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ARTICLE OPEN ACCESS
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Abstract
Background and Objectives
To determine optic nerve and retinal damage in aquaporin-4 antibody (AQP4-IgG)-sero-
positive neuromyelitis optica spectrum disorders (NMOSD) in a large international cohort
after previous studies have been limited by small and heterogeneous cohorts.

Methods
The cross-sectional Collaborative Retrospective Study on retinal optical coherence tomogra-
phy (OCT) in neuromyelitis optica collected retrospective data from 22 centers. Of 653
screened participants, we included 283 AQP4-IgG–seropositive patients with NMOSD and 72
healthy controls (HCs). Participants underwent OCT with central reading including quality
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control and intraretinal segmentation. The primary outcome was thickness of combined ganglion cell and inner plexiform
(GCIP) layer; secondary outcomes were thickness of peripapillary retinal nerve fiber layer (pRNFL) and visual acuity (VA).

Results
Eyes with ON (NMOSD-ON, N = 260) or without ON (NMOSD-NON, N = 241) were assessed compared with HCs (N =
136). In NMOSD-ON, GCIP layer (57.4 ± 12.2 μm) was reduced compared with HC (GCIP layer: 81.4 ± 5.7 μm, p < 0.001).
GCIP layer loss (−22.7 μm) after the first ON was higher than after the next (−3.5 μm) and subsequent episodes. pRNFL
observations were similar. NMOSD-NON exhibited reduced GCIP layer but not pRNFL compared with HC. VA was greatly
reduced in NMOSD-ON compared with HC eyes, but did not differ between NMOSD-NON and HC.

Discussion
Our results emphasize that attack prevention is key to avoid severe neuroaxonal damage and vision loss caused by ON in
NMOSD. Therapies ameliorating attack-related damage, especially during a first attack, are an unmet clinical need. Mild signs of
neuroaxonal changes without apparent vision loss in ON-unaffected eyes might be solely due to contralateral ON attacks and do
not suggest clinically relevant progression but need further investigation.

Patients with neuromyelitis optica spectrum disorder (NMOSD)
experience recurrent optic neuritis (ON),1 resulting in vision loss
and decreased quality of life.1-4 According to our understanding,
there are at least 3 subtypes based on serostatus: Up to 3 of 4
patients manifest as anti–aquaporin-4 IgG (AQP4-IgG) sero-
positive. Approximately half of the AQP4-IgG–seronegative pa-
tients manifest as anti–myelin oligodendrocyte glycoprotein IgG
(MOG-IgG) seropositive, and half are double seronegative.5 Yet,
clinical correlates of serologic phenotypes, including subclinical or
clinical retinal degeneration and vision loss, remain unclear.6,7

Optical coherence tomography (OCT) is an interferometric
technique producing high-resolution retinal images.1,8 OCT
has become a reliable tool for diagnosing and monitoring
neurologic and neuro-ophthalmologic diseases, especially for
quantifying neurodegeneration after ON.1 Because of limited
samples and varying methods, existing OCT studies in
NMOSD are inconsistent regarding the amount of retinal
neurodegeneration with and without ON. Previous studies also
failed to address the influence of retinal neurodegeneration on
microcystic macular edema (MME) and function.2,6,7 These
issues together with heterogeneities and the often monocentric
character of previous cohorts limit the relevance of meta-
analyses.

To overcome these limitations, we performed anOCT analysis of
AQP4-IgG–seropositive patients with NMOSD in an in-
ternational multicenter study, termed Collaborative Retrospective
Study on retinal OCT in Neuromyelitis Optica (CROCTINO).9

It represents the largest NMOSD OCT data set and additionally
validated an OCT postprocessing approach to circumvent dif-
ferences in acquisition and imaging processing protocols inherent
to pooled analyses.10 Outcomes include: (1) distinguishing retinal
neurodegeneration after ON from subtle damage in clinically
unaffected eyes, (2) defining frequency ofMME, and (3) deriving
structure-function correlations.

Methods
Study Design
This cross-sectional international multicenter study was per-
formed under the aegis of the CROCTINO study, which was
a collaborative effort within the Guthy-Jackson Charitable
Foundation network.9 Participating centers contributed OCT
data (acquired between 2008 and 2018) and clinical metadata
(acquired between 2000 and 2018, eTable 1, links.lww.com/
NXI/A557).

