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ABSTRACT  261 

 262 

Colorectal cancer (CRC) is a leading cause of mortality worldwide. We conducted a genome-263 
wide association study meta-analysis of 100,204 CRC cases and 154,587 controls of European 264 
and East Asian ancestry, identifying 205 independent risk associations, of which 50 were 265 
unreported. We performed integrative genomic, transcriptomic and methylomic analyses 266 
across large bowel mucosa and other tissues. Transcriptome- and methylome-wide association 267 
studies revealed an additional 53 risk associations. We identified 155 high confidence effector 268 
genes functionally linked to CRC risk, many of which had no previously established role in CRC. 269 
These have multiple different functions, and specifically indicate that variation in normal 270 
colorectal homeostasis, proliferation, cell adhesion, migration, immunity and microbial 271 
interactions determines CRC risk. Cross-tissue analyses indicated that over a third of effector 272 
genes most likely act outside the colonic mucosa. Our findings provide insights into colorectal 273 
oncogenesis, and highlight potential targets across tissues for new CRC treatment and 274 
chemoprevention strategies. 275 
 276 

 277 

 278 

 279 

 280 

 281 

 282 

  283 
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 284 

INTRODUCTION  285 

 286 

Colorectal cancer (CRC), which affects approximately 1.9 million people worldwide annually1, has 287 

a strong heritable basis2. Our understanding of CRC genetics has been informed by genome-wide 288 

association studies (GWAS), which have so far identified 150 statistically independent risk 289 

variants3,4. To provide a comprehensive description of CRC genetics, we brought together the 290 

great majority of GWAS performed to date. We complemented GWAS with transcriptome- and 291 

methylome-wide association analyses (TWAS and MWAS; Fig. 1). Through integration of these 292 

data, we investigated the genes and mechanisms underlying established and novel CRC risk loci. 293 

We identified credible effector genes and the tissues in which they act, informing our 294 

understanding of colorectal tumorigenesis. 295 

 296 

 297 
RESULTS 298 

 299 

Genetic architecture of colorectal cancer 300 

 301 

We performed a meta-analysis of CRC GWAS data sets, comprising 100,204 CRC cases and 302 

154,587 controls (73% European and 27% East Asian ancestry) (Supplementary Tables 1 & 2). 303 

We identified 205 associations, including 37 single-nucleotide polymorphisms (SNPs) at novel loci 304 

(sentinel risk SNPs > 1 megabase (Mb) from another significant SNP), 13 independent novel risk 305 

SNPs in conditional analysis (Table 1), and 155 previously reported SNPs or proxies Table 1, 306 

Supplementary Tables 3-4, Supplementary figures 1 & 2). There was limited heterogeneity 307 

ascribable to population effects (Supplementary Table 2, Supplementary figure 3), although four 308 

risk variants (rs12078075, rs57939401, rs151127921 and rs5751474) were monomorphic in East 309 

Asian participants (Table 1). 310 

 311 

 312 
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Using linkage-disequilibrium (LD) score regression (LD hub), we estimated the heritability of CRC 313 

attributable to all common genetic variants to be similar in Europeans (h2 0.11, s.d. 0.008) and 314 

East Asians (h2 0.09, s.d. 0.006), which translates to 73% of familial CRC risk. Restricting estimates 315 

to the 205 GWAS-significant SNPs explained 19.7% of this familial risk. We evaluated the 316 

performance of a polygenic risk score (PRS) based on these SNPs in two cohorts independent of 317 

the GWAS discovery samples7,8. For Europeans and East Asians, individuals in the top PRS decile 318 

exhibited odds ratios of 2.22 (95%CI: 1.92-2.57; P = 1.80 x 10-26) and 1.96 (95%CI: 1.64-2.34; P = 319 

8.9 x 10-14) compared to the remaining individuals. Corresponding areas under the receiver 320 

operating characteristic curve (AUC) were 0.62 (95%CI: 0.60-0.63) and 0.60 (95%CI: 0.59-0.62). 321 

 322 

 323 

Discovery of risk loci by TWAS and MWAS 324 

 325 

TWAS was performed by implementing the PredictDB pipeline using mRNA expression data from 326 

1,107 colorectal mucosa samples as reference (709 in house, 368 GTEx transverse colon) 9,10. In 327 

addition to associations identified by GWAS or those previously reported by TWAS (PYGL and 328 

TRIM4 11,12), we identified 15 novel associations at Bonferroni-corrected significance (PBonferroni, 329 

Table 2, Supplementary Tables 5 & 6, Supplementary figure 4). We extended the main TWAS to 330 

a transcript isoform-wide association study (TIsWAS), both to ascertain whether specific 331 

transcripts could account for TWAS associations and to identify previously unreported risk 332 

associations (Supplementary Tables 7 & 8). For a third of TWAS genes, a significant association 333 

with CRC risk was found for a single mRNA isoform (Supplementary Table 7). The TIsWAS also 334 

identified eight loci associated with CRC risk (Table 3). To improve power for discovery, and 335 

because some CRC risk SNPs may not exert their effects in colorectal mucosa, we also conducted 336 

a cross-tissue TWAS using our in-house RNA sequencing (RNAseq) data and the full GTEx and 337 

Depression Genes and Networks (DGN) project data (49 tissues)13. We identified a further 23 risk 338 

associations (Table 4, Supplementary Tables 9-13).  339 

 340 
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To complement the TWAS, identify further CRC risk loci and gain mechanistic insights, we 341 

extended the PredictDB pipeline to perform MWAS based on quantitative methylation data from 342 

histologically normal colorectal mucosa (Supplementary Methods). We found significant 343 

associations between CRC risk and methylation of individual CpGs at 69 loci (Supplementary 344 

Tables 14 & 15). This included seven novel independent risk loci (Table 5). Risk SNPs may 345 

influence CRC risk through changes in the CpG methylation status of regulatory elements leading 346 

to changes in gene expression. We therefore explored the relationship between gene expression, 347 

CpG methylation and CRC risk in colorectal mucosa for 6,722 genes with both TWAS and MWAS 348 

predictions. There was a strong tendency for genes to be represented in both TWAS and MWAS 349 

(P < 10-7, Fisher’s exact test). Subsequently, we conditioned TWAS associations on the top MWAS-350 

significant CpG within 1Mb, finding that 67/91 (75%) genes did not retain a significant TWAS 351 

association (PBonferroni > 5.50 x 10-4; Supplementary Table 16). Our data are consistent with a 352 

model in which many CRC risk SNPs act through changes in DNA methylation, although formal 353 

causality analysis could not be performed to exclude reverse causation or possible confounders.  354 

 355 

 356 

Effector genes and biological pathways of CRC oncogenesis 357 

 358 

A major, largely unfulfilled aim of cancer GWAS is to identify genes and functional mechanisms 359 

that may ultimately be clinically useful targets, for example in chemoprevention. The large GWAS 360 

and TWAS datasets in this study address this aim by enabling a detailed functional analysis of the 361 

molecular mechanisms contributing to CRC risk. Since TWAS approaches do not identify causal 362 

genes directly, we used our data to compile a set of 155 credible effector genes from the 363 

independent associations identified through GWAS, TWAS, TIsWAS and MWAS (details in 364 

Supplementary Table 17 and Supplementary Methods). 365 

 366 

We identified molecular pathways enriched in effector genes using Enrichr 367 

(https://maayanlab.cloud/Enrichr/) (Supplementary Table 18). This analysis was complemented 368 

with DEPICT based on the GWAS SNPs (https://data.broadinstitute.org/mpg/depict/) 369 
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(Supplementary Table 19). CRC effectors were principally enriched in genes regulating TGF-370 

β/BMP, Wnt WNT and Hippo pathways. A number of the credible effector genes that map to 371 

these pathways have no established role in CRC, including the intestinal stem cell regulator 372 

ZNRF314, the TGF repressor LEMD315, and the EMT regulator RREB116. 373 

 374 

To complement the pathway analysis, we performed gene-level functional annotation based on 375 

the principal cellular function of each effector gene as reported in the literature (Figure 2, 376 

Supplementary Table 20). Thirty-six genes (mostly Wnt           and BMP family members) were 377 

annotated to colorectal homeostasis (i.e. cellular stemness/differentiation). Intriguingly, 16 378 

genes (including ARHGEF19, ARHGEF4, GNA12, RHOG, TAGLN, TSPAN8, STARD13 and LLGL1) 379 

were linked to cell migration through RhoA/ROCK signaling. We found eight genes (SPSB1, 380 

