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Abstract: Accompanied by a change in color from red to black, the enantiomorphic phases of the
cobalt complexes of a chiral salen ligand (L2−, Co(L)·CS2, and Co(L) (L = LS,S or LR,R)) chemisorb
NO (g) at atmospheric pressure and rt over hours for the CS2 solvated phase, and within seconds for
the desolvated phase. NO is installed as an axial nitrosyl ligand. Aligned but unconnected voids in
the CS2 desorbed Co(LR,R)·CS2 structure indicate conduits for the directional desorption of CS2 and
reversible sorption of NO, which occur without loss of crystallinity. Vibrational circular dichroism
(VCD) spectra have been recorded for both hands of LH2, Zn(L), Co(L)·CS2, Co(L), Co(NO)(L), and
Co(NO)(L)·CS2, revealing significant differences between the solution-state and solid-state spectra.
Chiral induction enables the detection of the νNO band in both condensed states, and surprisingly also
the achiral lattice solvent (CS2 (νCS at 1514 cm−1)) in the solid-state VCD. Solution-state spectra of
the paramagnetic Co(II) complex shows a nearly 10-fold enhancement and more extensive inversion
of polarity of the vibrations of dominant VCD bands compared to the spectra of the diamagnetic
compounds. This enhancement is less pronounced when there are fewer polarity inversions in the
solid state VCD spectra.

Keywords: chirality; vibrational circular dichroism; solid–gas reaction; chemisorption; nitrosyl

1. Introduction

NO is biologically important, but also a highly toxic gas, and materials for its sorptive
removal from exhausts are of great interest. A number of diverse materials, from metal ox-
ides, zeolites, and metal-organic frameworks have shown the ability to selectively sorb NO,
in some cases reversibly [1–6]. Chemisorptive processes can result in the transformation
of the sorbed NO into less toxic compounds and precedence for this was demonstrated
recently using the crystalline solid-state of a dicobalt(II) complex, which co-chemisorbs
NO and O2. Accompanied by metal oxidation, their conversion to a coordinated nitrite
and nitrate counter anion ensues through a series of unidentified in-crystal reactions [7].

We were interested in investigating the chemisorptive reactivity of NO by an isolated
mononuclear Co(II) site inside the crystalline lattice of a molecular solid in efforts to
understand the mechanism of the host–guest, solid–gas chemistry of the aforementioned
molecular dicobalt(II) complexes [7]. In particular, we wanted to investigate whether the
in-crystal conversion of NO and O2 to NO2

− and NO3
- is dependent on the presence of

two closely-located cobalt ions working cooperatively to activate these guest substrates.
Mononuclear Co(salen) has been shown to react with NO in both solution- [8] and solid-
states [8,9], and offers the opportunity to explore this possibility. Unfortunately, however,
no details of the structural or spectroscopic changes in the solids have been reported for
the solid–gas reaction. It is unknown whether or not well-defined pores to allow transport
through the solid are requisite, whether or not the process is true chemisorption (where
bonds are formed), whether the presumed in-solid NO coordination to Co(II) results in its
oxidation, and whether the reaction is reversible. We have, therefore, reinvestigated the
NO gas–solid reaction for the salen system, however, the parent scaffold has been replaced
with N,N′-bis(3,5-di-t-butylsalicylidene)-1,2-cyclohexanediamine (L2−), the derivative used
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in the manganese(III) chloride complex that is also known as ‘Jacobsen’s catalyst’ [10],
and is used for catalyzing asymmetric epoxidation reactions [10–12]. A survey of the
Cambridge structural database [13] of the crystal structures of metal complexes of L2−

suggests that the peripheral bulky tert-butyl groups of L2− ensure that mononuclear Co
sites are isolated from each other by preventing the formation of crystal phases containing
dimeric (M(salen))2 [14–18], which form when a phenolato oxygen atom of each salen on
adjacent complexes bridge between the two metal ions. Another advantage is that, unlike
some phases of the parent Co(salen) and its derivatives, Co(L) does not bind O2.

Another aspect of this work is the fact that L2− provides chirality by virtue of the
aliphatic backbone carbon atoms to give LS,S and LR,R (Scheme 1). With respect to the
use of L2− for constructing enantiopure complexes to catalyze asymmetric reactions, we
wished also to learn whether a chiral ligand would induce chirality into an achiral axial
co-ligand, since this is a proxy for a bound substrate.
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Scheme 1. S,S and R,R conformations of CoII(LS,S) and CoII(LR,R).

2. Materials and Methods

Caution NO is a highly toxic gas. CS2 vapors are also toxic.

