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We propose a novel class of composite models that feature both a technicolor and a composite
Higgs vacuum limit, resulting in an asymmetric dark matter candidate. These Techni-Composite
Higgs models are based on an extended left-right electroweak symmetry with a pseudo-Nambu
Goldstone boson Higgs and stable dark matter candidates charged under a global U(1)X symmetry,
connected to the baryon asymmetry at high temperatures via the SU(2)R sphaleron. We consider,
as explicit examples, four-dimensional gauge theories with fermions charged under a new confining
gauge group GHC.

The nature of Dark Matter (DM) and the origin of
its relic density are arguably among the most important
open questions in particle physics [1]. An answer could
be found within existing solutions to other problems in
nature: for instance, we know that the bulk of the bary-
onic mass is due to strong dynamics while the baryonic
relic density is due to a particle/anti-particle asymme-
try. Furthermore, the baryonic and DM relic densities
are of the same order. Within Technicolor (TC) models
of the electroweak (EW) symmetry breaking [2, 3], this
observation has motivated DM candidates whose mass
is due to new strong interactions and whose stability is
due to U(1)X techni-baryon charge [4, 5]. The baryon
and DM relic densities can share a common asymmetric
origin if this U(1)X global symmetry is anomalous under
the EW sphalerons, paralleling the EW anomaly of the
baryon number [6]. This realizes asymmetric dark mat-
ter (ADM) [5] in TC models. In view of the progress at
the LHC, the main drawback of TC models is that, in
general, there is no simple parametric limit in which a
Standard Model (SM)-like Higgs is recovered.

One way out consists in engineering a vacuum mis-
alignment of TC into a Composite Higgs (CH) model [7–
9], which is possible for a subset of TC theories [10,
11]. The composite Higgs state now arises as a
pseudo-Nambu-Goldstone boson (pNGB) from the spon-
taneously broken (chiral) global symmetry. Hence, it can
be parametrically close to the SM Higgs. However, in
CH models the U(1)X techni-baryon or specie number
is either broken or no longer anomalous under the EW
sphalerons, thus the link between the baryon and DM
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asymmetric relic densities is severed (see [12–19] for mod-
els with thermal composite DM).

In this letter, we propose a new model building avenue
where the CH and TC limits are simultaneously present,
thus allowing for a successful description of the EW sym-
metry breaking and ADM. This requires:

i) a SM-like composite pNGB Higgs multiplet with
custodial symmetry [20];

ii) a composite DM candidate, stable due to a U(1)X
symmetry of the strong interactions;

iii) an EW anomaly of the U(1)X symmetry allowing
for shared asymmetry of baryons and DM;

iv) a suppressed DM thermal relic density.

The first ingredient i) is a key feature of CH models [7],
holographic extra dimensions [9, 21], Little Higgs [22, 23],
Twin Higgs [24] and elementary Goldstone Higgs mod-
els [25]. Extensions of the global symmetries can accom-
modate ii), however these model types typically do not
satisfy ii) and iii) together.

To realize all four requirements of the Techni-
Composite Higgs scenario, we are led to consider an
extended Left-Right EW sector, with gauged SU(2)L ⊗
SU(2)R ⊗ U(1)Y′ symmetry, dynamically broken by the
strong dynamics via a left-right coset: G/H ⊃ GL/HL⊗
GR/HR. The left sub-coset GL/HL is pinned in a CH
direction by appropriate interactions, while the right
sub-coset GR/HR is in the TC vacuum with an unbro-
ken global U(1)X . This symmetry is anomalous under
SU(2)R, and the lightest composite state carrying X-
charge plays the role of ADM. Imposing the requirements
i)-iv) also constrains non-trivially the form of the oper-
ators that generate the SM-fermion masses. Note that
the interplay between TC and CH limits was used in
Ref. [26], where the TC vacuum is only present at high
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temperatures. In our paradigm, the two limits coexist at
all temperatures.

For concreteness, we consider four-dimensional gauge
theories with a single strongly interacting gauge group
GHC, with hyper-fermions that generate the global sym-
metry breaking via condensation. For models with a sin-
gle fermionic representation, the symmetry breaking pat-
terns are known [27, 28]: Given N Weyl spinors trans-
forming as the HC R representation, the three possible
classes of vacuum cosets are SU(N)/SO(N) for real R,
SU(N)/Sp(N) for pseudo-real R and SU(N)⊗ SU(N)⊗
U(1)/SU(N) ⊗ U(1) for complex R [29]. The minimal
CH cosets that fulfil requirement i), within these three
classes, contain N = 5 in the real case [8], N = 4 in both
the pseudo-real [30] and the complex cases [13]. In terms
of pNGB spectrum, the pseudo-real case is the most mini-
mal, with only 5 states. Similarly, the minimal TC cosets
that fulfil the requirements ii)-iv) contain N = 4 in the
real case [31–34], N = 4 in the pseudo-real [35] andN = 2
in the complex one [7]. In the first two, the ADM can-
didates are pNGBs, while in the complex case it is a
baryon [7].