PIK3C2B, DUSP1, LRIG1, GAB1, RREB1, MAPKAPK5-AS1 and PDGFB) to act within the Ras/Raf 381 

growth factor signaling pathway. In addition to the previously reported association at FUT2, the 382 

novel fucosyltransferase effector genes FUT3 and FUT6 supported a relationship between the gut 383 

microbiome and CRC risk17. Inflammation is important in CRC18, and the TWAS association at the 384 

FADS gene cluster and PTGES3, specifically highlighted the role of prostaglandin metabolism in 385 

CRC risk. Finally, our data also indicated several effector genes with roles in ion transport and       386 

cytoskeletal components      (Fig. 2, Supplementary Table 20).  387 

 388 

Although our pathway analysis and functional annotation indicated that the colorectum was the 389 

likely target tissue of many effector genes (Supplementary Tables 19 & 20), some genes were 390 

associated with principal roles in other tissue types, for example neuronal cells (LINGO4, TULP1 391 

and CNIH2) and leukocytes (TOX, TOX4 and MAF, plus many candidate genes within the MHC 392 

region) (Supplementary Table 20). We therefore performed a systematic analysis of effector 393 

gene tissue specificity, based on the premise that TWAS associations tend to be present in tissues 394 

in which a gene functionally affects CRC risk. Cross-tissue analysis showed that all but one 395 

effector gene exhibited a TWAS association (FDRTWAS < 0.05) in at least one tissue and 52 (34%) 396 

genes showed an association in multiple tissues (Supplementary figure 5). For 26 (17%) genes, 397 

associations were confined to the colorectal mucosa (PTWAS Bonferroni-significant in mucosa, 398 
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PTWAS > FDR elsewhere). In contrast, 67 genes (43%) showed no evidence of a TWAS association 399 

in colorectal mucosa (FDRTWAS > 0.05). Notably, 12 (8%) gene associations were present only in 400 

immune cells (Supplementary figure 5, Supplementary Table 11) and four (3%) were restricted 401 

to mesenchymal cells (Supplementary figure 5, Supplementary Table 12).  402 

 403 

Linking colorectal cancer risk to other traits 404 

 405 

To gain insight into the role of potentially modifiable risk factors in CRC genetics, we performed 406 

cross-trait LD score regression analyses19 using publicly available GWAS summary statistics for 407 

171 phenotypes. Twelve genetic correlations remained significant (two-sided Z-test, Bonferroni-408 

corrected P < 2.93 x 10-4). Notably, positive associations with CRC risk (Supplementary Table 21) 409 

included insulin resistance (raised fasting insulin and glucose), smoking, and obesity (body mass 410 

index -      BMI, waist-to-hip ratio -      WHR, waist circumference), traits that have previously 411 

been reported in observational epidemiological studies to be associated with CRC risk3,20,21. These 412 

associations not only highlight shared biology, but also suggest that public health interventions 413 

to reduce cardiometabolic disease will additionally lower CRC burden. 414 

 415 

 416 

DISCUSSION 417 

 418 

We report a comprehensive genetic analysis of CRC risk in the general population. To identify the 419 

most credible effector genes for each risk variant, we performed detailed annotation using tissue-420 

specific gene expression and other relevant data types. Our study is twice as large as previous 421 

CRC GWAS, and also includes participants of both European and East Asian ancestries, 422 

demonstrating that most loci are shared across these ancestral groups. This increased power for 423 

GWAS, coupled with complementary analyses, including TWAS and MWAS, identified 103 424 

previously unreported risk associations and identified 155 effector genes. These data 425 

substantially expand our existing knowledge regarding the impact of common genetic variation 426 

on the heritable risk of CRC. 427 
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 428 

The availability of large, multi-omic data sets has allowed us to assign the most likely 429 

target/effector genes of GWAS and TWAS associations (Fig. 3), and confidence in these 430 

assignments will increase as additional functional data are reported in the literature. It is clear 431 

that pathways (e.g., Wnt     , BMP, Hippo) involved in normal intestinal homeostasis play 432 

important roles in CRC risk, suggesting that modulation of normal mucosal dynamics has the 433 

potential to prevent colorectal neoplasia. The gut flora is intimately involved in normal bowel 434 

homeostasis, and effector genes are likely to be involved in microbial interactions. By contrast, 435 

Ras pathway activity is thought to be more important during repair or tumorigenesis, and the Ras 436 

effector genes we have found may act after tumor initiation. Our finding of multiple risk genes 437 

involved in cell adhesion and migration naturally suggests roles in malignant progression, 438 

although effects earlier in tumorigenesis also remain plausible. Similarly, immune pathway 439 

effector genes could, in principle, have their effects on normal cell function or at any stage of 440 

tumorigenesis, from mediating day-to-day microbial interactions to killing of cells in early 441 

neoplastic transformation or established tumors. 442 

 443 

Cross-tissue analyses indicated that the colorectal mucosa was the most likely site of action of 444 

many effector genes, but some genes are more likely to act in different tissue types. For example, 445 

it is highly likely that genes such as HIVEP1, LIF, SH2B3, TOX and TOX4 (and probably genes in the 446 

MHC region) influence the development of CRC through immune cell variation, and that EDNRB 447 

influences risk through effects on blood vessels. An unexpected finding was that several credible 448 

effector genes have primary roles in neurogenesis, raising the intriguing possibility that the 449 

enteric nervous system is involved in CRC risk. 450 

 451 

While germline genetics has guided the development of drugs to prevent cardiovascular disease 452 

(e.g. statins and PCSK9 inhibitors), such a paradigm has yet to be realized for cancer. Since almost 453 

all CRCs develop from colonic polyps, and up to 40% of the screened population will be diagnosed 454 

with one or more polyps, CRC is particularly well-suited to evaluate novel chemopreventive 455 

agents. Our findings highlight candidate targets for chemoprevention, such as gut microbiota, 456 
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prostaglandin metabolism, and signaling through the Wnt WNT, BMP and Hippo pathways. 457 

Specific potential targets in the near term include CDK6, which is targeted by drugs in clinical use 458 

for cancer therapy, such as palbociclib and ribociclib. Similarly, Wnt  WNT pathway activity can 459 

be targeted indirectly using porcupine inhibitors (e.g. LGK974, ETC159, CGX-1321 and RXC004) 460 

that prevent Wnt WNT ligand palmitoylation22, although future approaches may more specifically 461 

target effector genes such as WNT4 and ZNRF3. Hence, adapted forms of these drugs or modified 462 

dosing regimens could be repurposed for chemoprevention, possibly initially for high-risk groups, 463 

such as those with in the top PRS percentiles or Lynch Syndrome cases. Based on our data, we 464 

speculate that in the longer term, targeted approaches based on demethylation of specific CpG 465 

sites from MWAS could be effective means of prevention with minimal toxicity. 466 

 467 

The identification of additional risk associations has the potential to provide further biological 468 

insights into CRC. However, cohort numbers required in European and East Asian populations to 469 

identify additional risk SNPs through GWAS are likely to be prohibitive. Indeed, to identify SNPs 470 

explaining 80% of the heritable risk of CRC risk loci, thus providing comprehensive biological 471 

insights, will require sample sizes in excess of 500,000 cases and at least that number of controls 472 

(Supplementary figure 6). This is far higher than a previous estimate23, which was based on a 473 

small subset of the GWAS included herein. Extending GWAS to African and other populations 474 

may detect further risk SNPs, including population specific ones. Complementary approaches 475 

such as TWAS and MWAS are demonstrably useful for the discovery of further risk loci, especially 476 

if, and when, reference data sets from multiple populations are made available.  477 

 478 

Overall, our findings demonstrate the power of multi-omics to provide new insights into the 479 

biological basis of CRC, including both the identification of candidate effector genes and support 480 

for previously unsuspected functional mechanisms. Importantly, several of the genes and 481 

pathways we have identified are potential targets for CRC treatment or chemoprevention.  482 
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TABLES 571 

Table 1. Previously unreported colorectal cancer risk associations identified by genome-wide association study analysis. P-values 572 

calculated from a fixed-effects meta-analysis; *, conditional SNP association, with P-values and ORs derived from analysis conditional 573 

on known risk loci within 1Mb; RAF, risk allele frequency; EUR, European      ancestry population; EAS, East Asian      ancestry population; 574 

OR, odds ratio; I2, fraction of variance attributable to between study heterogeneity; bp, base pairs. Association statistics for European 575 

and East Asian populations are detailed in Supplementary Table 3. 576 

SNP Cytoband Position (bp, 
GRCh37) 

Risk/Alt 
Allele 

RAF 
(EUR) 

RAF 
(EAS) 