Cohort Selection
Inclusion criteria for this analysis were (1) patients diagnosed
with NMOSD per the 2015 International Panel of NMOSD
diagnosis criteria11 and (2) having confirmed serum AQP4-
IgG. Exclusion criteria were (1) comorbidities potentially
confounding interpretation of OCT results (e.g., macular
degeneration, glaucoma, and intracranial hypertension); (2) >
3months distance between clinical andOCT data acquisition;
(3) < 6 months between OCT imaging and most recent ON,
or (4) an uncertain history of ON. The inclusion and

Glossary
AQP4-IgG = aquaporin-4 IgG; CROCTINO = Collaborative Retrospective Study on retinal OCT in Neuromyelitis Optica;
EDSS = Expanded Disability Status Scale; GCIP = ganglion cell and inner plexiform; HC = healthy control; HC-VA = high-
contrast visual acuity; INL = inner nuclear layer; MME = microcystic macular edema; MS = multiple sclerosis; MOG-IgG =
myelin oligodendrocyte glycoprotein IgG; NMOSD = neuromyelitis optica spectrum disorder; NMOSD-NON = NMOSD
eyes without a history of ON;OCT = optical coherence tomography;ON = optic neuritis; pRNFL = peripapillary retinal nerve
fiber layer; SE = standard error; VA = visual acuity; VEP = visually evoked potential.
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exclusion criteria are depicted in eFigure 1, links.lww.com/
NXI/A556. AQP4-IgG testing was performed at the discre-
tion of each investigator.

Standard Protocol Approvals, Registrations,
and Patient Consents
All participants gave written informed consent, and the study
was approved by local ethics committees and conducted in
accordance with the applicable laws and the current version of
the Declaration of Helsinki. Data are reported according to
STROBE reporting guidelines.12

OCT
High-resolution imaging data were acquired using 3 differ-
ent spectral domain OCT devices: Spectralis SD-OCT
(Heidelberg Engineering, Heidelberg, Germany) at 15 cen-
ters (194 patients/358 eyes; 72 healthy controls [HCs]/136
eyes); Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA) at
6 centers (58 patients/87 eyes); or Topcon 3D OCT-1
(Topcon, Tokyo, Japan) at 1 center (31 patients/56 eyes).
All reading of OCT data was performed at Charité–
Universitätsmedizin Berlin Translational Neuroimaging Group
by 5 graders. Image quality was assessed using modified
OSCAR-IB criteria by one of the graders, respectively.13,14

OCT segmentation for the combined ganglion cell and inner
plexiform (GCIP) layer and inner nuclear layer (INL) thick-
nesses was corrected semi-automatically using an in-house
software.10,15 In brief, GCIP layer and INL thicknesses were
calculated from a 5-mm diameter cylinder around the fovea
excluding the central 1-mm diameter cylinder from a macular
volume scan.10 The peripapillary retinal nerve fiber layer
(pRNFL) thickness was measured and corrected according to
the device protocol (Spectralis: peripapillary ring scan with
12° or approximately 3.4 mm diameter around the optic disc;
Topcon and Cirrus: extraction from optic disc volume scan).
For the current analysis, eyes were excluded from the analysis
if neither ring nor macular scan passed quality control. We
further excluded data from the less common instrument for 1
center. The final cohort included 364 macular and 481 per-
ipapillary scans of 501 eyes from 283 patients and 136 eyes
from 72 HCs. Lower numbers of macular scans compared
with peripapillary scans were due to both lower submission
of macular data and more exclusions based on quality
concerns.

Visual and Global Function Testing
High-contrast visual acuity (HC-VA) was available for 497
(99.2%) patient and 10 (13.9%) HC eyes. HC-VA was best
corrected for 212 (42.3%) patient and 56 (41.2%) HC eyes,
habitually corrected for 145 (28.9%) patient and 2 (<0.1%)
HC eyes, and without correction for 140 (27.9%) patient eyes
and 17 (1.3%) HC eyes. All VA data are reported as logMAR.
VA measurement method was decided on discretion of each
center. Visually evoked potentials (VEPs) were available for
167 (33.3%) patient eyes and 40 (29.4%) HC eyes, with P100
latency recorded as a binary value (normal/prolonged). Ex-
panded Disability Status Scale (EDSS) scores were de-
termined at the discretion of each center with data available
for 180 (63.6%) patients.

Statistical Analysis
Statistical analyses were performed with R version 3.6.1
using RStudio and R Markdown (RStudio Inc., Boston,
MA).16 p Values less than 0.05 were considered significant.
We considered p values less than 0.10 a trend. Group
matching by age and sex for confirmatory analyses was
performed using automatic matching by R package MatchIt
(method: exact). Group comparisons and correlations of
OCT and VA values were performed using linear mixed-

Table 1 Cohort Description for AQP4-IgG–Seropositive
Patients With NMOSD and HCs

AQP4-
IgG–seropositive
NMOSD HC

Subjects (N) 283 72

Eyes (N) 501 136

Sex (male/female, N/N [%/%]) 28/255 (9.9/90.1) 26/46 (36.1/
63.9)

Age (y, mean ± SD) 44.1 ± 14.2 30.9 ± 7.7

Ethnicity (N [%])

Asian 77 (27.2) 16 (22.2)

Black/African American 13 (4.6) 0 (0)

White, Hispanic/Latino 4 (1.4) 1 (1.4)

White, Non-Hispanic 159 (56.2) 55 (76.4)

Other/nonreported 30 (10.6) 0 (0)

Disease-modifying therapy (N
[%])

Rituximab 73 (25.8)

Azathioprine 67 (23.7)

Oral prednisolone 53 (18.7)

Mycophenolate mofetil 48 (17.0)

Methotrexate 8 (2.8)

Time since onset (y, mean ± SD) 7.2 ± 6.7 .

