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We propose a novel class of composite models that feature both a technicolor and a composite Higgs
vacuum limit, resulting in an asymmetric dark matter candidate. These techni-composite Higgs models are
based on an extended left-right electroweak symmetry with a pseudo-Nambu Goldstone boson Higgs and
stable dark matter candidates charged under a global Uð1ÞX symmetry, connected to the baryon asymmetry
at high temperatures via the SUð2ÞR sphaleron. We consider, as explicit examples, four-dimensional gauge
theories with fermions charged under a new confining gauge group GHC.
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I. INTRODUCTION

The nature of dark matter (DM) and the origin of its relic
density are arguably among the most important open
questions in particle physics [1]. The observed baryon
asymmetry is another important puzzle in the Standard
Model (SM) due to the smallness of CP violation in the
Cabibbo-Kobayashi-Maskawa matrix [2]. Furthermore, the
measured Higgs boson mass is too heavy to trigger a strong
first-order phase transition [3,4], hence failing to realize
electroweak baryogenesis. Asymmetric dark matter (ADM)
[5], inwhich onlyDMparticles or antiparticles remain today,
may provide an elegant, unified solution to these questions
by connecting the baryonic and DM relic densities.
It is tantalizing to draw other connections between

baryons and DM. For example, consider the composite
nature of baryons, whose mass is generated by strong
dynamics. This could also be a property of DM if it

originates from a new strongly interacting sector. A classic
example is technicolor (TC) [6,7], where the electroweak
symmetry is broken dynamically by a fermion condensate
analogous to chiral symmetry breaking in QCD.Within TC,
neutral massive bound states whose stability is due
to Uð1ÞX techni-baryon charge are DM candidates [5,8].
The baryon and DM relic densities can share a common
asymmetric origin if this Uð1ÞX global symmetry has an
electroweak (EW) anomaly, paralleling that of the baryon
number in the SM [9]. This realizes ADM [8] in TCmodels.
In view of the progress at the LHC, the main drawback of
TC models is that, in general, there is no simple parametric
limit in which an SM-like Higgs is recovered.
One way out consists of engineering a vacuum misalign-

ment of TC into a composite Higgs (CH) model [10–12],
which is possible for a subset of TC theories [13,14]. The
composite Higgs state now arises as a pseudo-Nambu-
Goldstone boson (PNGB) from the spontaneously broken
(chiral) global symmetry. Hence, it can be parametrically
close to the SM Higgs. However, in CH models the Uð1ÞX
techni-baryon or specie number is either broken or no longer
anomalous under the EW sphalerons, thus the link between
the baryon and DM asymmetric relic densities is severed
(see [15–22] for models with thermal composite DM).
In this work, we propose a new model building avenue

where the CH and TC limits are simultaneously present,
thus allowing for a successful description of the EW
symmetry breaking and ADM. This requires the following:
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(i) a SM-like composite PNGB Higgs multiplet with
custodial symmetry [23];

(ii) a composite DM candidate, stable due to a Uð1ÞX
symmetry of the strong interactions;

(iii) an EWanomaly of the Uð1ÞX symmetry allowing for
shared asymmetry of baryons and DM;

(iv) a suppressed DM thermal relic density.
The first ingredient (i) is a key feature of CH models [10],
holographic extra dimensions [12,24], little Higgs [25,26],
twin Higgs [27] and elementary Goldstone Higgs models
[28]. Extensions of the global symmetries can accommo-
date (ii); however, these model types typically do not
satisfy (ii) and (iii) together.
To realize all four requirements of the techni-composite

Higgs scenario, we are led to consider an extended left-
right EW sector, with gauged SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞY0

symmetry, dynamically broken by the strong dynamics
via a left-right coset: G=H ⊃ GL=HL ⊗ GR=HR. The left
subcosetGL=HL is pinned in a CH direction by appropriate
interactions, while the right subcoset GR=HR is in the TC
vacuum with an unbroken global Uð1ÞX. This symmetry is
anomalous under SUð2ÞR, and the lightest composite state
carrying X-charge plays the role of ADM. Imposing the
requirements (i)–(iv) also constrains nontrivially the form
of the operators that generate the SM-fermion masses. Note
that the interplay between TC and CH limits was used in
Ref. [29], where the TC vacuum is only present at high
temperatures. In our paradigm, the two limits coexist at all
temperatures.

II. HYPERCOLOR GAUGE GROUPS WITH DM
CANDIDATES AND REALISTIC SM FERMION

MASS SPECTRA

For concreteness, we consider four-dimensional gauge
theories with a single strongly interacting hypercolor (HC)
gauge group GHC, with hyperfermions that generate the
global symmetry breaking via condensation. For models
with a single fermionic representation, the symmetry
breaking patterns are known [30,31]: GivenN Weyl spinors
transforming as the HCR representation, the three possible
classes of vacuum cosets are SUðNÞ=SOðNÞ for real R,
SUðNÞ=SpðNÞ for pseudoreal R and SUðNÞ ⊗ SUðNÞ ⊗
Uð1Þ=SUðNÞ ⊗ Uð1Þ for complex R [32]. The minimal
CH cosets that fulfil requirement (i), within these three
classes, contain N ¼ 5 in the real case [11], N ¼ 4 in both
the pseudoreal [33] and the complex cases [16]. In terms of
PNGB spectrum, the pseudoreal case is the most minimal,
with only five states. Similarly, the minimal TC cosets that
fulfil the requirements (ii)–(iv) contain N ¼ 4 in the real
case [34–37], N ¼ 4 in the pseudoreal [38] and N ¼ 2 in
the complex one [10]. In the first two, the ADM candidates
are PNGBs, while in the complex case it is a baryon [10].
To realize our scenario, we need to introduce two sets

SL;R of hyperfermions, charged under SUð2ÞL;R, respec-
tively. The representations RL;R may be different or

identical, and they determine the resulting coset structure.
Wewill assume that the pattern of the L and R cosets are the
same as above even when the two representations are
different, while for RL ≡RR the coset is enlarged. The
strong GHC interactions produce condensates of the SL;R

fermions at scales fL;R, which are of similar size. Hence,
the breaking of the EW gauge symmetry occurs as follows:

SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞY0 ⟶
fR SUð2ÞL ⊗ Uð1ÞY
⟶
fL sin θL¼vEW

Uð1ÞEM; ð1Þ

where the hierarchy between the EW scale vEW and the
compositeness scale fL ∼ fR is generated in the SL sector
and is parametrized by a (small) angle θL.
The most minimal choice for the SL sector consists in

four Weyl spinors QL, arranged in one SUð2ÞL doublet
ðU;DÞ and two singlets Ũ and D̃, transforming as a
pseudoreal representationRL of GHC and as a fundamental
of a global GL ¼ SUð4ÞL. The minimal L coset will,
therefore, contain the longitudinal components of the W�
and Z bosons, a Higgs candidate, and a singlet η. We will
focus on this scenario in the following, as shown in
Table I.1 The minimal SR also contains four Weyl spinors
QR, arranged in an SUð2ÞR doublet ðC; SÞ and two singlets
C̃ and S̃. The quantum numbers, together with the Uð1ÞX
charges, are shown in Table I, and are valid for all possible
representations RR: in the complex case, however, the
singlets C̃ and S̃ transform as the conjugate R�

R, while
Uð1ÞX is the techni-baryon number. In the pseudoreal case,
the coset is SUð4ÞR=Spð4ÞR and, besides the longitudinal
modes of the W�

R and ZR bosons, the spectrum contains

TABLE I. Fermion field content and their charges of the techni-
composite Higgs template models with the full left-right gauge
symmetry. All groups are gauged except for Uð1ÞX, which is a
global symmetry in theR sector responsible for darkmatter stability.

GHC SUð3ÞQCD SUð2ÞL SUð2ÞR Uð1ÞY0 Uð1ÞX
ðU;DÞ RL 1 □ 1 0 0
Ũ RL 1 1 1 −1=2 0
D̃ RL 1 1 1 þ1=2 0
ðC; SÞ RR 1 1 □ 0 þ1
C̃ RR 1 1 1 −1=2 −1
S̃ RR 1 1 1 þ1=2 −1

qL;i 1 □ □ 1 þ1=6 0
qR;i 1 □ 1 □ þ1=6 0
lL;i 1 1 □ 1 −1=2 0
lR;i 1 1 1 □ −1=2 0

1The same gauge charge assignment can be used for a complex
RL, at the price of including right-handed hyperfermions with the
same quantum numbers. For realRL one would need two SUð2ÞL
doublets with opposite Uð1ÞY0 charges and a neutral singlet, thus
five Weyl spinors in total.
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a complex neutral PNGB carrying X-charge. In the
real case, the coset SUð4ÞR=SOð4ÞR contains a complex
neutral PNGB and two charged ones carrying X-charge.
In the complex case, the coset SUð2ÞR1 ⊗ SUð2ÞR2 ⊗
Uð1ÞX=SUð2ÞVR ⊗ Uð1ÞX does not contain PNGBs carry-
ing X-charge, so the DM candidate is played by a baryon-
like state. In all cases, the Uð1ÞX symmetry has a gauge
anomaly with respect to the SUð2ÞR ⊗ Uð1ÞY0 symmetry.
Note that, if RL ≠ RR, there exists a global Uð1ÞΘ
symmetry under which both sets of hyperfermions are
charged, which is spontaneously broken by the condensates
and generates a light singlet PNGB, along the lines of
Refs. [39,40]. Finally, if RL ¼ RR ≡R, the coset is
enhanced: for pseudoreal R, the coset is SUð8Þ=Spð8Þ;
for real R, the minimal case is SUð9Þ=SOð9Þ; for complex
R, we have SUð6Þ1⊗SUð6Þ2⊗Uð1ÞTB=SUð6ÞV⊗Uð1ÞTB,
where the Uð1ÞX in Table I is a linear combination of
Uð1ÞTB and a U(1) factor inside SUð6ÞV .
The remaining important ingredient for model building

is the list of operators that generate the SM-fermion masses.
The operators play an important role in determining the
vacuum alignment in both L and R sectors, particularly via
the top mass [41]. To connect the Uð1ÞX anomaly to the
baryon number via SUð2ÞR, we require that the right-
handed SM fermions transform as doublets, as shown in the
bottom rows of Table I. The operators that generate the
fermion masses, therefore, appear as 6-fermion operators
with the generic structure QLQLQRQRψLψR. For instance,
for the top quark

ξt
Λ5
t
ðQT

LPLQLÞðQT
RPRQRÞqL;3qR;3 þ H:c:; ð2Þ

where PL and PR are two-index matrices in the GL and GR
space, respectively, selecting the appropriate combinations
of the hyperfermions that ensure gauge invariance and
couple the top fields with the components that acquire a
nonzero condensate. As such, PL;R transform as doublets
of SUð2ÞL;R, respectively. Similar operators can be added
for all SM fermions. Note also that, for complex RL;R, it
suffices to replace QT

L;R by the conjugate hyperfermions.
Dangerous flavor changing neutral currents (FCNCs) from
those operators are suppressed by kinematic reasons due to
the fact that those vertices contain six fermions compared
to only four for traditional “extended technicolor” type
operators [42] suffering from FCNCs. We also remark that
the operator in Eq. (2), reminiscent of the mass terms in
the original TC models [7], can be generated via partial
compositeness [43] in models proposed in Refs. [44,45] via
operators of the following form:

yL
Λt

qL;3ðQT
LPLQLχtÞ þ

yR
Λt

qR;3ðQT
RPRQRχ

†
t Þ þ H:c:; ð3Þ

where χt is a new hyperfermion, transforming in a suitable
representation of GHC, and carrying appropriate quantum

numbers under the SM gauge symmetry. Those operators
also help avoiding FCNCs and generating a large top mass
via enhancement from large anomalous dimensions of the
fermionic operators the top couples to. To illustrate the
new scenario, in the following we will focus on a specific
minimal model, and leave other examples in Appendix B.
The minimal scenario we illustrate here is based on