2.1. Instrumentation

Mass spectra are recorded with electrospray ionization (ESI) on a Bruker micrOTOF-Q
II spectrometer (nanospray, capillary temperature = 180 ◦C, spray voltage = 3.7 kV). UV-vis
spectra were recorded on an Agilent 8453 spectrophotometer in 1 cm quartz cuvettes.
VCD and IR spectra were recorded on a CHIRALIR-2XTM spectrometer equipped with a
single PEM, a resolution of 4 cm−1, optimized at 1400 cm−1, and in a single block with
50000 scans. All VCD spectra are baseline corrected by half differentiating from the other
enantiomer, i.e., subtracting the VCD spectrum of one enantiomer from that of the other
enantiomer and dividing the intensity of the resulting spectrum by two, and vice versa.
All solution state VCD spectra were recorded in CDCl3 using an ICLSL-4 liquid cell with
BaF2 windows and a path length of 75 µm. Solutions were prepared by dissolving 30 mg
sample in 0.3 mL CDCl3. All solid phase VCD spectra were recorded as mulls applied
between two circular BaF2 windows (Ø25 mm× 4 mm), and the sample holder was rotated
at a constant speed throughout the recording to reduce artifacts. Mulls were prepared by
grinding, with an agate mortar and pestle, 20 mg sample with 50 µL Nujol oil. Powder
X-ray diffraction data were collected on a Synergy, Dualflex, AtlasS2 diffractometer using
CuKα radiation (λ = 1.54184 Å) and the CrysAlis PRO 1.171.40.67a suite [19]. Powdered
samples were adhered to the mounting loop using Fomblin®Y, and diffractograms were
recorded with a detector distance of 120 mm, using Gandolfi scans with a single kappa
setting, and an exposure time of 200 s.

2.2. Single Crystal X-ray Diffraction

The crystals used for Single Crystal X-ray Diffraction (SCXRD) were taken directly
from the mother liquor and mounted using Fomblin®Y to adhere the crystal to the mount-
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ing loop. X-ray crystal diffraction data were collected at 100(2) K on a Synergy, Du-
alflex, AtlasS2 diffractometer using CuKα radiation (λ = 1.54184 Å) and the CrysAlis PRO
1.171.40.67a suite [19], and corrected for Lorentz-polarization effects and absorption. Us-
ing SHELXLE [20], the structure was solved by dual space methods (SHELXT [21]) and
refined on F2 using all the reflections (SHELXL-2018 [22]). All the non-hydrogen atoms
were refined using anisotropic atomic displacement parameters, and hydrogen atoms were
inserted at calculated positions using a riding model. Parameters for data collection and
refinement are summarized in Table 1. The chirality in these complexes is provided by
the cyclohexane ring in the ligand backbone, however, the remainder of the structures,
including the heavier cobalt and (for Co(LR,R)·CS2 and Co(NO)(LR,R)·CS2) sulfur atoms,
are arranged almost centrosymmetrically. As a result, the |E2 − 1| statistics, cumulative
intensity distribution plots, and Wilson plots (SI Figures S6–S8) appear to favor a cen-
trosymmetric structure (as does the initial estimate of the Flack x parameter in SHELXT
for Co(NO)(LR,R)·CS2), and Platon ADDSYM in checkCIF suggests a (pseudo) center of
symmetry may be present. Nevertheless, all three structures were successfully refined in
the chiral space group P21, showing the expected chair conformation of the cyclohexane
rings, all with R,R chirality. When carbon disulfide is desorbed from Co(LR,R)·CS2 to
produce Co(LR,R), the crystal quality is reduced slightly, resulting in weak high angle data.
The structure of Co(LR,R), therefore, contains more uncertainties.

2.3. Computational Details

The VCD and IR calculations considered in this work were performed using (unre-
stricted) density functional theory (DFT) calculations performed using Jaguar [23] through
the Maestro graphical interface. [24] All structures have been geometry optimized in isola-
tion using B3LYP/LACVP** [25,26], and vibrational frequencies have also been calculated
at this level of theory. All calculations are solution gas phase calculations. For LR,RH2,
different conformations were calculated using the OPLS2005 [27] forcefield, and the VCD
and IR spectra were based on a Boltzmann average of these conformations. For Zn(LR,R),
the VCD and IR spectra are based on only the most stable conformation.

2.4. Synthesis

The R,R and S,S enantiomers of N,N′-bis(3,5-di-t-butylsalicylidene)-1,2-cyclohexanediamine,
LR,RH2 and LS,SH2, were prepared according to literature methods with a reported ee.
of >95% [28]. The R,R and S,S enantiomers of N,N′-bis(3,5-di-tert-butylsalicylidene)-1,2-
cyclohexanediaminozinc(II) (Zn(LR,R) and Zn(LS,S)) [29] and N,N′-bis(3,5-di-tert-butylsalicylidene)-
1,2-cyclohexanediaminocobalt(II) (Co(LRR) and Co(LSS)) [30] were also synthesized accord-
ing to literature procedure. All other chemicals were purchased from Sigma-Aldrich and
were used without further purification.