OR  
(95% CI) P-value I2 (%) Closest gene 

(RefSeq) 

rs34963268 * 1p36.12 22,710,877 G/C 0.84 0.77 1.07 (1.05-1.09) 6.28E-16 31 ZBTB40 

rs5028523 1q24.3 172,864,224 A/G 0.53 0.05 1.04 (1.03-1.06) 1.44E-08 0 TNFSF18 

rs12137232 1q32.1 201,885,446 G/T 0.52 0.19 1.04 (1.03-1.05) 7.71E-09 15 LMOD1 

rs12078075 1q32.1 205,163,798 G/A 0.09 0 1.07 (1.05-1.10) 1.94E-08 0 DSTYK 

rs2078095 1q43 240,408,346 G/A 0.28 0.23 1.04 (1.03-1.06) 2.08E-08 0 FMN2 

rs4668039 2q24.3 169,025,379 G/A 0.2 0.52 1.04 (1.03-1.06) 3.32E-08 12 STK39 

rs704417 3p14.1 64,252,424 T/C 0.51 0.89 1.05 (1.03-1.06) 4.35E-10 0 PRICKLE2 

rs7623129 * 3p14.1 64,624,426 C/T 0.56 0.51 1.04 (1.02-1.05) 1.51E-08 5 ADAMTS9 

rs2388976 4q26 115,502,406 A/G 0.44 0.45 1.04 (1.02-1.05) 1.75E-08 17 UGT8 

rs10006803 4q31.3 151,501,208 C/G 0.5 0.45 1.04 (1.02-1.05) 2.58E-08 0 LRBA 

rs1426947 4q34.1 175,420,523 T/C 0.42 0.66 1.04 (1.03-1.05) 7.48E-10 0 HPGD 

rs3930345 5q14.3 82,881,255 C/T 0.8 0.75 1.05 (1.03-1.06) 6.82E-09 10 VCAN 
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rs472959 5q35.1 172,324,558 A/G 0.46 0.46 1.04 (1.03-1.05) 4.71E-09 24 ERGIC1 

rs1294437 6p25.1 6,749,789 C/T 0.65 0.23 1.04 (1.03-1.06) 1.21E-08 0 LY86 

rs9379084 * 6p24.3 7,231,843 G/A 0.88 0.8 1.07 (1.05-1.09) 1.79E-12 9 RREB1 

rs209142 * 6p22.1 28,862,617 C/G 0.39 0.52 1.04 (1.02-1.05) 3.66E-08 20 TRIM27 

rs57939401 6p21.1 45,572,071 A/G 0.1 0.13 1.07 (1.04-1.09) 3.51E-10 0 RUNX2 

rs6912214 * 6p12.1 55,721,302 T/C 0.55 0.83 1.04 (1.03-1.05) 1.55E-08 20 BMP5 

rs145997965 * 6q21 106,482,613 C/T 0.02 0 1.21 (1.13-1.29) 1.26E-08 0 PRDM1 

rs6911915 6q22.1 117,809,031 C/T 0.44 0.43 1.05 (1.03-1.06) 3.99E-12 3 DCBLD1 

rs151127921 6q23.2 133,993,925 T/C 0.02 0 1.17 (1.11-1.24) 3.19E-08 24 EYA4 

rs1182197 7p22.2 2,863,289 A/C 0.63 0.7 1.04 (1.03-1.05) 5.32E-09 0 GNA12 

rs12539962 7q11.23 73,167,259 C/T 0.72 0.63 1.04 (1.03-1.05) 2.96E-08 27 ABHD11 

rs2527927 7q22.1 99,477,426 G/A 0.55 0.71 1.04 (1.03-1.06) 3.31E-10 2 OR2AE1 

rs60911071 8p21.2 23,664,632 G/C 0.95 0.64 1.06 (1.04-1.09) 2.24E-08 0 STC1 

rs826732 8q12.1 59,742,639 C/G 0.5 0.59 1.04 (1.03-1.06) 6.26E-10 7 TOX 

rs11557154 9p13.3 34,107,505 T/C 0.14 0.59 1.05 (1.04-1.07) 6.02E-10 14 DCAF12 

rs10978941 9q31.2 110,373,819 C/T 0.83 0.87 1.06 (1.04-1.08) 2.29E-12 0 KLF4 

rs7038489 * 9q34.2 136,682,468 C/T 0.89 0.99 1.08 (1.05-1.1) 1.1E-08 48 VAV2 

rs11789898 9q34.2 136,925,663 T/G 0.18 0.08 1.05 (1.04-1.07) 6.28E-09 36 BRD3 

rs1775910 * 10p12.1 29,096,942 G/C 0.25 0.32 1.04 (1.03-1.06) 3.11E-08 17 LOC100507605 

rs1773860 10p12.1 29,291,556 T/C 0.49 0.35 1.04 (1.03-1.05) 3.49E-09 6 LOC100507605 
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rs10751097 11q13.3 69,938,433 A/G 0.4 0.31 1.05 (1.03-1.06) 2.14E-12 0 ANO1 

rs497916 11q23.3 118,758,089 T/C 0.28 0.17 1.04 (1.03-1.06) 3.37E-08 0 CXCR5 

rs7297628 12q14.2 64,404,555 T/C 0.54 0.75 1.04 (1.03-1.05) 1.39E-08 30 SRGAP1 

rs11178634 12q21.1 71,518,329 G/T 0.62 0.7 1.05 (1.03-1.06) 1.36E-11 34 TSPAN8 

rs7299936 * 12q24.21 115,934,000 A/G 0.56 0.18 1.04 (1.02-1.05) 3.73E-08 0 MED13L 

rs116964464 13q12.13 27,543,193 T/C 0.03 0.04 1.11 (1.07-1.15) 4.83E-09 3 USP12 

rs1078563 * 13q34 110,352,851 G/C 0.33 0.28 1.04 (1.03-1.05) 1.53E-08 0 IRS2 

rs1497077 14q22.1 52,491,655 C/T 0.66 0.76 1.04 (1.03-1.06) 3.64E-08 0 NID2 

rs8031386 15q23 72,508,799 A/C 0.26 0.54 1.04 (1.03-1.06) 4.50E-09 12 PKM2 

rs11247566 * 17p13.3 835,371 G/A 0.55 0.52 1.04 (1.02-1.05) 2.92E-08 35 NXN 

rs1791373 18p11.31 3,616,779 T/A 0.43 0.14 1.04 (1.03-1.06) 1.13E-08 0 DLGAP1 

rs10409772 19p13.3 5,840,926 A/C 0.09 0.29 1.07 (1.05-1.09) 1.33E-10 6 FUT6 

rs9983528 21q22.3 47,772,439 A/G 0.13 0.24 1.07 (1.05-1.09) 5.10E-13 0 PCNT 

rs4616575 22q12.1 29,406,076 T/G 0.52 0.56 1.04 (1.03-1.05) 1.49E-10 0 ZNRF3 

rs130651 22q13.1 39,644,273 G/A 0.33 0.08 1.05 (1.03-1.07) 2.92E-10 46 PDGFB 

rs5751474 22q13.2 43,689,542 A/G 0.79 0 1.05 (1.03-1.07) 1.80E-08 52 SCUBE1 

rs34256596 * 22q13.2 43,778,431 A/G 0.26 0.4 1.05 (1.03-1.06) 5.86E-09 0  MPPED1 

rs9330814 * 22q13.31 46,364,191 T/C 0.33 0.68 1.05 (1.03-1.07) 1.28E-09 33 WNT7B 

  577 
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Table 2. Colorectal cancer risk associations identified by a colorectal mucosa-specific transcriptome-wide association study. 578 
SMultiXcan uses a two-sided F-test to quantify the significance of the joint fit of the linear regression of the phenotype on predicted 579 
expression from multiple tissue models jointly. All associations shown were transcriptome-wide significant after Bonferroni 580 
correction for 12,017 genes with an S-MultiXcan model (i.e. P = 0.05/12,017 = 4.16 x 10-6 for the PS-MultiXcan). Genes with boundaries 581 
less than 1Mb apart were considered to be in the same cluster. This resulted in 13 CRC associations, for which all TWAS-significant 582 
genes were > 1 Mb away from and independent of any GWAS-significant SNP (PGWAS < 5 x 10-8) As expected SNPs close to genome-583 
wide significance were found in all cases. Two further gene associations (*) were < 1Mb from a GWAS-significant SNP, but in analysis 584 
conditional on the SNP showed a minimally changed association (Supplementary Table 6) and remained significant at P = 4.16 x 10-6. 585 
# indicates the number of novel TWAS loci. z score and effect size are calculated as the mean across S-PrediXcan models from the 586 
TWAS reference data sets. n models shows the number of reference data sets for which the S-PrediXcan elastic nets produced 587 
genetically-predicted expression models, with the n indep showing the number of those models that were statistically independent. 588 
The SNP with the lowest CRC GWAS P-value within 1Mb of the gene is also shown. 589 
 590 