To realize our scenario, we need to introduce two sets
SL,R of hyper-fermions, charged under SU(2)L,R, respec-
tively. The representations RL,R may be different or
identical, and they determine the resulting coset struc-
ture. We will assume that the pattern of the L and R
cosets are the same as above even when the two repre-
sentations are different, while for RL ≡ RR the coset
is enlarged. The strong GHC interactions produce con-
densates of the SL,R fermions at scales fL,R, which are
of similar size. Hence, the breaking of the EW gauge
symmetry occurs as follows:

SU(2)L ⊗ SU(2)R ⊗U(1)Y′
fR−−→ SU(2)L ⊗U(1)Y

fL sin θL=vEW−−−−−−−−−→ U(1)EM ,
(1)

where the hierarchy between the EW scale vEW and the
compositeness scale fL ∼ fR is generated in the SL-sector
and is parametrized by a (small) angle θL.

The most minimal choice for the SL sector consists
in four Weyl spinors QL, arranged in one SU(2)L dou-
blet (U,D) and two singlets Ũ and D̃, transforming as
a pseudo-real representation RL of GHC and as a funda-
mental of a global GL = SU(4)L. The minimal L coset
will, therefore, contain the longitudinal components of
the W± and Z bosons, a Higgs candidate and a singlet
η. We will focus on this scenario in the following, as
shown in Table I.1 The minimal SR also contains four
Weyl spinors QR, arranged in an SU(2)R doublet (C, S)

1 The same gauge charge assignment can be used for a complex
RL, at the price of including right-handed hyper-fermions with
the same quantum numbers. For real RL one would need two
SU(2)L doublets with opposite U(1)Y′ charges and a neutral sin-
glet, thus 5 Weyl spinors in total.

GHC SU(3)QCD SU(2)L SU(2)R U(1)Y′ U(1)X
(U,D) RL 1 � 1 0 0
Ũ RL 1 1 1 −1/2 0
D̃ RL 1 1 1 +1/2 0

(C, S) RR 1 1 � 0 +1

C̃ RR 1 1 1 −1/2 −1
S̃ RR 1 1 1 +1/2 −1
qL,i 1 � � 1 +1/6 0
qR,i 1 � 1 � +1/6 0
lL,i 1 1 � 1 −1/2 0
lR,i 1 1 1 � −1/2 0

TABLE I. Fermion field content and their charges of the
Techni-Composite Higgs template models with the full left-
right gauge symmetry. All groups are gauged except for
U(1)X , which is a global symmetry in the R sector responsible
for dark matter stability.

and two singlets C̃ and S̃. The quantum numbers, to-
gether with the U(1)X charges, are shown in Table I,
and are valid for all possible representations RR: in
the complex case, however, the singlets C̃ and S̃ trans-
form as the conjugate R∗R, while U(1)X is the techni-
baryon number. In the pseudo-real case, the coset is
SU(4)R/Sp(4)R and, besides the longitudinal modes of
theW±R and ZR bosons, the spectrum contains a complex
neutral pNGB carrying X-charge. In the real case, the
coset SU(4)R/SO(4)R contains a complex neutral pNGB
and two charged ones carrying X-charge. In the complex
case, the coset SU(2)R1 ⊗ SU(2)R2 ⊗ U(1)X/SU(2)V R ⊗
U(1)X does not contain pNGBs carrying X-charge, so
the DM candidate is played by a baryon-like state. In all
cases, the U(1)X symmetry has a gauge anomaly with
respect to the SU(2)R ⊗ U(1)Y′ symmetry. Note that, if
RL 6= RR, there exists a global U(1)Θ symmetry under
which both sets of hyper-fermions are charged, which is
spontaneously broken by the condensates and generates
a light singlet pNGB, along the lines of Refs [36, 37].
Finally, if RL = RR ≡ R, the coset is enhanced: for
pseudo-real R, the coset is SU(8)/Sp(8); for real R, the
minimal case is SU(9)/SO(9); for complex R, we have
SU(6)1⊗SU(6)2⊗U(1)TB/SU(6)V ⊗U(1)TB , where the
U(1)X in Table I is a linear combination of U(1)TB and
a U(1) factor inside SU(6)V .