GHC¼Spð6ÞHC withRL¼F (fundamental, pseudoreal) and
RR ¼ A (antisymmetric, real). We will also include masses
for the hyperfermions in SL, because they help stabilize the
CH vacuum [13,46]. The relevant physics can be described
below the condensation scale in terms of an effective theory,
following the Coleman-Callan-Wess-Zumino prescription
[47], and based uniquely on the coset symmetry:

SUð4ÞL × SUð4ÞR × Uð1ÞΘ
Spð4ÞL × SOð4ÞR

; ð4Þ

wherewe identify thePNGBHiggsh, three exactGoldstones
eaten by the W�

L and ZL bosons and the pseudoscalar η in
the coset SUð4ÞL=Spð4ÞL and the pseudoscalar Θ by the
spontaneous breaking of Uð1ÞΘ. Furthermore, we identify
the DM candidate as the neutral and lightest componentΠ0

CS
of a complex isotriplet in the coset SUð4ÞR=SOð4ÞR,which is
stabilized by the unbrokenUð1ÞX ⊂ SOð4ÞR. The additional
three Goldstone states in SUð4ÞR=SOð4ÞR are eaten by the
W�

R and ZR bosons.
At lowest order, the effective Lagrangian has the form

LEFT ¼ Lχpt − Veff ; ð5Þ

where the first term corresponds to the usual chiral
perturbation theory for the PNGBs, and the second term
contains the effective potential generated by loops of the
SM fields, namely the EW gauge bosons and the fermions
(top). The latter plays a crucial role in determining the
vacuum alignment and the gauge symmetry breaking (see
Appendix A for details). Furthermore, the global Uð1ÞX
symmetry is part of the global symmetry of the strong
sector, and therefore it is not broken by any operators
generated by the strong dynamics alone. The only operators
that might break the Uð1ÞX symmetry are the fermion mass
operators, but we choose to add a specific set of such
operators in Eq. (2) or (3)—defining our model—which do
not. Hence in the effective theory, the Uð1ÞX is preserved to
all orders, and therefore the stability of the DM candidate is
not ruined.

III. ADM RELIC DENSITY AND COLLIDER
BOUNDS ON THE SUð2ÞR GAUGE BOSONS

To investigate the asymmetric relic, we analyze the
dynamics of the sphalerons associated with the left and
right gauge symmetries. The SUð2ÞL × SUð2ÞR sphaleron
equations, when in equilibrium above fL;R, yield chemical
potential equations of the form
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ðμuL;i þ 2μdL;iÞ þ μνL;i þ
dðRLÞ

2
ðμU þ μDÞ ¼ 0;

ðμuR;i þ 2μdR;iÞ þ μνR;i þ
dðRRÞ

2
ðμC þ μSÞ ¼ 0; ð6Þ

where sums over the generations are left understood and
dðRÞ is the dimension of representationR. The labeling of
the chemical potentials μ follows Ref. [38]. The alignment
of the SL sector vacuum also results in the separate
equation μU þ μD ¼ 0. Together with equilibrium condi-
tions from the 6-fermion operators in Eq. (2) and conditions
on the relevant charges, these sphaleron processes yield a
system that can be solved for the relic density of X-charged
states after condensation (see Appendix C for details).
If all three families of SM fermions are gauged under

SUð2ÞR and all the operators, including both sphalerons,
are in equilibrium, then the total Uð1ÞX asymmetry is zero.
However, due to the high scale of fL;R not all families are in
equilibrium. A fermion ψ , receiving its mass mψ from a
Yukawa interaction generated by a 6-fermion operator such
as Eq. (2), is in equilibrium at a temperature T if [48,49]

2.3 × 104 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 TeV

f

s
mψ

vEW
≳
�
f
T

�
9=2

: ð7Þ

The system will have nontrivial solutions if the 6-fermion
operators are inefficient for at least one charged fermion
but efficient for at least one other charged fermion. By
evaluating Eq. (7) at the condensation temperature T ¼ f,
until which we expect the sphalerons to be active, we find
this to be realized for 20 GeV≲ f ≲ 3 × 1012 GeV.
In this window, 6-fermion operators are inefficient for

at least the electron but efficient for at least the top quark.
Solving the set of equilibrium equations under these
conditions we find, for both first- and second-order phase
transitions, the following ratio:

����XB
���� ¼ 2

�
3þ L

B

�
; ð8Þ

where X, B, and L are the X-charge, lepton and baryon
number densities, respectively, and where we leave L and
B as free parameters in this work. For second-order phase
transitions, Eq. (8) applies even when all 6-fermion
operators are inefficient. For first-order phase transitions,
the system is underconstrained in absence of efficient
6-fermion operators. The ADM relic density can be
expressed in terms of the charge densities as

ΩDM

ΩB
¼
����XB

����mDM

2mp
σ

�
mDM

2TF

�
; ð9Þ

where TF is the temperature of the phase transition and
σðxÞ is the Boltzmann suppression factor [38,50].

In absence of Boltzmann suppression (mDM ≪ TF), the
asymmetry sharing naturally fixes the DM number density
to the order of the baryonic number density, so that
ΩDM=ΩB ∼Oð1Þ is found for mDM ∼OðmpÞ. The correct
relic densityΩDM=ΩB ¼ 5.36 [51], therefore, requires either
a small DM mass mDM ≪ fR, a tuning in jX=Bj ≪ 1, or
an exponential suppression in the Boltzmann factor for
TF ≪ mDM. Another possibility is to allow the decay of the
heavy X-charged PNGB into another light stable state [52].
To assure condition (iv), the DM PNGB needs to

efficiently annihilate to suppress the thermal component of
the relic density. For heavy DM candidates (mDM > mWR