2.4.1. Co(LR,R)·CS2 and Co(LS,S)·CS2

A degassed solution of Co(LRR) or Co(LSS) (0.250 g) in CS2:n-hexane (16 mL, 1:1 v/v)
was placed in a vial which was then placed inside a large glass jar with an air tight lid, and
the solution was allowed to slowly evaporate at 5 ◦C in the fridge, yielding ruby red block
crystals suitable for single crystal X-ray diffraction. Yield 0.227 g, 80.6%.

IR (Nujol) cm−1: 1609 (m, C=C), 1591 (m, C=N), 1524 (vs, C=S), 1254 (m, C–O).
ESI-MS (pos. mode, MeCN): found (calcd) m/z = 603.217 (603.34, [Co(LR,R)]+,

C36H52CoN2O2 100%).

2.4.2. Co(LR,R) and Co(LS,S) (Desolvated from Co(LR,R)·CS2 and Co(LS,S)·CS2)

A sample of Co(LR,R)·CS2 or Co(LS,S)·CS2 (0.25 g, size 0.05–1 mm3) was placed inside
a 10 mL round bottom flask, and the flask was attached to a rotary evaporator. The crystals
were heated to 95 ◦C in vacuo (~10−2 mbar) and rotated for one hour, resulting in a color
change from translucent dark red to opaque red/orange. Co(LR,R) and Co(LS,S) were
isolated in a quantitative yield.
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IR (Nujol) cm−1: 1608 (s, C=C), 1596 (vs, C=N), 1524 (m, C=N), 1255 (m, C–O).
ESI-MS (pos. mode, MeCN): found (calcd) m/z = 603.217 (603.34, [Co(LR,R)]+,

C36H52CoN2O2 100%).
UV-vis (DCM) λmax/nm (ε/M−1 cm−1): 247 (36,012), 428 (11,446).

2.4.3. Co(NO)(LR,R) and Co(NO)(LS,S)

Crystals of Co(LR,R) or Co(LS,S) (0.25 g, size 0.05–1 mm3) were placed in a Schlenk
tube (30 mL), and the Schlenk line was evacuated and filled with N2 (3 cycles). NO (1.2 bar)
was then admitted into the system, resulting in a color change from opaque red/orange
to opaque black within seconds, and the closed tube was then allowed to stand for one
hour. Before opening to air, the system was evacuated and flushed with N2 (3 cycles).
Co(NO)(LR,R) and Co(NO)(LS,S) were isolated in a quantitative yield. Recrystallization of
Co(NO)(LR,R) (0.25 g) from CS2:n-hexane (8 mL, 1:1 v/v) via the same procedure as de-
scribed above for Co(LR,R)·CS2 yielded black needle crystals of Co(NO)(LR,R)·CS2 suitable
for single crystal X-ray diffraction.

IR (Nujol) cm−1: 1659 (w, N=O) 1638 (vs, C=N), 1608 (s, C=C,), 1524 (w, C=N), 1255
(w, C–O).

ESI-MS (pos. mode, MeCN): found (calcd) m/z = 603.317 (603.34, [Co(LR,R)]+,
C36H52CoN2O2, 100%), 634.320 (634.34, [Co(NO)(LR,R)H]+, C36H53CoN3O3, 4.98%)

UV-vis (DCM) λmax/nm (ε/M−1 cm−1): 267 (18,040), 366 (5391).

3. Results and Discussion
3.1. Reaction of Solid-State Co(II) Complexes with NO

Two new enantiomorphic phases of Co(L) (L = LS,S, LR,R) have been prepared and
structurally characterized. Co(L)·CS2, was obtained by recrystallization of Co(L) from
CS2/n-hexane. A strong band in the IR spectrum at 1524 cm−1 is associated with the νCS
of co-crystallized CS2. This band is very close to that for free CS2 at 1520 cm−1, indicating
little interaction with the cobalt atom. Co(L)·CS2 undergoes CS2 loss on heating at 95 ◦C
for 1 h at 10−2 mbar to reproduce Co(L), however it is now a new unreported phase that is
different to the starting phase. Both Co(L)·CS2 and Co(L) react in the solid state with NO
gas (1 atm, rt, unground crystals ranging in size from 0.05 to 1 mm3) (Scheme 2).

Chemistry 2021, 3, FOR PEER REVIEW 4 
 

 

2.4.2. Co(LR,R) and Co(LS,S) (Desolvated from Co(LR,R)·CS2 and Co(LS,S)·CS2) 
A sample of Co(LR,R)·CS2 or Co(LS,S)·CS2 (0.25 g, size 0.05–1 mm3) was placed inside a 

10 mL round bottom flask, and the flask was attached to a rotary evaporator. The crystals 
were heated to 95 °C in vacuo (~10−2 mbar) and rotated for one hour, resulting in a color 
change from translucent dark red to opaque red/orange. Co(LR,R) and Co(LS,S) were iso-
lated in a quantitative yield. 
IR (Nujol) cm−1: 1608 (s, C=C), 1596 (vs, C=N), 1524 (m, C=N), 1255 (m, C–O). 
ESI-MS (pos. mode, MeCN): found (calcd) m/z = 603.217 (603.34, [Co(LR,R)]+, C36H52CoN2O2 
100%). 
UV-vis (DCM) λmax/nm (ε/M−1 cm−1): 247 (36,012), 428 (11,446). 