# ENSEMBL identifier Gene Chr Start (bp, 
GRCh37) 

End (bp, 
GRCh37) PS-MultiXcan Mean z 

score 
Effect 
size 

n 
models 

n 
indep 

Top GWAS 
SNP at <1Mb SNP position PGWAS 

1 ENSG00000171621 SPSB1 1 9,352,939 9,429,591 2.96E-06 4.569 0.077 3 1 rs2075971 9,407,104 1.96E-07 

2 ENSG00000142632 ARHGEF19 1 16,524,712 16,539,104 2.32E-06 -4.610 -0.046 7 1 rs2132851 16,537,752 7.20E-07 

  ENSG00000237276 ANO7P1 1 16,542,404 16,554,522 1.27E-06 -4.801 -0.054 3 1 rs2132851 16,537,752 7.20E-07 

3* ENSG00000237190 CDKN2AIPNL 5 133,737,778 133,747,589 1.37E-09 1.665 0.045 3 3 rs647161 134,499,092 8.53E-18 

4 ENSG00000260653 RP11-114G11.5 7 57,404,172 57,419,535 1.37E-06 -4.829 -0.494 1 1 rs4242307 57,477,102 2.28E-03 

5 ENSG00000204175 GPRIN2 10 46,994,087 47,005,643 3.38E-14 -7.582 -1.709 1 1 rs10906949 47,698,776 1.58E-04 

6 ENSG00000180210 F2 11 46,740,730 46,761,056 2.80E-07 5.136 0.257 1 1 rs7109707 46,818,814 5.30E-07 
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  ENSG00000123444 KBTBD4 11 47,595,014 47,600,561 5.48E-07 5.008 0.053 1 1 rs7109707 46,818,814 5.30E-07 

7 ENSG00000213445 SIPA1 11 65,405,568 65,418,401 2.81E-06 -3.033 -0.046 2 2 rs570760 65,833,631 2.88E-07 

8 ENSG00000166106 ADAMTS15 11 130,318,869 130,346,532 3.86E-06 4.515 0.125 2 2 rs7936386 130,462,505 9.18E-08 

9 ENSG00000174106 LEMD3 12 65,563,351 65,642,107 2.15E-06 3.040 0.076 3 3 rs59829994 65,560,831 1.39E-07 

10* ENSG00000234608 MAPKAPK5-AS1 12 112,277,588 112,280,706 6.15E-14 3.544 0.050 6 6 rs653178 112,007,756 2.51E-24 

11 ENSG00000167173 C15orf39 15 75,487,984 75,504,510 2.14E-07 4.036 0.100 3 2 rs17338413 75,474,936 2.15E-07 

  ENSG00000260274 RP11-817O13.8 15 75,660,496 75,661,925 2.93E-06 3.090 0.096 2 2 rs17338413 75,474,936 2.15E-07 

12 ENSG00000166822 TMEM170A 16 75,476,952 75,499,395 1.05E-06 -3.464 -0.041 7 4 rs4888408 75,432,824 9.14E-07 

13 ENSG00000131748 STARD3 17 37,793,318 37,819,737 8.11E-07 4.933 0.143 1 1 rs2313171 37,833,842 2.77E-07 

  ENSG00000161395 PGAP3 17 37,827,375 37,853,050 9.59E-07 4.777 0.043 7 1 rs2313171 37,833,842 2.77E-07 

  ENSG00000141736 ERBB2 17 37,844,361 37,886,606 2.96E-06 2.679 0.032 3 3 rs2313171 37,833,842 2.77E-07 

14 ENSG00000152217 SETBP1 18 42,260,138 42,648,475 3.11E-07 4.339 0.093 2 2 rs12958322 42,309,786 2.60E-07 

15 ENSG00000267100 ILF3-AS1 19 10,762,538 10,764,520 2.70E-07 4.689 0.079 2 2 rs10408721 10,758,319 5.71E-08 

591 
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Table 3. Colorectal cancer risk associations identified by a colorectal mucosa-specific transcript isoform-wide association study 592 

(TIsWAS). As per Table 2, SMultiXcan uses a two-sided F-test to quantify the significance of the joint fit of the linear regression of the 593 

phenotype on predicted expression from multiple tissue models jointly. All associations shown were transcriptome-wide significant 594 

after Bonferroni correction for 27,941 transcripts with an S-MultiXcan model (i.e. P = 0.05/27,941 = 1.79 x 10-6 for the PS-MultiXcan). Novel 595 

associations were called when >1Mb from both a GWAS-significant SNP and a TWAS locus. As expected, all these loci showed evidence 596 

of a risk association in the full TWAS (FDR < 0.05, P < 2.86 x 10-3). Transcripts with boundaries < 1 Mb apart were considered to be in 597 

the same cluster. This resulted in seven CRC associations. One further association (*) was identified based on conditional TIsWAS 598 

analysis (Supplementary Table 8). Other annotations are as per Table 2.  599 
 600 

# ENSEMBL identifier Gene Chr 
Start (bp, 
GRCh37) 

End (bp, 
GRCh37) 

 PS-

MultiXcan 
Mean z 
score 

Effect 
size 

n 
models 

n 
indep 

Top GWAS 
SNP at <1Mb SNP location PGWAS 

1 ENST00000609196 ACP6 1 147,101,453 147,131,116 6.43E-11 -1.264 -0.048 4 3 rs1541187 147,051,493 1.44E-04 

 ENST00000493129 ACP6 1 147,127,341 147,142,574 1.65E-23 -5.781 -0.482 2 2 rs1541187 147,051,493 1.44E-04 

2 ENST00000273153 CSRNP1 3 39,183,346 39,195,066 9.99E-07 4.891 0.099 1 1 rs4676609 39,214,256 4.63E-06 

3 ENST00000274695 CDKAL1 6 20,534,688 21,232,635 1.29E-06 -4.841 -0.046 1 1 rs9295474 20,652,717 7.61E-08 

4 ENST00000481601 CCDC183 9 139,694,767 139,702,192 9.60E-07 -4.490 -0.048 2 2 rs2811736 139,651,954 3.12E-05 

 ENST00000464157 ABCA2 9 139,902,688 139,903,240 7.39E-07 -4.951 -0.235 1 1 rs2811736 139,651,954 3.12E-05 

5 * ENST00000543000 PLEKHG6 12 6,426,733 6,427,529 3.30E-09 6.003 0.076 3 2 rs10849433 6,406,904 6.73E-17 

6 ENST00000448790 TOX4 14 21,945,335 21,967,315 1.22E-07 5.290 0.498 1 1 rs3811252 22,855,779 2.11E-05 

7 ENST00000478981 BNIP2 15 59,955,092 59,961,148 9.91E-07 -4.893 -0.326 1 1 rs7182962 59,945,783 6.04E-08 
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8 ENST00000310144 PSMC5 17 61,904,543 61,909,379 4.18E-10 6.247 0.553 1 1 rs12449782 61,576,249 2.18E-05 

 601 

  602 
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Table 4. Colorectal cancer risk associations identified by cross-tissue transcriptome-wide association study. SMultiXcan uses a two-603 

sided F-test to quantify the significance of the joint fit of the linear regression of the phenotype on predicted expression from multiple 604 

tissue models jointly. TWAS tests were performed separately for the following tissue categories: “Colon_sigmoid”: GTEx (n=318 605 

samples; PBonferroni = 8.12 x 10-6 for the PS-PrediXcan); “Immune”: DGN + GTEx Cells_EBV-transformed_lymphocytes + GTEx Whole_Blood 606 

+ GTEx_Spleen (n=1,966 samples; PBonferroni = 3.34 x 10-6 for the PS-MultiXcan); “Mesenchymal”: GTEx Adipose_Subcutaneous + GTEx 607 

Adipose_Visceral_Omentum + GTEx Cells_Cultured_fibroblasts (n=1,533 samples; PBonferroni = 3.96 x 10-6 for the PS-MultiXcan); 608 

“Gastrointestinal”: the 6 in-house colorectal mucosa datasets + GTEx Pancreas + GTEx Liver + GTEx Stomach + GTEx Terminal_Ileum + 609 