¼
gRfR=2), the dominant annihilation channel is in a pair of
SUð2ÞR gauge bosons, which has a cross section of the
form:

hσviWR
¼ g4Rm

2
DM

32πm4
WR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
WR

m2
DM

s

×

�
1 −

m2
WR

m2
DM

þ 3

4

m4
WR

m4
DM

�
: ð10Þ

This channel is effective in wiping out the thermal relic if
hσviWR

≫ 3 × 10−26 cm3 s−1 [53], implying

mDM ≫ 0.073 TeV ×

�
fR
TeV

�
2

; ð11Þ

for mDM ≫ mWR
. For lighter DM masses,mDM < mWR

, the
main annihilation mode involves a pair of PNGBs that do
not carry X-charges: by studying the potential, we found
that the dominant channel involves the Uð1ÞΘ PNGB Θ,
which can be parametrically lighter than the other PNGBs
[40]. The annihilation cross section reads

hσviΘ ¼ λ2XXΘΘ
32πm2

DM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
Θ

m2
DM

s
; ð12Þ

where the quartic coupling is suppressed by the misalign-
ment in the L coset, λXXΘΘ ∼ λ0ðvSM=fLÞ2. This process
can wipe out the thermal density for

mDM ≪ 0.21 TeV ×

�
TeV
fL

�
2

λ0 ð13Þ

for mΘ ≪ mDM.
The strongest bound on the compositeness scale comes

from direct searches at colliders forWR, as this state can be
produced via Drell-Yann if it couples to the first generation.
The most recent CMS bound from dijet resonant searches
[54] reads mWR

≳ 5.2 TeV, which implies for gR ¼ gL a
bound fR ≳ 16.4 TeV. If fL ¼ fR, then this bound also
implies a bound on the misalignment in the EW sector
(L coset), which we can best express in terms of the fine
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tuning parameter ξ ¼ v2SM=f
2
L [55]: the WR searches imply

a bound ξ≲ 2.25 × 10−4. This is much stronger in this
model than the bounds on Higgs compositeness from the
Higgs couplings to the SM particles set by the LHC data
[56] (ξ≲ 0.1), and the EW precision measurements [14]
(ξ≲ 0.04). On the contrary, as we expect mDM ∼ fR, the
values seem compatible with the limit in Eq. (11). The fine-
tuning of one part in 4 × 103 should not discourage the
study of this model, as it represents a huge improvement
over the fine-tuning in the SM, which for the Higgs mass
amounts to one part in 1034 against the Planck scale. As
already discussed, due to the large DM masses, additional
tuning is needed in Eq. (9) to obtain the correct relic density
via the asymmetric production.
Another valid possibility consists in tuning the mass of

the DM to be mDM ≪ fR. Assuming jX=Bj ¼ Oð1Þ in
Eq. (9) (and TF ≫ mDM), saturating the relic density would
require mDM ≈ 1 GeV. This low mass can be achieved
by properly tuning couplings in the effective potential in
Eq. (5). A viable implementation is detailed in Appendix A
in which the DM candidate is a PNGB and the neutral
component of a complex isotriplet. This neutral state can be
made light by cancellations among loop contributions to

the mass. This limit is technically natural according to ’t
Hooft naturalness principle [57] as it reveals the restoration
of a global symmetry. The DM candidate is the lightest
stable state carrying X-charge and all other PNGB states are
accounted for.

IV. CONCLUSION

In this work, we have presented a family of techni-
composite Higgs models which employ new strong dynam-
ics to produce both a PNGB Higgs and an asymmetric DM
candidate. The key novel ingredient is a left-right symmetry
and the contemporary presence of a composite Higgs
vacuum in the L sector and a technicolor vacuum in the
R sector. An illustrative example of the allowed parameter
space is shown in Fig. 1. This shows model independently
the main features of techni-composite models: a successful
ADM relic density can be obtained for masses above
10 TeV or for masses around the GeV scale. This family
of models can thereby naturally explain the observed Higgs
mass and DM abundance with a minimum of tuning,
although some tuning remains necessary to ensure the
correct vacuum alignment and DM mass.
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APPENDIX A: EFFECTIVE LANGRANGIAN
AND VACUUM ALIGNMENT

We consider the scenario with RR real and RL pseudor-
eal of GHC, which applies to the model studied in the main
text. To describe the general vacuum alignment in the
effective Lagrangian of this scenario, we identify an
SUð2ÞL × Uð1ÞY0 subgroup in SUð4ÞL by the generators

Ti
LL ¼

�
σi 0

0 0

�
; T3

LY0 ¼
�
0 0

0 −σT3

�
; ðA1Þ

and an SUð2ÞR × Uð1ÞY0 subgroup in SUð4ÞR by the
generators

Ti
RR ¼

�
σi 0

0 0

�
; T3

RY0 ¼
�
0 0

0 −σT3

�
; ðA2Þ

FIG. 1. Constraints on mDM and the compositeness scale
f ≡ fL ¼ fR. The red shaded region is excluded by thermal
overproduction, while an upper limit on mDM ≲ 110 TeV comes
from unitarity bounds [58]. The low mass limit of the excluded
region depends on λ0, and we show three sample values. A lower
limit on f comes from direct searches of WR at colliders, which
crucially depends on the value of gR (we show three sample
values: gR ¼ 1, gL, gY, with the last being the minimum allowed
value). The high mDM edge of the red region has a mild
dependence on gR, illustrated by the thin orange band, moving
to the right for larger gR.
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where σi are the Pauli matrices with i ¼ 1, 2, 3. Note that
the Y0-charge generator is identified as Y0 ≡ T3

LY0 þ T3
RY0 ,

while the standard hypercharge is given by Y≡ T3
LY0 þ

T3
RR þ T3

RY0 after the breaking of SUð2ÞR. Furthermore,
T3
LY0 and T3

RY0 are part of global SU(2) symmetries that
define a custodial symmetry in both cosets [23]. This is
required in the L coset to reproduce the correct Z=W
mass ratio.
The alignment between the extended EW subgroup

SUð2ÞL × SUð2ÞR × Uð1ÞY0 and the stability group
Spð4ÞL × SOð4ÞR can then be conveniently parametrized
by one misalignment angle, θL. To do so, we identify the
vacua that leave the SUð2ÞL × Uð1ÞY symmetry intact,
E�
L , and the one breaking SUð2ÞL × Uð1ÞY to Uð1ÞEM, EB