2.4.3. Co(NO)(LR,R) and Co(NO)(LS,S) 
Crystals of Co(LR,R) or Co(LS,S) (0.25 g, size 0.05–1 mm3) were placed in a Schlenk tube 

(30 mL), and the Schlenk line was evacuated and filled with N2 (3 cycles). NO (1.2 bar) 
was then admitted into the system, resulting in a color change from opaque red/orange to 
opaque black within seconds, and the closed tube was then allowed to stand for one hour. 
Before opening to air, the system was evacuated and flushed with N2 (3 cycles). 
Co(NO)(LR,R) and Co(NO)(LS,S) were isolated in a quantitative yield. Recrystallization of 
Co(NO)(LR,R) (0.25 g) from CS2:n-hexane (8 mL, 1:1 v/v) via the same procedure as de-
scribed above for Co(LR,R)·CS2 yielded black needle crystals of Co(NO)(LR,R)·CS2 suitable 
for single crystal X-ray diffraction. 
IR (Nujol) cm−1: 1659 (w, N=O) 1638 (vs, C=N), 1608 (s, C=C,), 1524 (w, C=N), 1255 (w, C–
O). 
ESI-MS (pos. mode, MeCN): found (calcd) m/z = 603.317 (603.34, [Co(LR,R)]+, C36H52CoN2O2, 
100%), 634.320 (634.34, [Co(NO)(LR,R)H]+, C36H53CoN3O3, 4.98%) 
UV-vis (DCM) λmax/nm (ε/M−1 cm−1): 267 (18,040), 366 (5391). 

3. Results and Discussion 
3.1. Reaction of Solid-State Co(II) Complexes with NO 

Two new enantiomorphic phases of Co(L) (L = LS,S, LR,R) have been prepared and 
structurally characterized. Co(L)·CS2, was obtained by recrystallization of Co(L) from 
CS2/n-hexane. A strong band in the IR spectrum at 1524 cm−1 is associated with the νCS of 
co-crystallized CS2. This band is very close to that for free CS2 at 1520 cm−1, indicating little 
interaction with the cobalt atom. Co(L)·CS2 undergoes CS2 loss on heating at 95 °C for 1 h 
at 10−2 mbar to reproduce Co(L), however it is now a new unreported phase that is differ-
ent to the starting phase. Both Co(L)·CS2 and Co(L) react in the solid state with NO gas (1 
atm, rt, unground crystals ranging in size from 0.05 to 1 mm3) (Scheme 2). 

 
Scheme 2. Preparation of Co(NO)(L) from Co(L) by a solid-state gas reaction with NO (1 atm). 

This reaction is accompanied by a color change from red to black (Figure 1, SI film), 
with the process occurring over several hours for the CS2 solvate and in seconds to minutes 
for the desolvated phase, depending on sample size. Co(NO)(L) is formed inside the lat-
tice. The IR spectrum of the product shows a low intensity νNO band at 1657 cm−1. 

Scheme 2. Preparation of Co(NO)(L) from Co(L) by a solid-state gas reaction with NO (1 atm).

This reaction is accompanied by a color change from red to black (Figure 1, SI film),
with the process occurring over several hours for the CS2 solvate and in seconds to minutes
for the desolvated phase, depending on sample size. Co(NO)(L) is formed inside the lattice.
The IR spectrum of the product shows a low intensity νNO band at 1657 cm−1.

The NO can be removed stoichiometrically from Co(NO)(L) by heating to 195 ◦C.
This process has been cycled three times without significant decomposition (Figure 2).
Powder X-ray diffraction (PXRD) shows that crystallinity is retained after CS2 desorption,
NO chemisorption, and subsequent desorption without significant change to the pattern
(Figure 3). The pattern for the recrystallized sample of the nitrosyl complex is also similar.
These suggest that that the packing is similar throughout these sequential gas (CS2/NO)–
solid sorption/chemisorption and desorption processes.
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3.2. Structures of Enantiomorphic Phases

Single crystal X-ray structures were obtained for Co(LR,R)·CS2, Co(LR,R) and
Co(NO)(LR,R)·CS2. Notably, the data for Co(LR,R) were obtained from a crystal of Co(LR,R)·CS2
after desorption of the CS2, which occurs in a single crystal-to-single crystal (SCSC) trans-
formation for many of the individual crystals, i.e., many of the crystals do not break
but retain their morphology in the process. This is not the case for the subsequent NO
sorption, where the crystals break into smaller pieces and no crystal of adequate quality
for a structure determination by SCXRD was found. PXRD establishes, however, that
crystallinity is retained. Recrystallization of the solid Co(NO)(LR,R) (from CS2/n-hexane)
was necessary for obtaining a single crystal X-ray structure of the cobalt nitrosyl. Details
of the data collections are provided in Table 1. Solid state iron porphyrin complexes
have been shown to be capable of NO gas sorption, in this case the process occurs in an
SCSC transformation [31,32].