EDSS score (median [IQR]) 3.5 (2.0–4.5) .

Patients with a clinical history of
ON (N [%])

204 (72.1) .

Eyes with a clinical history of ON
(N [%])

260 (52) .

No. of ON episodes/eye (N,
median [min–max])

1 (1–6) .

Time since last ON (mo, mean ±
SD)

71 ± 57 .

Abbreviations: AQP4-IgG = aquaporin-4 antibodies; NMOSD = neuromyelitis
optica spectrum disorder; HC = healthy control; N = number; OCT = optical
coherence tomography; ON = optic neuritis episode.
Age (p < 0.0001) and sex (p < 0.0001) were not matched.
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effect models. Intereye within-subject effects and effects of
the center were included as random effects. Sex, ethnicity,
and age were included as fixed effects for the analyses in the
entire cohort. Age and sex were not included for the
matched subset. For OCT parameters, the model was used
for data from all devices separately and combined by Fisher
combined probability test. The marginal and conditional
coefficients of determination of the linear models were
calculated with pseudo R-squared. All results are reported

combined and individually for Spectralis SD-OCT; the
analyses of data acquired by Cirrus HD-OCT or Topcon
3D OCT-1 and for the matched subset are reported as
online-only supplement.

Data Availability
The data supporting the findings of this study are available
within the article and from the corresponding author by
reasonable request.

Figure 1 Group Comparisons of GCIP Layer Thickness

Boxplots of GCIP layer thicknesses (μm) acquired by Heidelberg SD-OCT with values of individual eyes (jitter) for (A) HC (gray/left), NMOSD-NON
(dark blue/middle), NMOSD-ON (dark red/right); for (B) number of ON episodes (NMOSD-NON dark blue/left, NMOSD-1-ON light red/left-middle,
NMOSD-2-ON medium-red/right-middle, NMOSD-≥3-ON medium-dark red/right); and for (C) HC (gray/left), NMOSD-NONnon (light blue/middle),
NMOSD-NONcon (blue/right). (D) Forest plots for results from different OCT devices for (D.a) NMOSD-NON vs NMOSD-ON, (D.b) NMOSD-NON vs
NMOSD-1-ON, and (D.c) NMOSD-1-ON vs NMOSD-2-ON (eFigure 2 and eTable 2, links.lww.com/NXI/A556 and links.lww.com/NXI/A557). GCIP =
ganglion cell and inner plexiform; HC = eyes of HCs; NMOSD-NON = eyes of patients with neuromyelitis optica without a history of ON; NMOSD-NON-con =
eyes of patients with neuromyelitis optica without a history of ON but a history of contralateral ON; NMOSD-NONnon: = eyes of patients with
neuromyelitis optica without a history of ipsilateral or contralateral ON; NMOSD-ON = eyes of patients with neuromyelitis optica with a history of
ON; NMOSD-1-ON = eyes of patients with neuromyelitis optica with a history of 1 ON episode; NMOSD-2-ON = eyes of patients with neuromyelitis
optica with a history of 2 ON episodes; ON = optic neuritis.
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Results
Five hundred one eyes of 283 AQP4-IgG–seropositive pa-
tients and 136 eyes of 72 HCs were included in the analysis
(Table 1).

Neuroaxonal Damage After ON
GCIP layer and pRNFL were reduced in NMOSD-ON
compared with NMOSD eyes without a history of ON

(NMOSD-NON) and HC (GCIP layer: 81.4 ± 5.7 μm,
pRNFL: 101.1 ± 9.0 μm) (Figures 1A and 2A; Tables 2 and
3). The absolute (GCIP layer: −22.7 μm; pRNFL: −38.5 μm)
and relative (GCIP layer: −38.8%; pRNFL: −61.6%) loss in
eyes with 1 ON episode (NMOSD-1-ON) compared with
NMOSD-NON was higher than in eyes with 2 ON episodes
(NMOSD-2-ON) compared with NMOSD-1-ON (GCIP
layer absolute loss: −3.5 μm, relative loss: −6.0%; pRNFL
absolute loss: −9.1 μm, relative loss: −14.5%, n.s.). The loss in

Figure 2 Group Comparisons of pRNFL Thickness

Boxplots of pRNFL thicknesses acquired by Heidelberg SD-OCT [μm] with values of individual eyes (jitter) for (A) HC (gray/left), NMOSD-NON (dark blue/
middle), and NMOSD-ON (dark red/right); for (B) number of ON episodes (NMOSD-NON dark blue/left, NMOSD-1-ON light red/left-middle, NMOSD-2-ON
medium-red/right-middle, and NMOSD-≥3-ON medium-dark red/right); and for (C) HC (gray/left), NMOSD-NONnon (light blue/middle), and NMOSD-NONcon