GTEx Oesophageal_Mucosa + GTEx Colon_Transverse (n=2,615 samples; PBonferroni = 3.34 x 10-6 for the PS-MultiXcan); “All”: the 6 in-house 610 

colorectal mucosa datasets + all GTEx 49 tissues + DGN (n=16,832 samples; PBonferroni = 2.31 x 10-6 for the PS-MultiXcan). Other annotations 611 

are as per Table 2. 612 

 613 

# Gene Ch
r 

Start (bp, 
GRCh37) 

End (bp, 
GRCh37) 

PS-MultiXcan Tissue Mean z 
score 

Effect 
size 

n 
models 

n 
indep 

Top GWAS 
SNP at <1Mb 

SNP location  PGWAS 

1 RPL5 1 93,297,540 93,307,481 2.27E-07 All -1.160 -0.167 2 2 rs7530780 93,130,268 4.18E-05 

2 LINGO4 1 151,772,740 151,778,546 2.73E-08 All 1.666 0.034 27 6 rs9826 151,778,899 3.81E-06 

3 FAM98A 2 33,808,725 33,824,429 2.98E-06 Immune 4.672 0.166 1 1 rs1448561 33,854,344 5.92E-07 

4 FBLN7 2 112,895,962 112,945,793 1.28E-06 All -0.711 -0.023 28 10 rs7580507 112,879,209 2.71E-07 

5 ARHGEF4 2 131,671,559 131,804,836 2.33E-08 All -0.243 -0.026 14 8 rs73960398 131,795,345 4.86E-06 

6 GBE1 3 81,538,850 81,811,312 1.95E-12 All -0.557 -0.032 8 7 rs554330436 81.039,172 1.69E-04 

7 DIRC2 3 122,513,642 122,599,986 1.25E-06 All 0.812 0.003 16 13 rs6774610 122,521,477 6.85E-07 

8 GAB1 4 144,258,304 144,395,721 1.11E-07 All 1.756 0.040 10 6 rs72726477 143,517,452 2.91E-05 
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9 FBXO38 5 147,763,498 147,822,399 2.11E-06 Mesenchymal 4.677 0.287 2 2 rs35548425 147,816,153 1,80E-07 

10 EPB41L2 6 131,160,487 131,384,462 2.70E-11 Gastrointestinal -1.720 -0.018 8 6 rs12662663 131,398,523 6.71E-08 

 EPB41L2 6 131,160,487 131,384,462 2.96E-09 All -0.108 0.024 24 11 rs12662663 131,398,523 6.71E-08 

11 CDK6 7 92,234,235 92,465,908 8.00E-14 All 0.281 0.037 8 6 rs143120528 92,258,733 2.49E-07 

12 PSMD13 11 236,546 252,984 3.89E-06 Mesenchymal 1.737 0.113 3 2 rs7394572 432,436 4.88E-06 

 IFITM1 11 313,506 314,456 6.73E-07 All -0.090 -0.071 33 18 rs7394572 432,436 4.88E-06 

13 RHOG 11 3,848,208 3,862,213 1.58E-06 Gastrointestinal -1.862 -0.232 2 2 rs10835185 3,862,343 5.97E-08 

 RHOG 11 3,848,208 3,862,213 8.27E-07 Mesenchymal -4.929 -0.476 1 1 rs10835185 3,862,343 5.97E-08 

 OR51E2 11 4,701,401 4,719,084 7.44E-06 Colon Sigmoid 4.480 0.336 1 1 rs10835185 3,862,343 5.97E-08 

14 ME3 11 86,152,150 86,383,678 2.62E-06 Gastrointestinal -0.215 -0.125 5 5 rs74402426 86,161,656 1.89E-05 

15 TAGLN 11 117,070,037 117,075,052 5.80E-09 All -2.118 -0.111 14 9 rs1035237 116,727,850 5.43E-08 

15 PCSK7 11 117,075,499 117,103,241 2.67E-06 Mesenchymal 3.281 0.311 2 2 rs1035237 116,727,850 5.43E-08 

16 CLIP1 12 122,755,979 122,907,179 7.61E-08 All 0.664 0.026 6 5 rs1716169 123,716,930 1.58E-06 

17 ATP2C2 16 84,402,133 84,497,793 4.44E-07 Gastrointestinal 1.903 0.021 7 5 rs7187803 84,501,660 1.07E-05 

 ATP2C2 16 84,402,133 84,497,793 2.89E-07 All 0.754 0.010 23 14 rs7187803 84,501,660 1.07E-05 

18 CBFA2T3 16 88,941,266 89,043,612 1.11E-06 Mesenchymal 4.871 0.253 1 1 rs502258 88,968,547 9.90E-06 

19 LLGL1 17 18,128,901 18,148,149 3.05E-06 Immune -4.667 -0.469 1 1 rs6502570 17,183,255 2.63E-06 

20 PSMC3IP 17 40,725,329 40,729,849 2.21E-06 All 1.575 0.108 11 9 rs12949918 40,526,273 1.39E-06 

 BECN1 17 40,963,673 40,985,158 1.14E-06 Immune 4.824 0.547 2 2 rs12949918 40,526,273 1.39E-06 

21 SMAD4 18 48,554,764 48,611,415 2.75E-06 Mesenchymal 4.750 0.653 2 2 rs12958467 48,481,751 4.69E-07 

22 ATP8B1 18 55,313,658 55,470,547 2.54E-06 Immune -4.704 -0.203 1 1 rs8097764 55,317,896 1.49E-07 
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23 LIF 22 30,636,528 30,640,922 4.96E-06 Colon Sigmoid -4.566 -0.201 1 1 rs12484740 30,606,927 4.97E-06 

 614 

  615 
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Table 5. Colorectal cancer risk associations identified by methylome-wide association study. SMultiXcan uses a two-sided F-test to 616 

quantify the significance of the joint fit of the linear regression of the phenotype on predicted expression from multiple tissue models 617 

jointly. All associations shown were methylome-wide significant after Bonferroni correction for 88,888 CpGs with an S-PrediXcan 618 

model (P = 0.05/88,888 = 5.62 x 10-7 for the PS-MultiXcan). Pairs of CpGs or strings of adjacent CpGs within 1Mb of one another were 619 

considered to lie within the same cluster. Five CRC associations were found for which all CpGs were > 1 Mb away from GWAS-significant 620 

SNP (PGWAS < 5 x 10-8), although near a SNP close to genome-wide significance. Two further associations for 4 CpGs (*) were identified 621 

based on conditional MWAS analysis (Supplementary Table 15). Novel CpG hits were all independent of each other and of GWAS SNPs 622 

and TWAS genes. Other annotations are as per Table 2. 623 

 624 

# CpG Annotated Gene Chr 

Probe location 

(bp, GRCh37) 

Probe 

annotation 

PS-

MultiXcan 

Mean z 

score 

Effect 

size 

n 

models 

n 

indep 

Top GWAS SNP 

at <1Mb 

SNP 

location PGWAS 

1 cg01716680 GJA4 1 35,259,750 S Shore 3.41E-07 -5.099 -0.164 1 1 rs57975061 34,890,238 2.42E-06 

2 cg15917621 NRBP1 2 27,650,478 N Shore 1.61E-07 -3.301 -0.094 2 2 rs4665972 27,598,097 1.58E-07 

3 cg02609692 LMX1B 9 129,389,125 Island 4.24E-07 5.058 0.112 1 1 rs4075850 130,169,301 1.76E-06 

4* cg12931523 TTLL13 15 90,793,004 S Shore 7.74E-09 4.511 0.067 3 3 rs71407320 91,185,291 3.61E-08 

 cg05239308 TTLL13 15 90,793,057 S Shore 1.54E-07 5.364 0.114 3 2 rs71407320 91,185,291 3.61E-08 

 cg27018984 TTLL13 15 90,796,558 S Shelf 3.64E-09 -5.900 -0.089 1 1 rs71407320 91,185,291 3.61E-08 

5 cg02086790 AXIN1 16 375,327 Island 2.75E-07 2.471 0.042 3 3 rs9921222 375,782 7.10E-07 

6* cg09894072 PLA2G15 16 68,279,487 Island 2.26E-07 5.176 0.096 1 1 rs9939049 68,812,301 1.95E-12 
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7 cg15135657 LOC100631378 19 38,346,511 S Shore 1.55E-07 -2.170 -0.032 2 2 rs55876653 39,146,780 2.10E-06 

 625 

  626 
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Figure 1. Summary of the study data and analytical design, and the number of previously unreported CRC risk loci discovered. The 627 

figure illustrates the information for the different analyses used: GWAS (green), TWAS (blue), MWAS (yellow) used to identify 628 

additional risk loci. These are later used to select credible effector genes annotated to functions and tissues.      629 

