.16,0.03] [0.06,0.2,0.36,0.28,0.1]
21 [0.82,0,0,0,0.18] [0.28,0.26,0.23,0.13,0.1] [0,0,0.8,0,0.2] [0.56,0.34,0.11,0,0] [0.31,0.43,0.23,0.03,0]
22 [0,0,0.86,0,0.14] [0.01,0.08,0.2,0.31,0.4] [0,0,0,0.8,0.2] [0,0.12,0.34,0.39, 0.15] [0,0.35,0.38,0.22,0.04]
23 [0,0.7,0,0,0.3] [0.29,0.31,0.3,0.09, 0.01] [0,0,0.8,0,0.2] [0.52,0.34,0.14,0.01,0] [0.39,0.36,0.2,0.05,0]
24 [0,0,0.72,0.28,0] [0.24,0.29,0.33,0.14,0] [0,0.8,0,0.2,0] [0.24,0.47,0.25,0.03,0] [0.32,0.45,0.22,0.01, 0]
25 [0,0,0.64,0,0.36] [0.2,0.35,0.32,0.09, 0.04] [0,0.8,0,0.2,0] [0.14,0.38,0.37,0.11,0] [0.21,0.4,0.29,0.1,0]
26 [0,0,0,0.76,0.24] [0.11,0.2,0.29,0.26,0.14] [0,0.8,0,0.2,0] [0.11,0.38,0.38,0.13,0] [0.01,0.43,0.37,0.17,0.02]
27 [0,0,0,0.6,0.4] [0.02,0.06,0.09,0.27,0.56] [0,0,0.5,0.5,0] [0,0.1,0.36,0.4,0.15] [0.11,0.36,0.4,0.13,0]

Table 8
The parameters and estimated weights of barriers in the second-phase classifi-
cation.

λ�j The first-time classification (r ¼ 1) The second-time classification (r ¼ 2)

COI model HO model COI model

λ�1 5.0000E-04 5.0000E-04 5.0000E-04
λ�2 5.0000E-04 5.0000E-04 5.0000E-04
λ�3 5.0000E-04 5.0000E-04 5.0000E-04
λ�4 5.0000E-04 5.0000E-04 5.0000E-04
λ�5 4.3903E-01 3.8748E-01 3.6051E-01
λ�6 5.0000E-04 5.0000E-04 5.0000E-04
λ�7 5.0000E-04 5.0000E-04 5.0000E-04
λ�8 2.0152E-01 6.5927E-02 5.0000E-04
λ�9 5.0000E-04 5.0000E-04 5.0000E-04
λ�10 5.0000E-04 8.0894E-02 1.2354E-01
λ�11 5.0000E-04 5.0000E-04 5.0000E-04
λ�12 5.0000E-04 5.0000E-04 5.0000E-04
λ�13 5.0000E-04 5.0000E-04 5.0000E-04
λ�14 5.0000E-04 5.0000E-04 5.0000E-04
λ�15 5.0000E-04 5.0000E-04 5.0000E-04
λ�16 5.0000E-04 5.0000E-04 5.0000E-04
λ�17 5.0000E-04 5.0000E-04 5.0000E-04
λ�18 5.0000E-04 5.0000E-04 5.0000E-04
λ�19 5.0000E-04 5.0000E-04 5.0000E-04
λ�20 1.9466E-01 3.2884E-01 3.7597E-01
λ�21 1.5329E-01 1.2586E-01 1.2848E-01
λ�22 5.0000E-04 5.0000E-04 5.0000E-04
λ�23 5.0000E-04 5.0000E-04 5.0000E-04
λ�24 5.0000E-04 5.0000E-04 5.0000E-04
λ�25 5.0000E-04 5.0000E-04 5.0000E-04
λ�26 5.0000E-04 5.0000E-04 5.0000E-04
λ�27 5.0000E-04 5.0000E-04 5.0000E-04
d� 3.5000E+00 - 3.5000E+00
s� 7.1977E-02 - -2.7674E-02
c� - 3.5000E+00 (s� <0; there is no HO model)
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Fig. 9. The probability distribution of opinions from stakeholders in G�
1; G

�
2 and G�

3.
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