(blue/right). (D) Forest plots for results from different OCT devices for (D.a) NMOSD-NON vs NMOSD-ON, (D.b) NMOSD-NON vs NMOSD-1-ON, and (D.c)
NMOSD-1-ON vs NMOSD-2-ON (eFigure 3 and eTable 3, links.lww.com/NXI/A556 and links.lww.com/NXI/A557). HC = eyes of HCs; NMOSD-NON = eyes of
patients with neuromyelitis optica without a history of optic neuritis; NMOSD-NON-con = eyes of patients with neuromyelitis optica without a history of optic
neuritis but a history of contralateral optic neuritis; NMOSD-NONnon: = eyes of patients with neuromyelitis optica without a history of ipsilateral or contra-
lateral optic neuritis; NMOSD-ON = eyes of patients with neuromyelitis optica with a history of optic neuritis; NMOSD-1-ON = eyes of patients with
neuromyelitis optica with a history of 1 optic neuritis episode; NMOSD-2-ON = eyes of patients with neuromyelitis optica with a history of 2 optic neuritis
episodes; ON = optic neuritis; pRNFL = peripapillary retinal nerve fiber layer.
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eyes with ≥3-ON episodes (NMOSD-3-ON) was lower
compared with NMOSD-2-ON (n.s.) (Figures 1B and 2B).
Five NMOSD-NON eyes had pRNFL values < 60 μm; these
patients had no relevant comorbidities but a history of con-
tralateral ON.17,18 In sensitivity analyses to account for device
differences, all significant analyses within the NMOSD cohort
were confirmed for data acquired by Cirrus and Topcon OCT
devices (eFigures 2 and 3; eTables 3 and 4, links.lww.com/
NXI/A556; links.lww.com/NXI/A557).

Neuroaxonal Damage Without ON
NMOSD-NON eyes had a reduced GCIP layer (75.9 ± 7.7 μm,
p< 0.001), but not pRNFL (95.3 ± 14.4 μm) comparedwithHC
(GCIP layer: 81.4 ± 5.7 μm, pRNFL: 101.1 ± 9.0 μm; Figures 1A
and 2A; Tables 2 and 3). By comparison, only 28 NMOSD-
NON eyes (5.1%) had a GCIP layer ≤ the 5th percentile of HC.
GCIP layer was also reduced inNMOSD-NONwith a history of
contralateral ON (72.9 ± 10.2 μm) compared with NMOSD-
NON without a history of contralateral ON (77.3 ± 5.9 μm, p =
0.025, NMOSD-NONnon). This effect vanished when only
considering NMOSD-NONcon with a history of 1 contralateral
ON (73.6 ± 9.4 μm). However, only NMOSD-NONcon (p <

0.001) but not NMOSD-NONnon (p = 0.061) had thinned
GCIP layer compared with HC (Figures 1C and 2C).

INL Changes
INL was thicker in NMOSD-ON compared with HC (39.4 ±
2.6 μm) and NMOSD-NON (eTable 4, links.lww.com/NXI/
A557). Specifically, INL was thicker in eyes with 1 ON episode
compared with NMOSD-NON but did not differ between eyes
with different numbers of ON episodes. Also, INL did not differ
between NMOSD-NONcon (38.9 ± 3.2 μm) and NMOSD-
NONnon (38.5 ± 3.2 μm, p = 0.931). In all patients, INL
thickness (as the dependent variable in the linear mixed model
described above) was correlated with thinner GCIP layer (B =
−0.11, standard error [SE] = 0.01, p < 0.001) and pRNFL (B =
−0.06, SE = 0.01, p < 0.001). This correlation existed in
NMOSD-ON (GCIP layer: B = − 0.08, SE = 0.03, p = 0.005;
pRNFL: B = − 0.06, SE = 0.01, p < 0.001) and not present in
NMOSD-NON (eFigure 4, links.lww.com/NXI/A556).

Scans of 363 NMOSD eyes were clearly suitable for MME
investigations (high quality, eFigure 4C, links.lww.com/NXI/
A556). MMEs were visible in 24 (6.6%) eyes of 21 patients.