Table 1. Selected crystallographic data for Co(LR,R)·CS2, Co(LR,R), and Co(NO)(LR,R)·CS2. All data obtained using
Cu Kα radiation.

Compound Co(LR,R)·CS2 Co(LR,R) Co(NO)(LR,R)·CS2

Empirical formula C37H52N2O2S2Co C36H52N2O2Co C37H52N3O3S2Co
Formula weight 679.85 603.72 709.86
Temperature/K 100.00(10) 100.00(10) 100.00(10)
Crystal system monoclinic monoclinic monoclinic

Space group P21 P21 P21
a [Å] 13.55410(10) 26.2740(4) 14.12020(10)
b [Å] 9.96900(10) 9.5866(2) 10.02300(10)
c [Å] 26.59490(10) 29.2826(4) 25.9282(2)
α [◦] 90 90 90
β [◦] 92.1290(10) 113.379(2) 95.5600(10)
γ [◦] 90 90 90

Volume [Å3] 3591.04(5) 6770.1(2) 3652.27(5)
Z 4 8 4

µ [mm−1] 5.085 4.210 5.052
Tmin/Tmax 0.499/0.958 0.688/1.000 0.183/1.000
(sin θ/λ)max 0.749 0.684 0.698

Final R1, wR2 indexes [I ≥ 2σ(I)] 0.0250, 0.0638 0.0952, 0.1822 0.0292, 0.0757
Final R1, wR2 indexes [all data] 0.0267, 0.0649 0.1113, 0.1898 0.0346, 0.0801

Flack parameter [33] −0.0189(11) 0.082(4) −0.019(2)
Goof on F2 1.022 1.198 1.013

Peak/hole [e Å−3] 0.28/−0.30 0.58/−0.84 0.42/−0.27
CCDC Numbers 2073657 2073658 2073659

The structures of Co(LR,R)·CS2 and Co(NO)(LR,R)·CS2 are shown in Figure 4. That of
Co(LR,R) is similar (SI Figure S1). The cobalt ion in Co(LR,R)·CS2 is close to square planar,
with the cobalt atom lying 0.023 Å above the O–N–N–O plane of L2−. The sum of angles
around the Co(II) is 360.11◦, with cis angles of between 86.73◦ and 94.02◦. The average
Co–Osalen and Co–Nsalen bond distances are 1.844(2) Å and 1.861(2) Å, respectively. The
cyclohexane backbones show the expected chair conformation of the R,R enantiomer. The
metric parameters for the unsolvated phase of Co(LR,R) are similar (Table 2).

The bond lengths and angles for the nitrosyl complex are comparable to those found
for its homologue Co(NO)(salen) [34], with the geometry around the cobalt atom being
close to square pyramidal. The angles deviate an average of 4.9◦ from 90◦, and the cobalt
atom lies even further (0.237 Å) above the O–N–N–O plane of L2− compared to the Co(II)
complexes, with no significant interaction to the cobalt ion in the other axial position. The
distances and the associated angles are very similar to the cobalt(II) complexes, however,
the flat chelating salen ligand can be expected to impose constraints. Analysis of the
O/N–Co distances in other cobalt complexes of L2− (SI Figure S2) show that it is typical for
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square pyramidal Co(III) complexes to display similar values to the Co(II) square planar
complexes. Nitrosyl is a well-known non-innocent ligand, and has been assigned formally
to the extremes of NO+, NO· and NO−. The N–O distance in free radical NO is 1.15 Å, and
in Co(NO)(LR,R)·CS2 it is less than 0.03 Å greater. With various structural ambiguities, we
describe the nitrosyl complex using the Enemark-Feltham notation [35], i.e., {Co(NO)}8.
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connected and have an approximate size of 216.34 Å3 (3.2% of unit cell volume). The ki-
netic diameters of CS2 and NO are approximately 3.6 Å and 3.17 Å, respectively [36], and, 
on the basis of the structures and the approximate void diameter of 7.4 Å, it is tempting 
to posit that the exit of CS2 will be synchronously accompanied by rotation about the C–
C bond attaching the tert-butyl groups to the aryl ring. The chemisorption of NO occurs 
with small shifts in the PXRD pattern (Figure 3), suggesting this unit cell is changed 
slightly but with related packing. The recrystallized Co(NO)(LR,R)·CS2 shows a marginally 

Figure 4. Single crystal X-ray structures of (a) Co(LR,R)·CS2, and (b) Co(NO)(LR,R)·CS2. Atom colors: red—oxygen; blue—
nitrogen; white—carbon; yellow—sulfur; dark blue—cobalt. Atomic displacement ellipsoids are drawn at 50% probability
and hydrogen atoms are omitted for clarity.

Table 2. Selected mean bond distances and angles.