L.
In the R coset, there is no vacuum that preserves
SUð2ÞR × Uð1ÞY0 , hence we define the one breaking the
gauge group to Uð1ÞY, EB

R. They are given in terms of two-
index SU(4) matrices as

E�
L ¼

�
iσ2 0

0 �iσ2

�
; EB

L ¼
�

0 12
−12 0

�
;

EB
R ¼

�
0 12
12 0

�
: ðA3Þ

Either choice of E�
L is equivalent [33], and in this paper we

have chosen E−
L. The true SUð4ÞL vacuum can be written

as a linear combination of the above vacua, ELðθLÞ ¼
cθLE

−
L þ sθLE

B
L (a CH vacuum), while the vacuum of the

SR sector is ER ≡ EB
R (a TC-like vacuum). We use the

short-hand notations sx ≡ sin x, cx ≡ cos x and tx ≡ tan x
throughout.
The Goldstone excitations around the vacuum are then

parametrized by

ΣLðxÞ ¼ exp

�
2

ffiffiffi
2

p
i

�
ΠLðxÞ
fL

þ ΠΘðxÞ
fΘ

��
ELðθLÞ;

ΣRðxÞ ¼ exp

�
2

ffiffiffi
2

p
i

�
ΠRðxÞ
fR

−
ΠΘðxÞ
fΘ

��
ER; ðA4Þ

where the pion matrices Πx are defined as

ΠLðxÞ ¼
X5
i¼1

Πi
LX

i
L ∈ GL=HL;

ΠRðxÞ ¼
X9
a¼1

Πa
RX

a
R ∈ GR=HR;

ΠΘðxÞ ¼ ΘðxÞ 14
4
∈ Uð1ÞΘ=∅: ðA5Þ

The last one encodes the diagonal PNGB state Θ associated
with the broken global symmetry group Uð1ÞΘ, acting on

the two fermion representations and having no gauge
anomaly with the HC group. The matrices Xi

L are the
θL-dependent broken generators of SUð4ÞL, while Xa

R are
the broken generators of SUð4ÞR. While in general the
decay constants are different, for simplicity from now on
we will assume f ≡ fL;R ¼ fΘ.
In the SL sector, we identify the wouldbe Higgs boson as

h≡ Π4
L ∼ cθLðŪU þ D̄DÞ þ sθLReU

TCD and the singlet
PNGB as η≡ Π5

L ∼ ImUTCD, while the remaining three
Π1;2;3

L are exact Goldstones eaten by the massiveW� and Z.
In the SR sector, we identify the complex isotriplet scalars,

Π0
CS ≡ Π8

R þ iΠ9
Rffiffiffi

2
p ∼ CTCS;

Πþ
CC ≡ Π4

R þ iΠ5
R þ Π6

R þ iΠ7
R

2
∼ CTCC;

Π−
SS ≡ Π4

R þ iΠ5
R − Π6

R − iΠ7
R

2
∼ STCS; ðA6Þ

where Π0

CS;CS
is identified as the DM candidate. The

remaining three, Π1;2;3
R , are exact Goldstones eaten by

the massive W�
R and ZR. Note that, following Ref. [38],

we have used Dirac spinors to indicate the hyperfermions,
combining the SUð2ÞL;R doublet and singlet Weyl spinors.
Below the condensation scale ΛHC ∼ 4πf, the effective

Lagrangian is given by

Leff ¼ Lkin − Veff : ðA7Þ

The kinetic part of the Lagrangian is given by

Lkin ¼
f2

8
Tr½DμΣ

†
LD

μΣL� þ
f2

8
Tr½DμΣ

†
RD

μΣR�; ðA8Þ

with

DμΣL=R ¼ ∂μΣL=R − iðGL=R;μΣL=R þ ΣL=RGT
L=R;μÞ;

GL=R;μ ¼ gL=RWi
L=R;μT

i
L=R þ gY0B0

μT3
LY0=RY0 ;

where gL;R;Y0 are the gauge couplings of SUð2ÞL, SUð2ÞR
and Uð1ÞY0 , respectively. Here the hypercharge coupling is
given by g−2Y ¼ g−2Y0 þ g−2R . Henceforth, the minimal value
gR can acquire is gmin

R ¼ gY.
At leading order, each source of symmetry breaking

contributes independently to the effective potential in
Eq. (A7):

Veff ⊃ Vgauge þ V top þ Vm þ VB: ðA9Þ

Here the EW gauge interactions in Eq. (A8) yield the gauge
loop contributions to the potential Veff :
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Vgauge ¼ −CLf4
�
g2L
X
i

Tr½Ti
LLΣLðTi

LLΣLÞ�� þ g2Y0Tr½T3
LY0ΣLðT3

LY0ΣLÞ��
	

þ CRf4
�
g2R
X
i

Tr½Ti
RRΣRðTi

RRΣRÞ�� þ g2Y0Tr½T3
RY0ΣLðT3

RY0ΣLÞ��
	
; ðA10Þ

where CL;R encode nonperturbative low energy constants.
The top loop contributions arising from the 6-fermion
operator

ξt
Λ5
t
ðQT

LPLQLÞðQT
RPRQRÞqL;3qR;3 þ H:c: ðA11Þ

yield the effective potential contribution:

V top ¼ −
1

4
Cty2t f4fjTr½P1

LΣL�j2jTr½P2
RΣR�j2

þ Tr½P1
LΣL�Tr½P2

RΣR�Tr½P2
LΣ

†
L�Tr½P1

RΣ
†
R�

þ ðL ↔ RÞg; ðA12Þ

where Ct is a nonperturbative coefficient for the top loop,
yt [proportional to ðΛHC=ΛtÞ5ξt] is identified by the top
Yukawa coupling and the projectors,

ðP1
L;RÞij ¼

1

2
ðδ1iδ3j � δ3iδ1jÞ;

ðP2
L;RÞij ¼

1

2
ðδ2iδ4j � δ4iδ2jÞ; ðA13Þ

select the components of QT
L;RQL;R that transform as

doublets of SUð2ÞL;R. Moreover, the explicit hyperfermion
bilinear mass terms yield potential contributions:

Vm ¼ 2πZLTr½MLΣ
†
L� þ H:c:; ðA14Þ

whereML ¼ diagðm1ϵ;−m2ϵÞ is the mass matrix of the SL
hyperfermions. Finally, it is relevant to consider possible
4-hyperfermion operators in the SR sector of the form
QRQRQRQR, which yield potential contributions [36]:

VB ¼ CBg2Bf
4Tr½BΣ†

RBΣR�: ðA15Þ

The coefficients CL;R, Ct, ZL, and CB in Eqs. (A10)–(A15)
are Oð1Þ form factors that can be computed on the lattice
[59]. At leading order, the effective potential for the
misalignment angle is given by

V0
eff ¼−8πf3ZLmUDcθL −f4CLg̃2Lc

2
θL
−f4Cty2t s2θL ; ðA16Þ

where mUD ≡m1 þm2 and g̃2L ≡ ð3g2L þ g2Y0 Þ=2. By min-
imizing the above potential, ∂θLV

0
eff ¼ 0, we obtain

cθL ¼ 4πZLmUD

fðCty2t − CLg̃2LÞ
; ðA17Þ

where the GL=HL part of the vacuum is aligned in a
composite Higgs direction (0 < cθL < 1), while the GR=HR

part of the vacuum remains in a TC direction. The conditions
for this vacuum alignment to be a stable minimum in the
presence of these terms are ∂θLθLV

0
eff > 0 and that all the

squared masses of the PNGBs are positive. However,
the condition ∂θLθLV

0
eff > 0 is fulfilled by requiring m2

h > 0

due to the fact that ∂θLθLV
0
eff ¼ f2m2

h. Therefore, we need
that all the PNGBs have positive squared masses. The Higgs
and η masses are

m2
h ¼ 2ðCty2t − CLg̃2LÞv2EW; m2

η ¼ m2
h=s

2
θL
; ðA18Þ

while the masses of the complex isotriplet composite scalars,
Π0

CS;CS
, Π�

CC, Π�
SS, in the SR sector are

m2
Π0

CS
¼ 2ðCBg2B − CRg̃2R þ Cty2t s2θLÞf2;

m2
Π�

CC
¼ m2

Π�
SS
¼ m2

Π0
CS
þ 2CRg2Y 0f2; ðA19Þ

where g̃2R ≡ ð−g2R þ g2Y0 Þ=2. To obtain a stable vacuum,
we therefore need m2

h > 0 and m2
Π0

CS
> 0. Following the

common lore that the top loops tend to break the electroweak
symmetry while gauge loops preserve it, we assume that
the form factors CL;R;t > 0. Hence, the masses squared are
always positive, as long as the top loops dominate, as
expected as the Yukawa coupling is larger than the gauge
ones. Furthermore, in the R coset, we find that g̃2R ≥ 0 for
gR ≥

ffiffiffi
2

p
gY, while it becomes positive for gY < gR <

ffiffiffi
2

p
gY.

In the latter range, it tends to cancel the contribution of
the top. As m0

ΠCS
¼ mDM, the magnitude of the dark matter

candidate mass crucially depends on the value of these
coefficients. In general, the first Eq. (A19) implies that the
DM mass is of the order of the PNGB decays constants,
i.e., mDM ∼ f. Small masses, of the order of GeV, could be
obtained if a tuned cancellation is enacted. This could
happen if the gauge contribution is large and positive, for
gR ≳ gY, or for CB < 0.
As discussed in the main text, for light DM mass the

annihilation is dominantly into the light PNGB associated
with the Uð1ÞΘ symmetry. If either of the vectorlike masses
m1 or m2 are vanishing, then the PNGB Θ state mixes
with the SL PNGB η state, resulting in that the mass
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eigenstate Θ̃, consisting mostly of Θ, is massless while η̃
has a mass of order f:

m2
Θ̃ ¼ 0; m2

η̃ ¼
1

4

m2
h

s2θL
ð5þ c2θLÞ ≈

3m2
h

2s2θL
: ðA20Þ

However, the Θ̃ state can achieve a small mass from its
mixing with a Θ0 state corresponding to the U(1) symmetry
which is quantum anomalous. In addition, the mass of Θ0
is generated by instanton effects related to the U(1)
anomaly [40].
Thus, for DM masses below the WR mass, the dominant

annihilation channel is ΠXΠ̄X → Θ̃ Θ̃ with the coupling
λXXΘ̃ Θ̃ given by

Leff ⊃ λXXΘ̃ Θ̃Π0
CSΠ0

CS
Θ̃ Θ̃ ðA21Þ

with

λXXΘ̃ Θ̃ ¼ 4Cty2t s2θL
cθLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ c2θL

q ≈
4ffiffiffi
3

p Cty2t

�
vEW
f

�
2

≡ λ0

�
vEW
f

�
2

:

This implies that λ0 ∼ 4ffiffi
3

p Cty2t , which could be an order

1 number. Assuming jμX=μBj ¼ Oð1Þ in Eq. (C5) (and
TF ≫ mDM), saturating the relic density would require
mDM ≈ 1 GeV. This low mass can be achieved by properly
tuning the coupling gB in DM mass expression in
Eq. (A19). For gR ¼ gL, λ0 ¼ 1 (leading to Ct ≈ 0.9)
and CR ¼ −CB ¼ 1, we need to tune gB ≈ 0.35 for
obtaining mDM ≈ 1 GeV, where f ≈ 16 TeV for avoiding
the constraints in Fig. 1 in the main text. As the DM PNGB
is nearly massless for this example when gB ∼ 0.35, this
limit is technically natural according to ’t Hooft naturalness
principle [57] as it reveals the restoration of a global
symmetry.
In the scenario with RR ¼ F (fundamental, pseudoreal)

of GHC ¼ Spð2NHCÞ, the DM candidate is identified by a
complex isosinglet, ΠCS;CS, where its mass is given by

m2
ΠCS

¼ 2ðCBg2B − CRg̃2R þ Cty2t s2θLÞf2; ðA22Þ

where g̃2R ¼ ð3g2R þ g2Y0 Þ=2, which is always positive. Due
to the fact that sθL ≪ 1, m2

ΠCS
is negative when CBg2B ¼ 0

and therefore a small DMmass,mΠCS
≪ f, can be achieved

by tuning CBg2B to a certain value of order unity.
Furthermore, in the scenarios with the top mass arising
from PC operators, the DM mass can also be tuned by the
term CBg2B to small values in both scenarios. These models
are inspired by the work in Ref. [45].