Table 2 Group Comparisons of GCIP Layer Thickness for Heidelberg SD-OCT

No. of
eyes

Thickness (μm,
mean ± SD)

Comparison
to

Absolute
difference (μm,
mean)

Relative
difference (%,
mean) B SE p Value R2

marg R2
cond

Combined
p value

NMOSD 268 67.3 ± 13.6 HCs −14.0 −20.8 15.6 2.0 <0.0001 0.143 0.690 —

NMOSD-
ON

124 57.4 ± 12.2 −24.0 −41.8 25.0 2.0 <0.0001 0.482 0.839 —

NMOSD-
NON

144 75.9 ± 7.7 −5.4 −7.2 5.8 1.4 <0.0001 0.088 0.947 —

NMOSD-
NONnon

99 77.3 ± 5.9 −4.0 −5.0 2.69 1.42 0.061 0.189 0.924 —

NMOSD-
NONcon

45 72.9 ± 10.2 −8.5 −10.4 8.44 1.77 <0.0001 0.260 0.985 —

NMOSD-
ON

124 57.4 ± 12.2 NMOSD-
NON

−18.5 −24.4 −15.8 1.1 <0.0001 0.430 0.795 5.9e245

NMOSD-1-
ON

76 58.6 ± 12.9 −17.3 −22.8 −14.5 1.2 <0.0001 0.417 0.803 1.4e233

NMOSD-2-
ON

28 55.1 ± 9.4 NMOSD-1-
ON

−3.5 −6.0 −5.7 2.6 0.028 0.143 0.729 0.038

NMOSD-
≥3-ON

20 55.9 ± 12.8 NMOSD-2-
ON

0.8 1.4 4.9 2.6 0.070 0.311 0.781 0.222

NMOSD-
NONcon

45 72.9 ± 10.2 NMOSD-
NONnon

−4.4 −6.1 −3.8 1.7 0.025 0.111 0.701 0.004

NMOSD-
NON1-con

37 73.6 ± 9.4 −3.7 −5.1 −3.5 1.6 0.037 0.149 0.906 0.154

Abbreviations: AQP4-IgG = aquaporin-4 IgG; B = estimate; GCIP = ganglion cell and inner plexiform;NMOSD=AQP4-IgG–seropositiveNMOSD; NMOSD-NON=
AQP4-IgG–seropositive NMOSD eyeswithout a history of ON; NMOSD-NONnon = AQP4-IgG–seropositive NMOSD eyeswithout a history ofONor contralateral
ON; NMOSD-NONcon = AQP4-IgG–seropositive NMOSD eyes without a history of ON but with a history of contralateral ON; NMOSD-NON1-con = AQP4-
IgG–seropositive NMOSD eyes without a history of ON but with a history of 1 contralateral ON; NMOSD-ON = AQP4-IgG–seropositive NMOSD eyes with a
history of ON; NMOSD-1-ON =AQP4-IgG–seropositive NMOSD eyeswith a history of 1ON; NMO-2-ON =AQP4-IgG–seropositive NMOSD eyeswith a history of
2 ONs; NMOSD-≥3-ON = AQP4-IgG–seropositive NMOSD eyes with a history of 3 or more ONs; NMOSD = neuromyelitis optica spectrum disorder; NMOSD-
NON = NMOSD eyes without a history of ON; OCT = optical coherence tomography; ON = optic neuritis episode; Rcon = conditional R-squared; Rmarg =
marginal R-squared; SE = standard error.

6 Neurology: Neuroimmunology & Neuroinflammation | Volume 8, Number 6 | November 2021 Neurology.org/NN

http://links.lww.com/NXI/A556
http://links.lww.com/NXI/A556
http://links.lww.com/NXI/A557
http://links.lww.com/NXI/A557
http://links.lww.com/NXI/A557
http://links.lww.com/NXI/A556
http://links.lww.com/NXI/A556
http://links.lww.com/NXI/A556
http://neurology.org/nn


Twenty-three eyes (13.1%) of NMOSD-ON and 1 eye (0.5%)
of NMOSD-NON (with a history of contralateral ON) were
affected. The number of ON episodes did not influence the
incidence of MMEs (NMOSD-1-ONN = 16 (14%), NMOSD-
2-ON N = 4 (11.4%), NMOSD-≥3-ON N = 3 (11.1%)).

Including only the most frequent ethnicities in our data set
(Asian and non-HispanicWhite), results did not differ, and no
ethnicity was singled out regarding its pattern of injury (data
not shown).

OCT and Vision Loss
HC-VA was numerically reduced in NMOSD (0.25 ± 0.48)
compared with HC (−0.01 ± 0.08) and known healthy reference
values. NMOSD-ON also had reduced HC-VA (0.44 ± 0.58)
compared with NMOSD-NON (0.04 ± 0.20, p < 0.001, p =
0.401) and HC/healthy reference populations. HC-VA was
correlated with GCIP layer (B = −0.016, SE = 0.002, p < 0.001)
and pRNFL thicknesses (B = −0.010, SE = 0.001, p < 0.001) in
AQP4-IgG–seropositive NMOSD. AQP4-IgG–seropositive
NMOSD eyes with prolonged VEP latency had a thinned GCIP

layer (B = −11.647, SE = 3.628, p = 0.002) and pRNFL (B =
−21.965, SE = 3.724, p < 0.001). EDSS score as ametric of global
disability was inversely correlated with GCIP layer (B = −1.370,
SE= 0.566, p= 0.017) and pRNFL thicknesses (B= −3.148, SE=
1.080, p = 0.004).