Compound Co(LR,R)·CS2 Co(LR,R) Co(NO)(LR,R)·CS2

Co–N [Å] 1.861(2) 1.861(9) 1.894(3)
Co–O [Å] 1.844(2) 1.847(8) 1.877(2)

∠O–Co–O [◦] 86.93(7) 87.3(3) 84.34(9)
∠N–Co–N [◦] 86.54(9) 86.9(4) 85.42(11)
∠N–Co–O [◦] 93.78(8) 93.5(4) 93.60(10)
Co–NO [Å] - - 1.818(3)
CoN=O [Å] - - 1.179(3)
∠Co–N=O [◦] - - 122.0(2)

The packing in the three structurally characterized compounds show layers of the
complexes in a herringbone arrangement, where the tert-butyl groups para to the phenolato
O atom reside in columns parallel to the a axis (Figure 5, SI Figures S3 and S4). In the
solvates, the co-crystallized CS2 molecules are also located in these columns. Desorption
of CS2 from Co(LR,R)·(CS2), to give Co(LR,R), results in a relatively large unit cell change
with approximate doubling of the a axis from 13.55410(10) Å to 26.2740(4) Å, and an
increase in the β-angle from 92.1290(10)◦ to 113.379(2)◦. The packing in Co(LR,R) is shown
in Figure 5. The voids occur where the CS2 occupied the lattice of Co(LR,R)·(CS2). They are
not connected and have an approximate size of 216.34 Å3 (3.2% of unit cell volume). The
kinetic diameters of CS2 and NO are approximately 3.6 Å and 3.17 Å, respectively [36], and,
on the basis of the structures and the approximate void diameter of 7.4 Å, it is tempting to
posit that the exit of CS2 will be synchronously accompanied by rotation about the C–C
bond attaching the tert-butyl groups to the aryl ring. The chemisorption of NO occurs with
small shifts in the PXRD pattern (Figure 3), suggesting this unit cell is changed slightly
but with related packing. The recrystallized Co(NO)(LR,R)·CS2 shows a marginally (1.7%)
expanded unit cell compared to that of Co(LR,R)·CS2. The two most intense diffraction
peaks in the PXRD of Co(NO)(LR,R) are moved towards a slightly higher 2θ angle upon
chemisorption of NO compared to the parent phase Co(LR,R), which corresponds to a
change in the interplanar distance (d) from 13.8962 Å and 12.0268 Å in Co(LR,R) to 13.4325 Å
and 11.8659 Å in Co(NO)(LR,R) (Figure 3). This can be attributed to a slight molecular
rearrangement, in order to make room for binding of NO at the cobalt atom.
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3.3. Solution-State Vibrational Circular Dichroism (VCD) Spectra

VCD allows the characterization of enantiopure compounds through the analysis of
IR-active bands. The primary quantity associated with IR absorbance is the dipole strength,
however, VCD measures the differential absorbance (∆A(ν)= Aleft(ν)− Aright(ν)) that is
proportional to the rotational strength; a quantity which depends both on the electric and
magnetic dipole transition moments. Thus, the VCD intensities are not directly correlated
with the intensities in the IR spectrum. VCD has predominantly been used to analyze
solution and pure liquid phases of organic molecules. In this work, VCD spectra for
both hands of LH2 and the Zn(II), Co(II), and Co(III)NO complexes of L2− have been
recorded. The IR spectra (purple) and the corresponding VCD spectra for the LS,S- and
LR,R-based systems (colored blue and red respectively) are shown in Figure 6. The IR
spectra show that the band due to the salen νC=N, the most intense in the IR spectra, shifts
from 1632 cm−1 in LH2 to a lower frequency (1598 cm−1) in coordination with Zn2+ in
accordance with the decrease in the C=N bond order as a consequence of co-ordinate bond
formation by the azomethine nitrogen lone pair. The band due to the νC=N, is the most
intense in the VCD spectrum of the Zn(II) complexes. Despite being the most intense in
the IR spectrum for LS,SH2 and LR,RH2, this is now a relatively moderate signal in the
VCD spectra of LS,SH2 and LR,RH2, where, instead, several unassignable C–C and C–H
vibrations are the most intense. Computational analysis to aid in the assignment of bands
in VCD spectra is common in the study of enantiopure organic compounds, and we have
performed such an analysis with reasonable success for LR,R and Zn(LR,R) (SI Figure S5).
The introduction of transition metal ions makes calculation a formidable task, perhaps even
impossible for the paramagnetic complexes. In this work, we take a fingerprint approach
to the characterization. The fact that we have characterized both enantiomers and achieved
consistently opposite band polarities demonstrates the reliability of the results.
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for recording solid-state IR spectra is commonplace, irreproducibility due to a high sensi-
tivity to inhomogeneity in particle size, especially because the technique is a transmission 
method, makes classic solid-state sample preparation for VCD spectroscopy less straight-
forward. This is probably why solid state VCD spectra are rarely reported [37]. In the 
context of the molecular solid-state chemistry described here, it was interesting for us to 
develop this technique. We found that, with consistent grinding and Nujol, it was possible 
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Co(NO)(LR,R). The LS,S- and LR,R-based systems are colored blue and red, respectively.