APPENDIX B: EXAMPLES OF THEORIES
FEATURING THE TECHNI-COMPOSITE

HIGGS MECHANISM

In the main body of the article, we studied in detail one
specific model based on a gauge symmetry Spð2NÞHC and
with fermions in two different representations. However,
the same mechanism can be found in many other models,
with different possibilities for the L and R cosets, as listed
in Tables II and III, respectively. Here we list the quantum
numbers of the HC fermions needed to obtain the minimal
cosets, for the three classes of HC representations: pseu-
doreal, real and complex.
Finally, in Table IV we provided some examples of

gauge-fermion theories generating various combinations
for the L and R cosets. In the cases with RL ¼ RR, the
global symmetry is extended to a single simple group that
contains the L and R subcosets.

TABLE II. Fermion field content and their charges for the
minimal L cosets.

GHC SUð2ÞL SUð2ÞR Uð1ÞY0 Uð1ÞTB;L
Pseudoreal

ðU;DÞ RL □ 1 0 0
Ũ RL 1 1 −1=2 0
D̃ RL 1 1 þ1=2 0

Complex
ðU;DÞ RL □ 1 0 1
Ũ RL 1 1 −1=2 1
D̃ RL 1 1 þ1=2 1
ðUc;DcÞ R�

L □ 1 0 −1
Ũc R�

L 1 1 þ1=2 −1
D̃c R�

L 1 1 −1=2 −1
Real

ðU;DÞ RL □ 1 1=2 0
ðŨ; D̃Þ RL □ 1 −1=2 0
X RL 1 1 0 0

TABLE III. Fermion field content and their charges for the
minimal R cosets.

GHC SUð2ÞL SUð2ÞR Uð1ÞY0 Uð1ÞX Uð1ÞTB;R
Pseudoreal

ðC; SÞ RR 1 □ 0 þ1 0
C̃ RR 1 1 −1=2 −1 0
S̃ RR 1 1 þ1=2 −1 0

Complex
ðC; SÞ RR 1 □ 0 þ1 1
C̃ R�

R 1 1 −1=2 −1 −1
S̃ R�

R 1 1 þ1=2 −1 −1
Real

ðC; SÞ RR 1 □ 0 þ1 0
C̃ RR 1 1 −1=2 −1 0
S̃ RR 1 1 þ1=2 −1 0
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APPENDIX C: ASYMMETRY SHARING

We here in detail show how the asymmetric dark
matter relic can be calculated [38,50]. First, note that at
high temperatures the particle number density nþ and the
antiparticle number density n− of a given species are
given by

n� ¼ g
Z

d3k
ð2πÞ3

g

eðE∓μÞβ − η
with

η ¼ þ1 for bosons

η ¼ −1 for fermions
;

ðC1Þ

where g is the number of internal degrees of freedom, μ is
the chemical potential of the particle species and β ¼ 1=T
(with kB ¼ 1). At the freeze-out temperature of sphalerons,
TF, we have μ=TF ≪ 1 such that the difference in particle
numbers of a given species is given by

n ¼ nþ − n− ¼ gT3
F

μ

TF

σðm=TFÞ
6

; ðC2Þ

which reveals that the chemical potentials are the relevant
quantities. Here the statistical suppression factor σ is

σðm=TFÞ ¼
8<
:

6
4π2

R∞
0 dxx2cosh−2



1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðm=TFÞ2

p �
for fermions

6
4π2

R∞
0 dxx2sinh−2



1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðm=TFÞ2

p �
for bosons

: ðC3Þ

The statistical factor σðm=TFÞ is normalized such that

lim
m=TF→0

σðm=TFÞ ¼
�
1 for fermions

2 for bosons
; ðC4Þ

while σðm=TFÞ≃2ðm=2πTFÞ3=2e−m=TF for largem=TF≫1.
In terms of chemical potentials, the ratio of DM and baryon
energy densities can be expressed as

ΩDM

ΩB
¼

1
2
mDM

mP

���� μXμB
����σ
�
mDM

2TF

�
; ðC5Þ

where we neglected the σðm=2TFÞ for the SM fermions.
The task is then to calculate the total chemical potential μX of
all fermions charged under Uð1ÞX and the total chemical
potential of all baryons μB
To study the chemical potentials we adopt we adopt

the notation of Ryttov-Sannino [38] and Harvey-Turner
[50]. The equilibrium condition from sphalerons, as written

TABLE IV. Examples of gauge fermion theories leading to the techni-composite Higgs models.

GHC RL dimðRLÞ RR dimðRRÞ Annotations

SUð4Þ=Spð4ÞL ⊗ SUð4Þ=SOð4ÞR ⊗ Uð1ÞΘ=∅
Spð2NÞHC F 2N A Nð2N − 1Þ − 1 N odd to avoid Witten anomalies
Spð2NÞHC F 2N Adj Nð2N þ 1Þ N even to avoid Witten anomalies

SUð4Þ2=SUð4ÞL ⊗ SUð4Þ=SOð4ÞR ⊗ Uð1ÞΘ=∅ ⊗ Uð1ÞTB;L
SUð4ÞHC F 4 A2 6 � � �
SOð10ÞHC Spin 16 F 10 � � �

SUð4Þ2=SUð4ÞL ⊗ SUð2Þ2=SUð2ÞR ⊗ Uð1ÞΘ=∅ ⊗ Uð1ÞTB;L ⊗ Uð1ÞTB;R
SUð5ÞHC F 5 A2 10 � � �

SUð5Þ=SOð5ÞL ⊗ SUð4Þ=SOð4ÞR ⊗ Uð1ÞΘ=∅
SOð7ÞHC F 7 Spin 8 � � �

SUð5Þ=SOð5ÞL ⊗ SUð4Þ=Spð4ÞR ⊗ Uð1ÞΘ=∅
Spð2NÞHC A Nð2N − 1Þ − 1 F 2N N ≥ 2

SUð5Þ=SOð5ÞL ⊗ SUð2Þ2=SUð2ÞR ⊗ Uð1ÞΘ=∅ ⊗ Uð1ÞTB;R
SUð4ÞHC A 6 F 4 � � �
SOð10ÞHC F 10 Spin 16 � � �

SUð8Þ=Spð8Þ
Spð2NÞHC F 2N F 2N � � �

SUð9Þ=SOð9Þ
SUð4ÞHC A 6 A 6 � � �
SOð10ÞHC F 10 F 10 � � �

SUð6Þ2=SUð6Þ ⊗ Uð1ÞTB
SUðNÞHC F N F N � � �
SUð5ÞHC A 10 A 10 � � �
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in this convention, was already given in the main text.
Additionally, the 6-fermion operators, given by Eq. (A11),
lead to equilibrium conditions of the form

μUL − μUR þ μSR − μSL − μuL;i þ μuR;i ¼ 0;

μUL − μUR þ μSR − μSL þ μdL;i − μdR;i ¼ 0;

μUL − μUR þ μSR − μSL − μνL;i þ μνR;i ¼ 0;

μUL − μUR þ μSR − μSL þ μeL;i − μeR;i ¼ 0; ðC6Þ

and

μDL − μDR þ μCR − μCL − μuR;i þ μuL;i ¼ 0;

μDL − μDR þ μCR − μCL þ μdR;i − μdL;i ¼ 0;

μDL − μDR þ μCR − μCL − μνR;i þ μνL;i ¼ 0;

μDL − μDR þ μCR − μCL þ μeR;i − μeL;i ¼ 0; ðC7Þ

where the index i refers to the three generations of SM
fermions, each of which has equilibrium conditions of this
form. However, depending on the temperature, only some
generations of quarks and leptons have efficient 6-fermion
operators. As was pointed out in the paper, a fermion ψ ,
receiving its mass mψ from such an interaction is in
equilibrium at a temperature T if [48,49]

2.3 × 104 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 TeV

f

s
mψ

vEW
≳
�
f
T

�
9=2

: ðC8Þ

We assume that the conditions corresponding to (C6) and
(C7) apply for any fermions for which the condition (C8) is
satisfied for all participating species at the condensation
temperature T ¼ f.
Furthermore, thermal equilibrium in the electroweak

interactions implies the following conditions:

μuL;i ¼ μdL;i þ μWL; μuR;i ¼ μdR;i þ μWR;

μeL;i ¼ μνL;i þ μWL; μeR;i ¼ μνR;i þ μWR;

μDL ¼ μUL þ μWL; μSL ¼ μCL þ μWR: ðC9Þ

The equilibrium is constrained by conditions on the net
charge of plasma. To quantify this, consider the eigenvalues
of third the components of the isospins of SUð2ÞL;R,
which are

T3
LL ¼ 3 ×

X
i

�
1

2
μuL;i −

1

2
μdL;i

�
þ
X
i

�
1

2
μνL;i −

1

2
μeL;i

�

− 4μWL þ 2

�
1

2
μUL −

1

2
μDL

�
; ðC10Þ

T3
RR ¼ 3×

X
i

�
1

2
μuR;i −

1

2
μdR;i

�
þ
X
i

�
1

2
μνR;i −

1

2
μeR;i

�

− 4μWR þ 2

�
1

2
μCR −

1

2
μSR

�
: ðC11Þ

The overall electric charge, Q ¼ T3
LL þ T3

RR þ Y 0, is then

Q ¼ 3 ×
X
i

�
2

3
μuL;i þ

2

3
μuR;i −

1

3
μdL;i −

1

3
μdR;i

�

þ
X
i

ð−1μeL;i − 1μeR;i þ 0μνL;i þ 0μνR;iÞ

þ dðRLÞ
�
1

2
μUL þ 1

2
μUR −

1

2
μDL −

1

2
μDR

�

þ dðRRÞ
�
1

2
μCL þ 1

2
μCR −

1

2
μSL −

1

2
μSR

�

− 4μWL − 4μWR: ðC12Þ

The conditions imposed depend on the type of phase
transition. Above the transition, where SUð2ÞL;R are good
symmetries, T3

LL;RR must vanish. If the phase transition is
sudden, i.e., first order, then this property is assumed to be
inherited by the relic such that the relevant condition is

Q ¼ 0; T3
LL ¼ 0; T3

RR ¼ 0: ðC13Þ

Below the transition, SUð2ÞL;R are broken, such that T3
LL;RR

need no longer vanish. If the phase transition is gradual,
i.e., second order, then this leads to violation of T3

LL;RR

conditions. Instead, the VEV drives the chemical potentials
of neutral condensates to zero, such that the relevant
condition is

Q ¼ 0; μUL − μUR ¼ 0; μCR − μCL ¼ 0: ðC14Þ

We are ultimately interested in comparing the total baryon
and DM densities, which depend on the total chemical
potentials of the baryons and technibaryons [charged under
Uð1ÞX], which are

μB ¼
X
i

ðμuL;i þ μuR;i þ μdL;i;þμdR;iÞ; ðC15Þ

μX ¼ dðRRÞðμCR þ μCL þ μSL þ μSRÞ: ðC16Þ

Solving all the above conditions for μX and μB we find

���� μXμB
���� ¼ 2

�
3þ L

B

�
; ðC17Þ
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if 6-fermion operations are inefficient for at least one
generation but efficient for at least one other generation.
Since the occupation numbers are proportional to the
chemical potentials, we can identify jμX=μBj ¼ jX=Bj. If
all generations are in equilibrium, then the lepton number

is constrained to L ¼ −3B so that μX ¼ 0. Furthermore, if
6-fermion operators are inefficient for all generations, then
μX is unconstrained in the case of first-order transitions
while Eq. (C17) applies for the case of second-order
transitions.
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