           630 

Figure 2. Effector genes for CRC risk and the cellular processes in which they act. Pie chart describing the proportion and list of 631 

effector genes allocated to each process. 632 

 633 

Figure 3. Representation of effector genes and their putative actions in the colorectum. Diagram representing the processes that 634 

the combined GWAS, TWAS and MWAS analyses have unveiled as relevant to CRC risk. Exemplar effector genes from cellular processes 635 

and pathways (in capitals) are chosen to depict each category. 636 
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 696 

Methods 697 

The research presented in this study complies with all relevant ethical regulations, and has 698 

been approved by the South Central Ethics Committee (UK) (reference number 17/SC/0079). 699 

 700 

Data availability      701 

Summary level data for the full set of Asian and European GWAS are available through GWAS 702 

catalog (accession number GCST90129505). For individual-level data, CCFR, CORECT, CORSA_2 703 

and GECCO are deposited in dbGaP (phs001415.v1.p1, phs001315.v1.p1, phs001078.v1.p1, 704 

phs001903.v1.p1, phs001856.v1.p1 and phs001045.v1.p1). NSCCG and COIN are available in the 705 

European Genome-phenome Archive under accession numbers EGAS00001005412 (NSCCG), 706 

EGAS00001005421 (COIN). UK Biobank data are available through http://www.ukbiobank.ac.uk/ 707 

and Finnish data through THL Biobank. Access to individual-level data for the remaining studies 708 

is controlled through oversight committees. CCFR 1 and CCFR 2 data can be requested by 709 

submitting an application for collaboration to the CCFR (forms, instructions and contact 710 

information can be located at (www.coloncfr/collaboration.org). Applications for individual level 711 

data from the QUASAR2 and SCOT clinical trials will be assessed by the Translational Research 712 

Steering Committees that oversee those studies. Individual level data from the CORGI (UK1) study 713 

will be made available subject to standard institutional agreements. Application forms for these 714 

three studies,  and for Scotland Phase 1, Scotland Phase 2, SOCCS, DACHS4 and Croatia, will be 715 

provided by emailing a request to access.crc.gwas.data@outlook.com. For access to CORSA_1, 716 

please contact gecco@fredhutch.org. For Generation Scotland (GS) access is through the GS 717 

Access Committee (GSAC) (access@generationscotland.org). Applications for The Lothian Birth 718 

Cohort data should be made through https://www.ed.ac.uk/lothian-birth-cohorts/data-access-719 

collaboration. For details of the application process for Aichi1, Aichi2, BBJ, Guanzhou1, HCES, 720 

HCES2, Korea and Shanghai cohorts, please go to https://swhs-smhs.app.vumc.org/ or contact 721 

Dr. Zheng at wei.zheng@vanderbilt.edu. 722 

CRC-relevant epigenome data were obtained from the NCBI Gene Expression Omnibus (GEO) 723 

database under accession number GSE77737 and GSE36401. 724 
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Genetically predicted models of gene expression and methylation have been deposited in the 725 

Zenodo repository (https://zenodo.org/deposit/6472285). 726 

 727 

      728 

Code availability 729 

All bioinformatics and statistical analysis tools used in this study are open source, details of which 730 
are available in the Methods section and in the Reporting Summary. No custom code was used 731 
to process or analyse data. Details on URLs used can be found in the Supplementary Note. 732 
      733 

 734 

Statistics and reproducibility      735 

No statistical method was used to predetermine sample size. The experiments were not 736 

randomized. Data exclusion from each analysis is explained below in the corresponding sections. 737 

Informed consent was obtained for all participants in the study. A description of the different 738 

datasets and cohorts used is included in the Supplementary Note. 739 

 740 

 741 

Criteria for declaring new CRC risk associations 742 

Multi-omic studies present inherent difficulties for deciding on what constitutes a novel GWAS, 743 

TWAS or MWAS association. To declare statistically significant associations, for GWAS we have 744 

used the established threshold of P = 5 x 10-8. We applied this to both loci >1Mbp from a 745 

previously known SNP and analyses conditioned on the most significant SNP within 1Mb region. 746 

For TWAS or MWAS we also followed convention and used a Bonferroni correction P = 0.05/N, 747 

where N is the number of gene models successfully derived from the reference tissue. 748 

Furthermore, for TIsWAS and cross-tissue TWAS, we used Bonferroni-corrected P-value 749 

thresholds for significance in each of the reference tissue data sets separately, owing to the 750 

overlap in between tissue groups and the fact that many eQTLs are present across tissues. A 751 

further common practice, is that a new association should be located >1Mb from another 752 

association (from this study or previously reported), whether a genome-wide significant GWAS 753 

SNP, a TWAS gene or an MWAS CpG. However, use of the 1Mb distance convention introduces a 754 
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further problem in that, whilst the location of a GWAS SNP and MWAS CpG can be defined 755 

precisely, the location of a gene cannot. We therefore defined a gene’s boundaries by the 756 

canonical transcript and novel associations must lie 1Mb from both those boundaries. Since 757 

TWAS and MWAS associations can affect multiple nearby genes or CpGs (e.g. owing to co-758 

regulation or LD between eQTLs or mQTLs), we have conservatively assigned each TWAS and 759 

MWAS association to a single locus (defined as a group of genes or CpGs that are significantly 760 

associated with CRC risk and lie < 1Mb apart). Locus boundaries must be > 1Mb from another 761 

association to be declared an independent risk association. 762 

We have also performed conditional analyses across GWAS, TWAS and MWAS. This is standard 763 

practice in GWAS (see below) 24, whereby nearby SNPs with no or limited correlation can be 764 

independently associated with CRC risk. Conditioning TWAS, TIsWAS and MWAS on GWAS using 765 

sMIST also allowed us to identify risk associations that were independent of the GWAS 766 

associations within 1Mb, based on a Pconditional that (i) remained Bonferroni-significant at the 767 

unconditional analysis threshold, and (ii) was within one order of magnitude as Punconditional. A 768 

much larger number of TWAS and MWAS associations fulfilled only criterion (i) after conditioning 769 

on a GWAS association within 1Mb (Supplementary Table 6, 8 and 15). Whilst we could not 770 

exclude the possibility that some of these associations resulted from additional SNPs 771 

independent of a nearby GWAS SNP for example, we conservatively did not declare these as 772 

novel risk associations.  773 

 774 

GWAS data analysis 775 

Meta-analysis: Within each of the 31 analytical units, we conducted logistic regression under a 776 

log-additive model to examine the association between allelic dosage for each genetic variant 777 

and the risk of CRC, adjusted for unit-specific covariates. Meta-analysis under a fixed-effects 778 

inverse-variance weighted model was performed using META v1.725     . Variants in the meta-779 

analysis only included those with an imputation quality score (info/R2) > 0.4, MAF > 0.005, and 780 

seen in at least 15 analytical units. The I2 statistic was calculated to quantify between study 781 

heterogeneity and variants with I2 > 65% were excluded. A total of 8,782,440 variants were taken 782 

forward in the meta-analysis. Meta-analysis of risk estimates was conducted under an inverse 783 
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variance weighted, fixed-effects model3. None of the analytical units showed strong evidence of 784 

genomic inflation (  ranged from 0.95 to 1.28), and the  value for the meta-analysis was 1.30 785 

( 1000 = 1.01) Supplementary figure 3). To account for any -ancestral differences between 786 

analytical units, we implemented MR-MEGA v0.1.526     , including 10 principal components (PCs) 787 

in the analysis. To measure the probability of associations being false positives, the Bayesian 788 

False-Discovery Probability (BFDP)3 was calculated based on a plausible odds ratio (OR) of 1.2 789 

(based on the 95th percentile of the meta-analysis OR values) and a prior probability of 790 

association of 10−5. 791 

 792 

Definition of known and novel GWAS SNP risk associations: We identified all previously reported 793 

CRC associations at P < 5 × 10−8 by referencing the NHGRI-EBI Catalog of human GWAS and by 794 

searching PubMed (performed June 2021)3. Additional articles were ascertained through 795 

references cited in primary publications (Supplementary Table 4). Where multiple studies 796 

reported associations in the same region (r2 > 0.1 and within 500kb-1Mb of the index SNP), we 797 

considered all variants with genome-wide significant associations. Given the improved power and 798 

coverage of our study over previous works, we identified the most strongly associated variant at 799 

each known signal and used lead variants for further analyses, rather than the previously 800 

reported index variants (Supplementary Table 3). A genome-wide significant risk variant was 801 

considered novel if >1Mb from a known risk variant.  802 

GWAS conditional analysis: To identify independent association signals at the discovered CRC risk 803 

associations, we performed conditional analyses using GCTA-COJO24      on the meta-analysis 804 

summary statistics. Analyses were performed separately for European and East Asian ancestry 805 

populations, to account for LD structure differences. The conditioned data were meta-analyzed 806 

together as described above, and associations with Pconditional < 5 × 10−8 were considered novel 807 

secondary associations. As reference for LD estimation, we made use of genotyping data from 808 