An increase in VCD signal strength is noticeable in the comparison of the VCD spectra
of the Zn(II) complexes and those for LH2. This arises because coordination locks the
ligand into fewer conformations [37]. The VCD spectra for Co(LS,S) and Co(LR,R) are very
different to those of the structurally analogous Zn(II) complexes. Apart from many different
positions and relative intensities, the spectrum is close to monosignate (all bands for one
hand showing one polarity). A change in the absorbance of left and right circularized
IR radiation causes the polarity inversion of some bands. In addition, the signals are
approximately nine times as intense as those for all the other compounds. This is associated
with the diamagnetism and paramagnetism of low-lying excited electronic states in the
Co(II) complexes. Electronic transitions are strongly magnetic-dipole dependent and hence,
when present, can induce enhanced VCD by the coupling of the electronic magnetic-dipole
transition moments with the smaller vibrational magnetic-dipole moments responsible for
normal VCD intensity [37].

Azide is a linear, non-chiral ligand with a track record as a proxy vibrational spectro-
scopic and structural marker for O2 binding sites. Accordingly, it binds to the iron center at
the distal position of the heme group. Bormett et al. [38] have reported the VCD spectra
of ferric hemoglobin azide, and show that the azide ligand somehow borrows magnetic
dipole intensity from the chiral environment inherent to this protein to produce a VCD
signal. The effect we see in this work is analogous, and we have used VCD to assess the
chiral induction of the signals for achiral NO in the complexes of L2−. This co-ligand
can be regarded as a proxy substrate in a reaction catalyzed by complexes of enantiopure
L2−, which, particularly with respect to asymmetric catalytic synthesis, is easily accessible
in both hands. Although close to the dominating salen imine νCN (1616 cm−1) band in
Co(NO)(L), the νNO (1657 cm−1) can be distinguished in the IR spectra as the second most
intense band (Figure 6d, top). Notably, a signal for νNO can also be seen at this position in
the VCD spectrum, but its intensity is now very low by comparison to many other bands in
the spectrum. This indicates that, while chiral induction occurs, it is not particularly strong.
In this context, it is interesting to note that the enantiomeric excess in catalytic reactions
with complexes of LR,R and LS,S are sometimes disappointing [39–43].

3.4. Solid State VCD Spectra

While the use of Nujol mull, KBr discs, or even neat powders in sample preparation for
recording solid-state IR spectra is commonplace, irreproducibility due to a high sensitivity
to inhomogeneity in particle size, especially because the technique is a transmission method,
makes classic solid-state sample preparation for VCD spectroscopy less straightforward.
This is probably why solid state VCD spectra are rarely reported [37]. In the context of the
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molecular solid-state chemistry described here, it was interesting for us to develop this
technique. We found that, with consistent grinding and Nujol, it was possible to obtain
reproducible spectra. The solid-state IR and VCD spectra of Co(L)·CS2 and Co(L) are
shown in Figure 7a,b. In contrast to the IR spectra, the VCD spectra of the two phases are
easily distinguishable. Obviously, this is information that was lost in the solution state. The
differences between the solution-state and solid-state spectra are greater in the VCD spectra
compared to the IR spectra: There is far less tendency towards a monosignate spectra for
both phases in the solid-state spectra. Fascinatingly, an nCS signal related to co-crystallized
CS2 is visible in VCD spectrum at 1514 cm−1 (Figure 7a). This indicates supramolecular
chiral induction of this achiral molecule. The signal disappears on CS2 desorption to form
Co(L) (Figure 7b). The intensity of the IR band at 1524 cm−1 also decreases. This band
comprises an overlap of the nCS with a band that does not appear in the VCD spectrum.

Chemistry 2021, 3, FOR PEER REVIEW 10 
 

 

are easily distinguishable. Obviously, this is information that was lost in the solution state. 
The differences between the solution-state and solid-state spectra are greater in the VCD 
spectra compared to the IR spectra: There is far less tendency towards a monosignate 
spectra for both phases in the solid-state spectra. Fascinatingly, an nCS signal related to co-
crystallized CS2 is visible in VCD spectrum at 1514 cm−1 (Figure 7a). This indicates supra-
molecular chiral induction of this achiral molecule. The signal disappears on CS2 desorp-
tion to form Co(L) (Figure 7b). The intensity of the IR band at 1524 cm−1 also decreases. 
This band comprises an overlap of the nCS with a band that does not appear in the VCD 
spectrum. 