Discussion
Our study specifies a severe and functionally relevant decrease
of GCIP layer and pRNFL in NMOSD-ON compared with
NMOSD-NON and HCs in AQP4-IgG–seropositive pa-
tients. Neuroaxonal damage is particularly large from the first
episode of ON, where contribution to retinal damage in
subsequent episodes of ON is still considerable but smaller. In
contrast to previous smaller studies, the current study ascer-
tains GCIP layer but not pRNFL thinning in NMOSD-NON
compared with HC.6,19 This effect was driven by eyes with
contralateral ON and not statistically significant in eyes
without a history of ON. INL was thicker in NMOSD-ON
and was inversely correlated with GCIP layer. Of note, 13.1%

Table 3 GroupComparisons of pRNFL ThicknessWith (A) Spectralis SD-OCTData for Comparisons vsHC (B) Data FromAll
Devices for Intrapatient Cohort Comparisons

No. of
eyes

Thickness (μm,
mean ± SD)

Comparison
to

Absolute difference
(μm, mean)

Relative
difference (%,
mean) B SE p Value R2

marg R2
cond

Combined
p value

NMOSD 344 76.3 ± 27.4 HCs −14.0 −32.6 24.2 4.3 <0.0001 0.143 0.690 —

NMOSD-
ON

170 56.9 ± 23.7 −44.3 −77.9 43.1 4.1 <0.0001 0.482 0.839 —

NMOSD-
NON

174 95.3 ± 14.4 −5.9 −6.2 4.6 3.0 0.129 0.088 0.947 —

NMOSD-
NONnon

116 97.4 ± 10.9 −3.7 −3.7 −2.9 2.2 0.204 0.107 0.893 —

NMOSD-
NONcon

58 91.0 ± 19.1 −4.7 −4.6 7.1 4.2 0.097 0.100 0.975 —

NMOSD-
ON

170 56.9 ± 23.7 NMOSD-
NON

−38.4 −40.3 −33.8 2.1 <0.0001 0.436 0.741 4.4e260

NMOSD-1-
ON

97 62.6 ± 24.9 −32.7 −34.3 −29.6 2.2 <0.0001 0.379 0.712 4.6e240

NMOSD-2-
ON

35 53.5 ± 21.3 NMOSD-1-
ON

−9.1 −14.5 −10.7 4.7 0.024 0.087 0.528 0.010

NMOSD-
≥3-ON

38 45.2 ± 17.8 NMOSD-2-
ON

−8.3 −15.5 −0.4 4.3 0.924 0.087 0.719 0.838

NMOSD-
NONcon

58 91.0 ± 19.1 NMOSD-
NONnon

−6.5 −7.1 −4.0 2.9 0.173 0.061 0.939 0.157

NMOSD-
NON1-con

47 93.2 ± 18.1 −4.2 −4.6 −3.2 2.9 0.276 0.056 0.925 0.616

Abbreviations: AQP4-IgG = aquaporin-4 IgG; NMOSD = AQP4-IgG–seropositive NMOSD; NMOSD-NON = AQP4-IgG–seropositive NMOSD eyes without a
history of ON; NMOSD-NONnon = AQP4-IgG–seropositive NMOSD eyes without a history of ON or contralateral ON; NMOSD-NONcon = AQP4-IgG–
seropositive NMOSD eyes without a history of ON but with a history of contralateral ON; NMOSD-NONcon = AQP4-IgG–seropositive NMOSD eyes without a
history of ON but with a history of 1 contralateral ON; NMOSD-ON = AQP4-IgG–seropositive NMOSD eyes with a history of ON; NMOSD-1-ON = AQP4-
IgG–seropositive NMOSD eyes with a history of 1 ON; NMOSD-2-ON = AQP4-IgG–seropositive NMOSD eyes with a history of 2 ONs; NMOSD-≥3-ON = AQP4-
IgG–seropositive NMOSD eyes with a history of 3 or more ONs; NMOSD = neuromyelitis optica spectrum disorder; NMOSD-NON = NMOSD eyes without a
history of ON; OCT = optical coherence tomography; ON = optic neuritis episode; pRNFL = peripapillary retinal nerve fiber layer; VEP = visually evoked
potential.
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of NMOSD-ON eyes showed MME indicative of secondary
inflammatory changes.20,21 This investigation overcame limits
of small samples and OCT data heterogeneity of earlier
studies through use of an international consortium of
NMOSD specialists. This framework substantiated the
CROCTINO study—a large, multicenter, retrospective
evaluation of retinal pathology in NMOSD using OCT.