6,684 unrelated samples of East Asian      ancestry, and 4,284 samples from combined UK10K and 809 

European samples in 1000 Genomes. 810 

 811 

Heritability analysis  812 
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We used the LDSC regression package with default parameters as implemented in LD Hub27 to 813 

estimate the SNP heritability from the GWAS meta-analysis summary statistics data3. SNPs were 814 

filtered to HapMap3 SNPS with 1000 Genomes EUR MAF above 5%. SNPs with imputation info 815 

score < 0.9, MAF < 0.01 and within the major histocompatibility complex (MHC) region (i.e. SNPs 816 

between 26Mb and 34Mb on chromosome six were excluded. Precalculated LD scores files 817 

computed using 1000 Genome European data were used. 818 

The contribution of risk SNPs to the familial risk of CRC was calculated as , where λ0 is 819 

the familial risk to first-degree relatives of CRC cases, assumed to be 2.228, and λk is the familial 820 

relative risk associated with SNP k, calculated as , where pk is the risk allele 821 

frequency for SNP k, qk = 1−pk, and rk is the estimated per-allele OR from the meta-analysis3,29. 822 

 823 

 824 

Pleiotropy analysis 825 

We explored cross-trait pleiotropic effects using the LDSC regression package with default 826 

parameters30 as implemented in LD Hub. The summary statistics for 252 phenotypes were 827 

extracted from LD Hub. For comparability of results across the traits we limited our analysis to 828 

the CRC GWAS of European ancestry. After excluding GWAS performed on non-European 829 

cohorts, traits where the LD Hub output came with the following warning messages: “Caution: 830 

using this data may yield results outside bounds due to relative low Z score of the SNP heritability 831 

of the trait” and “Caution: using this data may yield less robust results due to minor departure of 832 

the LD structure”, as well as highly correlated traits, 171 phenotypes were included in the 833 

analysis. The departure of the LD structure means departure from the assumption of equal LD 834 

structure between two datasets, e.g due to differences in population structure between the 835 

study populations. SNPs from the MHC (chr6 26M~34M) region were removed for all traits prior 836 

to analysis.  837 

 838 

Sample size prediction 839 
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To estimate the sample size required to detect a given proportion of the GWAS heritability, we 840 

made use of GENESIS software (GENetic Effect-Size distribution Inference from Summary-level 841 

data)31, which implements a likelihood-based approach to model the effect-size distribution in 842 

conjunction with LD information, using the three-component model (mixture of two normal 843 

distributions). The percentage of GWAS heritability explained for a projected sample size was 844 

based on power calculations for the discovery of genome-wide significant SNPs3. The genetic 845 

variance explained was calculated as the proportion of total GWAS heritability explained by SNPs 846 

reaching genome-wide significance at a given sample size. 847 

 848 

TWAS analysis  849 

Gene expression models for the six in-house expression datasets were generated using the 850 

PredictDB v7 pipeline for a total of 1,077 participants9,10. Elastic net model building with 10-fold 851 

cross-validation was performed independently for each dataset. The elastic net models for GTEx 852 

v8 Colon Transverse were obtained from the PredictDB data repository (http://predictdb.org/) 853 

and had been generated using the same pipeline. Models were computed using HapMap2 SNPs 854 

±1Mb from each gene, together with covariate factors estimated using PEER32, clinical covariates 855 

when appropriate (age, sex and, where appropriate, case-control status, type of polyp and 856 

anatomic location in the colorectum), and three PCs from the individual dataset’s SNP genotype 857 

data. Transcriptome-wide association tests were then performed for each dataset with the S-858 

PrediXcan feature using summary statistics from the GWAS meta-analysis. We used individual 859 

level GWAS data from GECCO (n=8,725) to derive the LD reference covariance matrix. S-860 

MultiXcan analysis was then undertaken across datasets. Significant associations were declared 861 

using Bonferroni correction (0.05/number of gene models from S-MultiXcan). As 862 

recommended33, an additional filter of a TWAS association statistic, PS-PrediXcan ≤ 10-4, in at least 863 

one individual reference data set was implemented to minimize potential errors due to LD 864 

mismatches. Genes localizing to the HLA/MHC region (chr6:28,477,797-33,448,354bp) were 865 

excluded. 866 

Transcript-based TWAS analyses (TIsWAS) were likewise performed by using transcript-level data 867 

from the SOCCS, BarcUVa-Seq and GTEx Colon Transverse datasets. 868 
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Additional TWAS analyses were similarly performed using the non-colonic mucosa tissue data 869 

available from GTEx. These correspond to S-PrediXCan elastic net models from 48 additional GTEx 870 

tissues with eQTL data and the DGN whole blood cohort. Five tissue groupings were tested: 871 

“Sigmoid colon”, corresponding to muscle and other sub-epithelial tissues; “Immune”, 872 

comprising DGN + GTEx Cells_EBV-transformed_lymphocytes + GTEx Whole_Blood + 873 

GTEx_Spleen (n=1,966 samples); “Mesenchymal”, comprising GTEx Adipose_Subcutaneous + 874 

GTEx Adipose_Visceral_Omentum + GTEx Cells_Cultured_fibroblasts (n=1,533 samples); 875 

“Gastrointestinal”, comprising six in-house datasets + GTEx Pancreas + GTEx Liver + GTEx 876 

Stomach + GTEx Terminal_Ileum + GTEx Oesophageal_Mucosa + GTEx Colon_Transverse; 877 

n=2,615 samples); and “All”, comprising the six in-house datasets + all 49 GTEx tissues + DGN 878 

(n=16,832 samples).  879 

The predictive performance of the models for TWAS and TisWAS across the datasets was similar. 880 

For the TWAS models the number of genes successfully predicted with R2 > 0.01 (equivalent of 881 

R>0.1) varied between 3308 for the BarcUVa data set and 5092 for SOCCS rectum, while GTEx 882 

Colon Transverse models were available for 6295 genes. The mean CV-based prediction R2 for all 883 

genes varied between 0.09 (25-75th percentile 0.04-0.12) for BarcUVa to 0.19 for INTERMPHEN 884 

(0.07-0.24), compared with 0.12 (0.04-0.16) for GTEx Colon Transverse model. The numbers were 885 

slightly higher when comparing the overlapping 736 genes only. The in-house TisWAS models 886 

were constructed for a lesser number of transcripts (n=4632 for BarcUVa dataset and n=11262 887 

for SOCCS rectum dataset) compared to GTEx Colon Transverse (n=15500), owing to greater read 888 

depth and larger sample size for GTEx. The mean R2 for all genes varied from 0.07 (0.03-0.09) for 889 

BarcUVa to 0.16 for SOCCS colon (0.07-0.21). GTEx Colon Transverse had mean R2 0.10 (0.03-890 

0.12).  891 

 892 

 893 

MWAS analysis  894 

Methylation beta values were calculated based on the manufacturer’s standard, ranging from 0 895 

to 1. Quality control and data normalization were performed in R using the ChAMP software 896 

pipeline for the EPIC and 450K arrays34. Briefly, we filtered out failed probes with detection P > 897 
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0.02 in >5% of samples, probes with <3 reads in >5% of samples per probe and all non-CpG 898 

probes. Samples with failed probes >0.1 were also excluded from downstream analyses. We 899 

discarded all probes with SNPs within 10bp of the interrogated CpG (from 1,000 Genomes 900 

Project, CEU population)35     , and probes that ambiguously mapped to multiple locations in the 901 

human genome with up to two mismatches33. We only considered probes mapping to autosomes 902 

and those overlapping between the EPIC and the 450K arrays. Normalization was achieved using 903 

the Beta MIxture Quantile (BMIQ) method. Per probe methylation models were created using 904 

the PredictDB pipeline on the normalized methylation matrix and the genotypes as per TWAS 905 

eQTL analysis. To optimize power, we restricted our analysis to 263,341-238,443 (for the 450K 906 

array) and 377,678 (for the EPIC array) probes annotated to Islands, Shores and Shelves, and 907 

discarded “Open Sea” regions. Further analysis was performed as per the TWAS. CpGs were 908 

annotated to a known GWAS signal if within 1Mb of a genome-wide significant GWAS risk SNP 909 

and otherwise considered novel. For the MWAS models the number of CpG probes successfully 910 

predicted with R2 > 0.01 (equivalent of R>0.1) varied from 24325 for INTERMPHEN rectum to 911 