The solid-state IR and VCD spectra of Co(NO)(L) are shown in Figure 7c. It is difficult 
to assign the bands in the spectra, however, the band at 1638 cm−1, assigned to the imine 
νCN, is significantly more intense than all the others. It also shows an increase of 22 cm−1 
compared to the band assigned to this vibration in the solution state spectra of the same 
complex. This suggests a change in the electronics of the complex due to different supra-
molecular interactions in the solution-state versus the solid-state. The higher wavenumber 
for νCN suggests that this bond is stronger in the solid state. Indirectly, this suggests that 
the NO is a stronger donor to the Co atom in the solid-state. The well-resolved, but low 
intensity, band at 1659 cm−1 is assigned to νNO. There is significant polarity inversion be-
tween comparable signals in the paramagnetic Co(II) compounds, the diamagnetic 
{Co(NO)}8 phase, and the {Co(NO)}8 systems in the solution and solid states. Curiously, 
an unassigned band at 1344 cm−1, which is most intense in the solution-state spectrum of 
Co(NO)(L), appears to be absent in the solid-state VCD spectrum. 

 
Figure 7. Solid-state IR spectra of a mixture of equal amounts of both hands of the complexes (purple line) and solid-state 
VCD spectra of (a) Co(L)·CS2, (b) Co(L), and (c) Co(L)(NO) (blue line complexes of LS,S; red line complexes of LR,R). 

4. Conclusions 
We have demonstrated chemisorption of NO into an ostensibly non-porous crystal-

line material, but postulate that transient conduits for CS2 desorption and NO chemisorp-
tion form because the tert-butyl groups can rotate around the bond between the aryl and 
the tert-butyl carbon atoms. The gas–solid reactions involved in the transitions between 
Co(L)·CS2, Co(L), and Co(L)(NO) occur in crystal to crystal transformations, and in one 
case an SCSC transformation. The NO binds reversibly, and the materials do not allow O2 
to react with the bound NO. This supports the hypothesis that the in-crystal reactivity 
seen for the crystalline dicobalt(II) complexes described in the introduction, where sorbed 
NO and O2 were transformed to a nitrite ligand and a nitrate counter anion [7], is depend-
ent on two cobalt(II) ions in close proximity. Accessibility and the specific coordination 
sphere and geometry, however, also clearly play important roles. 

Figure 7. Solid-state IR spectra of a mixture of equal amounts of both hands of the complexes (purple line) and solid-state
VCD spectra of (a) Co(L)·CS2, (b) Co(L), and (c) Co(L)(NO) (blue line complexes of LS,S; red line complexes of LR,R).

The solid-state IR and VCD spectra of Co(NO)(L) are shown in Figure 7c. It is difficult
to assign the bands in the spectra, however, the band at 1638 cm−1, assigned to the
imine νCN, is significantly more intense than all the others. It also shows an increase of
22 cm−1 compared to the band assigned to this vibration in the solution state spectra
of the same complex. This suggests a change in the electronics of the complex due to
different supramolecular interactions in the solution-state versus the solid-state. The higher
wavenumber for νCN suggests that this bond is stronger in the solid state. Indirectly,
this suggests that the NO is a stronger donor to the Co atom in the solid-state. The well-
resolved, but low intensity, band at 1659 cm−1 is assigned to νNO. There is significant
polarity inversion between comparable signals in the paramagnetic Co(II) compounds, the
diamagnetic {Co(NO)}8 phase, and the {Co(NO)}8 systems in the solution and solid states.
Curiously, an unassigned band at 1344 cm−1, which is most intense in the solution-state
spectrum of Co(NO)(L), appears to be absent in the solid-state VCD spectrum.

4. Conclusions

We have demonstrated chemisorption of NO into an ostensibly non-porous crystalline
material, but postulate that transient conduits for CS2 desorption and NO chemisorption
form because the tert-butyl groups can rotate around the bond between the aryl and
the tert-butyl carbon atoms. The gas–solid reactions involved in the transitions between
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Co(L)·CS2, Co(L), and Co(L)(NO) occur in crystal to crystal transformations, and in one
case an SCSC transformation. The NO binds reversibly, and the materials do not allow O2
to react with the bound NO. This supports the hypothesis that the in-crystal reactivity seen
for the crystalline dicobalt(II) complexes described in the introduction, where sorbed NO
and O2 were transformed to a nitrite ligand and a nitrate counter anion [7], is dependent
on two cobalt(II) ions in close proximity. Accessibility and the specific coordination sphere
and geometry, however, also clearly play important roles.

The crystalline solid state offers advantages beyond the solution state, through the
provision of tailored cavities that might amplify chirality compared to the solution state.
This study shows that in-crystal chemistry for the first time, with the induction of chirality
onto both a chemisorbed achiral guest and a physisorbed co-crystallized achiral guest.
Crystal phases themselves can occur in chiral space groups without being constructed
from enantiopure molecules. Both situations offer feasibility for absolute asymmetric
synthesis (AAS) [44] inside solid states. The rare use of VCD spectroscopy to characterize
the complexes in this work illustrates its untapped potential in the study of enantiomers of
metal coordination complexes in both solution- and solid-states.
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