The neuroaxonal degeneration in NMOSD-ON demon-
strated here is substantially greater than reported changes in
multiple sclerosis (MS), a common differential diagnosis.2,22

In a meta-analysis, an average pRNFL loss of 20 μm was
estimated in MS after ON, which is nearly 2-fold higher in our
NMOSD-ON cohort (−38.4 μm).22 For GCIP layer, our data
suggested approximately 1.5-fold higher loss in NMOSD
(−24.0 μm) compared with MS.22 These differences not only
result from a higher ON frequency, but may also be caused by
more severe retinal damage in NMOSD after a singular ON.23

It is intriguing that the damage is particularly large after the
first ON episode with smaller losses after subsequent epi-
sodes, which might be due to less neuroaxonal content in
subsequent episodes.2,24 Alternatively, although the analysis
of treatment effects exceeds the scope of this study, it is
possible that the longer time to effective anti-inflammatory
therapy and the typical choice of less effective therapies (e.g.,
steroids instead of plasma exchange) at the first attack com-
pared with following attacks may significantly contribute to
this difference. Independent of the number of ONs, the per-
cent loss is smaller in GCIP layer compared with pRNFL–
pointing toward either (1) stronger loss of retinal nerve fibers
than retinal ganglion cells, (2) impairment of ganglion cells
not leading to extinction but axonal loss; (3) a larger amount
of non-neuronal tissue in GCIP layer, or (4) RNFL loss in the
periphery beyond the macular area measured by GCIP layer.
These hypotheses are not mutually exclusive, and each might
contribute to the effect. Consistent with these concepts, ex-
cessive vision loss relative to neuroaxonal content and VEP
latency in AQP4-IgG–seropositive patients compared with
MOG-IgG–seropositive and MS patients implies damage of
the peripheral retina and optic nerve tissues, which are not
reflected in the macula and pattern VEP measurements.4

Whether attack-independent neurodegeneration in
AQP4-IgG–seropositive NMOSD occurs has been
controversial.2,6,7,25-28 The current study identifies de-
creased GCIP layer in NMOSD-NON compared with
HC, but not pRNFL. Such subclinical changes could be
caused by contralateral involvement after unilateral
ON.17,18 Indeed, our cohort suggests pronounced neu-
rodegeneration in eyes with contralateral ON. However,
eyes of patients without ON also exhibit a trend for thinner
GCIP layer compared with HCs. Underscored by longitu-
dinal studies showing ON-independent neurodegeneration
and VEP latency prolongation,7,29 such patterns suggest at
least 2 mechanisms of injury: (1) a primary retinopathy or
optic neuropathy in context of an astrocytopathy or caused
by direct damage to AQP4-expressing cells such as astrocytes

and Müller cells by either AQP4-IgG or AQP4-specific
T cells or (2) a global or afferent visual system specific
chronic or episodic neurodegenerative process. Because le-
sions often spare the brain, and most studies outside of
predisposed areas such as optic nerve and spinal cord failed
to detect effects,30 a constant global involvement seems
unlikely. Several studies described changes affecting AQP4
expression and astrocytic end feet,31 parafoveal changes in
agreement with an involvement of AQP4-expressing Müller
cell,6,26,27,32 and attack-independent spinal cord atrophy.33

These findings are consistent with tissue infiltration by
AQP4-IgG–specific T cells34 and the attack-independent
loss of retinal ganglion cells7—further supporting the exis-
tence of an ON-independent pathology, which might be
restricted to the main disease foci. The latter hypotheses
could be addressed by region-specific pathology or advanced
imaging studies.

INL changes have been suggested as a marker of neuro-
inflammation and potential treatment response in MS.21,35,36

MME may develop as a consequence of neurodegeneration
or other—non–disease-specific—processes.35 Patients with
NMOSD were described to have INL thickening and
MME.20,37 In our cohort, 13.1% of NMOSD-ON eyes were
affected byMME, which is higher than the 2%–5% described in
MS but comparable to incidences in NMOSD described before
by Gelfand and colleagues.35,37 However, INL thickening itself
remained comparable to changes reported in MS.35 This dis-
parity could reflect a disrupted fluid homeostasis due to Müller
cell involvement or loss of content of the INL with a parallel
inflammatory reaction and development of MME. The limited
accessibility of MMEs, especially in severely affected eyes due to
limited image quality, has hindered their detailed assessments
and most likely leads to underestimation of their incidence.38

We demonstrate that the INL thickness is inversely correlated
with neuroaxonal content and could be a valuable marker of
disease severity also in NMOSD.

Our study cohort was representative of patients with AQP4-
IgG–seropositive NMOSD with respect to a female pre-
dominance and ON history.11,39 This OCT study included
multiple ethnicity backgrounds, although the distribution was
shifted toward Caucasian/White patients and other ethnic-
ities were underrepresented (e.g., Hispanic White and Black),
limiting the generalizability of results.40 Patients from differ-
ent heritages presented similar findings.