30385 for COLONOMICS. The mean CV-based prediction R2 for all genes varied from 0.14 (25th-912 

7th percentile 0.07-0.16) for INTERMPHEN proximal dataset to 0.19 for SOCCS (0.07-0.25). 913 

 914 

Conditional analysis using sMiST for TWAS and MWAS findings 915 

S-MultiXcan is a powerful method for assessing predicted gene expression across multiple tissues 916 

and samples, but cannot readily undertake conditional analysis to determine independence of a 917 

TWAS or MWAS association from other GWAS, TWAS or MWAS associations. We therefore used 918 

the summary statistics-based Mixed effects Score Test (sMiST)36      method to perform 919 

conditional analysis of TWAS, TIsWAS and MWAS data adjusting for GWAS risk SNPs. sMiST can 920 

assess the total effect, including both predicted molecular features (gene expression or 921 

methylation) and the residual direct effects of SNPs that are not explained by predicted molecular 922 

features, on CRC risk. To be consistent with S-MultiXcan, we only assessed the association of 923 

predicted molecular features. We first confirmed that there was a strong correlation between 924 

the sMiST and S-MultiXcan results, with minimal discordance (Supplementary figure 4). In view 925 

of this, we used sMiST to perform conditional TWAS and MWAS analysis for each of the 926 
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significantly associated genes or CpGs respectively, conditioning on the lead GWAS-significant 927 

SNP (if present) within 1Mb (Supplementary Tables 6, 8 & 15). We also conditioned TWAS on 928 

TWAS, TIsWAS on TIsWAS and MWAS on MWAS. We also conducted TWAS conditioned on 929 

MWAS analyses for the genes for which both significant genetically predicted expression and 930 

methylation models were produced by the PredictDB pipeline. Where multiple CpGs were 931 

annotated to the same gene, we selected the association with the lowest MWAS P-value. We 932 

determined the number of genes associated (at Bonferroni-corrected P = 0.05/6,722 = 7.44 x 10-933 
6) with CRC risk in both TWAS and MWAS (n=43), TWAS-only (n=54), MWAS-only (n=91) or neither 934 

(n=6,534).” 935 

 936 

Effector gene identification 937 

To identify the most credible target or “effector” genes at each CRC risk locus, a pragmatic 938 

approach was utilized. After excluding the MHC region, pseudogenes and transcripts of uncertain 939 

significance (generally RPNNNN or ACNNN), the following hierarchical inclusion criteria were 940 

used. 941 

For significant (Bonferroni-corrected PTWAS < 0.05) TWAS genes at a locus, the gene most strongly 942 

associated with CRC risk in any tissue, as long as its PTWAS was at least an order of magnitude 943 

lower than any other gene at the locus. (N=112) 944 

For loci included under (1), additional genes that remained significant (FDR < 0.05) in conditional 945 

TWAS-TWAS analysis including the lead gene. (N=9) 946 

At GWAS loci not included under (1), the most significant (FDR < 0.05) TWAS gene, as long as its 947 

PTWAS was at least an order of magnitude lower than any other gene at the locus. (N=17)  948 

TIsWAS analysis consistent with the approach used for TWAS as described in (1-3) above. (N=16) 949 

Genes harboring missense or truncating variants in LD (r2 > 0.9) with sentinel GWAS SNPs. (N=1) 950 

A set of 155 genes was identified, which corresponds to about two thirds of the CRC risk loci from 951 

GWAS, TWAS and MWAS (Supplementary Table 17). 952 

 953 

 954 

The area under the receiver operating characteristics curve (AUC) 955 
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We calculated the confounder adjusted AUC of PRS in discriminating individuals with and without 956 

CRC      by using the propensity score weighting to account for potentially different distribution 957 

of confounders between cases and controls37     . We adjusted for age, sex, and four PCs as 958 

confounders. We obtained the 95% confidence intervals (CI) by bootstrapping and a total of 500 959 

bootstrap samples were generated. We calculated adjusted AUCs using the R package ROCt.  960 

      961 

 962 

Methods-only      references 963 

24. Yang J, Ferreira T, Morris AP, et al. Conditional and joint multiple-SNP analysis of GWAS 964 

summary statistics identifies additional variants influencing complex traits. Nat Genet. 965 

2012;44(4):369-375, S361-363. 966 

25     . Liu JZ, Tozzi F, Waterworth DM, et al. Meta-analysis and imputation refines the 967 

association of 15q25 with smoking quantity. Nat Genet. 2010;42(5):436-440. 968 

26     . Magi R, Suleimanov YV, Clarke GM, et al. SCOPA and META-SCOPA: software for the 969 

analysis and aggregation of genome-wide association studies of multiple correlated phenotypes. 970 

BMC Bioinformatics. 2017;18(1):25. 971 

     27. Speed D, Balding DJ. SumHer better estimates the SNP heritability of complex traits from 972 

summary statistics. Nat Genet. 2019;51(2):277-284. 973 

28. Johns LE, Houlston RS. A systematic review and meta-analysis of familial colorectal cancer 974 

risk. Am J Gastroenterol. 2001;96(10):2992-3003. 975 

29. Schumacher FR, Al Olama AA, Berndt SI, et al. Association analyses of more than 140,000 976 

men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018;50(7):928-936. 977 

30. Bulik-Sullivan BK, Loh PR, Finucane HK, et al. LD Score regression distinguishes 978 

confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47(3):291-979 

295. 980 

31. Zhang Y, Qi G, Park JH, Chatterjee N. Estimation of complex effect-size distributions using 981 

summary-level statistics from genome-wide association studies across 32 complex traits. Nat 982 

Genet. 2018;50(9):1318-1326. 983 



Fernandez-Rozadilla et al 

13 
 

32. Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of expression 984 

residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat 985 

Protoc. 2012;7(3):500-507. 986 

33. Barbeira AN, Pividori M, Zheng J, Wheeler HE, Nicolae DL, Im HK. Integrating predicted 987 

transcriptome from multiple tissues improves association detection. PLoS Genet. 988 

2019;15(1):e1007889. 989 

34. Tian Y, Morris TJ, Webster AP, Yang Z, Beck S, Andrew F, Teschendorff AE (2017). “ChAMP: 990 

updated methylation analysis pipeline for Illumina BeadChips.” Bioinformatics, btx513. doi: 991 

10.1093/bioinformatics/btx513. 992 

35     . Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and innovative 993 

use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 2017;45(4):e22. 994 

36     . Dong X, Su YR, Barfield R, et al. A general framework for functionally informed set-based 995 

analysis: Application to a large-scale colorectal cancer study. PLoS Genet. 2020;16(8):e1008947. 996 

37     .  Le Borgne F, Combescure C, Gillaizeau F, et al. Standardized and weighted time-997 

dependent receiver operating characteristic curves to evaluate the intrinsic prognostic capacities 998 

of a marker by taking into account confounding factors. Statistical Methods in Medical Research. 999 

2018;27(11):3397-3410. doi:10.1177/0962280217702416] 1000 

 1001 

       1002 



Fernandez-Rozadilla et al 

14 
 

                                                                                                                                                                                 1003 



GWAS

100,204 cases

154,587 controls

Colorectal mucosa expression 

reference set – 1,107 samples

GTEx multi-tissue TWAS 

reference set 49 tissues – 16,832 

samples

Colorectal mucosa methylation 

reference set - 488 samples

205 risk SNPs

23 risk loci

23 risk loci

7 risk loci

170 credible 

effector genes 

for CRC risk

Functional characterisation

Likely tissue of action

Potential targets for CRC 

prevention

37 new GWAS loci

13 new conditional 

SNPs

15 new TWAS loci

8 new TIsWAS loci

23 new cross-tissue loci

7 new MWAS CpG 

clusters

Total independent CRC 

risk loci

identified to date



C1QB, C1orf177, LINGO4, STK39, BOC, WDR52,

TTC33, TXNDC15, FBXO38, ERGIC1, HIVEP1,
TULP1, TFEB, TRIM4, LINC00513, TOX, DCAF12,
ITIH5, GPRIN2, A1CF, SFTPA2, LINC01475,

CUTC, F2, KBTBD4, CNIH2, ME3, C11orf53,
COLCA2, ADAMTS15, COX14, PTGES3, SH2B3,
ACAD10, KLF5, EDNRB, ANKRD10, TOX4,

GRAMD2A, C15orf39, MAF, CBFA2T3, GLOD4,
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