The current study was based on source data instead of a meta-
analysis. Using the Guthy-Jackson Charitable Foundation net-
work, this multicentric study was conducted without investigator
reimbursement and illustrated how collaboration integrating
international perspectives can produce meaningful results. To
overcome technical challenges of heterogeneous source data, we
developed novel OCT postprocessing techniques allowing us to
perform standardized analyses and enabling the uniform analysis
of the largest OCT image data set in NMOSD to date.10 Thus,
the strengths of CROCTINO include its established

8 Neurology: Neuroimmunology & Neuroinflammation | Volume 8, Number 6 | November 2021 Neurology.org/NN

http://neurology.org/nn


infrastructure, large international network of experts represent-
ing multiple ethnicities and geographic regions, and the use of
state-of-the-art OCT postprocessing techniques.41

We recognize limitations of the current investigation: The
retrospective and heterogeneous data acquisition might have
led to biases and impreciseness beyond the ability of our
quality control. We addressed this by excluding uncertain
cases. HCs were only included from a limited number of
centers. The unbalanced data set limited some analyses, such
as the influence of ethnicities or acute and disease-modifying
treatments. Case-control matching was impossible, particu-
larly with respect to subclinical progression dependent or
independent of ON and to ethnicity. Similarly, comparisons
with other NMOSD subtypes or MS were beyond the scope
of this study. Longitudinal data, acute ON data, and AQP4-
IgG–seronegative and MOG-IgG–seropositive patient data
are part of the CROCTINO data set and will be analyzed in
the future. Also, OCT data processing was performed by
multiple raters potentially introducing interrater variability.
MRI data and posterior visual pathway involvement were not
investigated in this study. However, the current study ach-
ieved an unprecedented worldwide assessment of retinal
damage in AQP4-IgG–seropositive NMOSD.

To conclude, AQP4-IgG–seropositive NMOSD is characterized
by a severe, functionally relevant retinal neurodegeneration as a
consequence of ON. Although the majority of damage occurs
during the first episode, there is cumulative loss with each suc-
ceeding relapse. TheON-associated damage is not limited to the
neuroaxonal content but can also induce—likely inflammation-
mediated—INL increase and occurrence ofMME.Our data also
suggest attack-independent retinal damage in AQP4-
IgG–seropositive NMOSD. Our study supports that at-
tack prevention is key in avoiding neuroaxonal damage and
vision loss in patients with NMOSD. It further suggests that
the first ON episode causes the most damage, where only
some patients with then established diagnosis will be on im-
munosuppressive therapy. This highlights the need for ef-
fective therapies that can ameliorate an ongoing attack or
regenerate attack-generated damage, which is an unmet clin-
ical need. Last, the study emphasizes the utility of OCT as a
sensitive structural metric and its potential for monitoring
progression and even treatment response in AQP4-
IgG–seropositive NMOSD. The international CROCTINO
program provides an unprecedented opportunity to apply
OCT in a standardized manner to assess pathophysiology,
clinical course, and therapeutic efficacy in NMOSD.
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33. Chien C, Scheel M, Schmitz-Hübsch T, et al. Spinal cord lesions and atrophy in
NMOSD with AQP4-IgG and MOG-IgG associated autoimmunity.Mult Scler. 2019;
25(14):1926-1936.

34. Felix CM, Levin MH, Verkman AS. Complement-independent retinal pathology
produced by intravitreal injection of neuromyelitis optica immunoglobulin G.
J Neuroinflammation. 2016;13(1):275.

35. Balk LJ, Coric D, Knier B, et al. Retinal inner nuclear layer volume reflects in-
flammatory disease activity in multiple sclerosis; a longitudinal OCT study.Mult Scler
J Exp Transl Clin. 2019;5(3):2055217319871582.

36. Gelfand JM, Nolan R, Schwartz DM, Graves J, Green AJ. Microcystic macular oedema
in multiple sclerosis is associated with disease severity. Brain. 2012;135(pt 6):
1786-1793.

Appendix (continued)

Name Location Contribution

Uygur Tanriverdi,
MD

Cerrahpasa Medical Faculty,
Istanbul University,
Cerrahpasa, Turkey

Acquisition and
analysis of data

Anu Jacob, MD The Walton Centre for
Neurology and
Neurosurgery, Liverpool,
United Kingdom

Acquisition and
analysis of data

Saif Huda, MD,
PhD

The Walton Centre for
Neurology and
Neurosurgery, Liverpool,
United Kingdom

Acquisition and
analysis of data

Zoe Rimler, BSc NYU School of Medicine, New
York, NY

Acquisition and
analysis of data

Allyson Reid, MD NYU School of Medicine, New
York, NY

Acquisition and
analysis of data

Yang Mao-
Draayer, MD, PhD

University of Michigan
Medical School, Ann
Arbor, MI

Acquisition and
analysis of data

Ibis Soto de
Castillo, MD

Hospital Cĺınico de
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Berlin, Berlin, Germany

Acquisition and
analysis of data,
conception and design
of the study, and
drafting a significant
portion of the
manuscript or figures

Friedemann Paul,
MD
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In the Article “Retinal Optical Coherence Tomography in Neuromyelitis Optica” by Oertel
et al.1, the 37th author should be listed as “Alvaro Cobo-Calvo.” The authors regret the error.
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