The remaining important ingredient for model build-
ing is the list of operators that generate the SM-fermion
masses. The operators play an important role in de-
termining the vacuum alignment in both L and R sec-
tors, particularly via the top mass [38]. To connect the
U(1)X anomaly to the baryon number via SU(2)R, we
require that the right-handed SM fermions transform as
doublets, as shown in the bottom rows of Table I. The
operators that generate the fermion masses, therefore,
appear as 6-fermion operators with the generic structure
QLQLQRQRψLψR. For instance, for the top quark

ξt
Λ5
t

(QTLPLQL)(QTRPRQR)qL,3qR,3 + h.c. , (2)
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where PL and PR are two-index matrices in the GL and
GR space, respectively, selecting the appropriate combi-
nations of the hyper-fermions that ensure gauge invari-
ance and couple the top fields with the components that
acquire a non-zero condensate. As such, PL,R transform
as doublets of SU(2)L,R, respectively. Similar operators
can be added for all SM fermions. Note also that, for
complex RL,R, it suffices to replace QTL,R by the conju-
gate hyper-fermions. We also remark that the operator
in Eq. (2), reminiscent of the mass terms in the original
TC models [3], can be generated via partial composite-
ness [39] in models proposed in Refs [40, 41] via operators
of the form:
yL
Λt
qL,3(QTLPLQLχt) +

yR
Λt
qR,3(QTRPRQRχ

†
t) + h.c. , (3)

where χt is a new hyper-fermion, transforming in a
suitable representation of GHC, and carrying appropriate
quantum numbers under the SM gauge symmetry. To
illustrate the new scenario, in the following we will focus
on a specific minimal model, and leave other examples
to the Supplementary Material.

The minimal scenario we illustrate here is based on
GHC = Sp(6)HC with RL = F (fundamental, pseudo-
real) and RR = A (antisymmetric, real). We will also
include masses for the hyper-fermions in SL, because
they help stabilize the CH vacuum [10, 42]. The relevant
physics can be described below the condensation scale
in terms of an effective theory, following the CCWZ pre-
scription [43], and based uniquely on the coset symmetry:

SU(4)L × SU(4)R ×U(1)Θ

Sp(4)L × SO(4)R
. (4)

At lowest order, the effective Lagrangian has the form

LEFT = Lχpt − Veff , (5)

where the first term corresponds to the usual chiral per-
turbation theory for the pNGBs, and the second term
contains the effective potential generated by loops of the
SM fields, namely the EW gauge bosons and the fermions
(top). The latter plays a crucial role in determining the
vacuum alignment and the gauge symmetry breaking (see
the Supplementary Material).

To investigate the asymmetric relic, we analyse the
dynamics of the sphalerons associated with the left and
right gauge symmetries. The SU(2)L×SU(2)R sphaleron
equations, when in equilibrium above fL,R, yield chemi-
cal potential equations of the form

(µuL,i + 2µdL,i) + µνL,i +
d(RL)

2
(µU + µD) = 0,

(µuR,i + 2µdR,i) + µνR,i +
d(RR)

2
(µC + µS) = 0,

(6)

where sums over the generations are left understood and
d(R) is the dimension of representation R. The labelling

of the chemical potentials µ follows Ref. [35]. The align-
ment of the SL sector vacuum also results in the separate
equation µU +µD = 0. Together with equilibrium condi-
tions from the 6-fermion operators in Eq. (2) and condi-
tions on the relevant charges, these sphaleron processes
yield a system that can be solved for the relic density of
X-charged states after condensation (see the Supplemen-
tary Material).

If all three families of SM fermions are gauged under
SU(2)R and all the operators, including both sphalerons,
are in equilibrium, then the total U(1)X asymmetry is
zero. However, due to the high scale of fL,R not all fam-
ilies are in equilibrium. A fermion ψ, receiving its mass
mψ from a Yukawa interaction generated by a 6-fermion
operator such as Eq. (2), is in equilibrium at a tempera-
ture T if [44, 45]

2.3× 104 ×

√
10 TeV
f

mψ

vEW
&

(
f

T

)9/2

. (7)

The system will have non-trivial solutions if the 6-fermion
operators are inefficient for at least one charged fermion
but efficient for at least one other charged fermion. By
evaluating Eq. (7) at the condensation temperature T =
f , until which expect the sphalerons to be active, we find
this to be realised for 20 GeV . f . 3× 1012 GeV.

In this window, 6-fermion operators are inefficient for
at least the electron but efficient for at least the top
quark. Solving the set of equilibrium under these con-
ditions we find, for both first- and second-order phase
transitions, the following ratio:∣∣∣∣XB

∣∣∣∣ =2

(
3 +

L

B

)
, (8)

whereX, B and L are theX-charge, lepton, baryon num-
ber densities respectively, and where we leave L and B
as free parameters in this work. For second-order phase
transitions, Eq. (8) applies even when all 6-fermion op-
erators are inefficient. For first-order phase transitions,
the system is under-constrained in absence of efficient
6-fermion operators. The ADM relic density can be ex-
pressed in terms of the charge densities as

ΩDM
ΩB

=

∣∣∣∣XB
∣∣∣∣ mDM

2mp
σ

(
mDM

2TF

)
, (9)

where TF is the temperature of the phase transition and
σ(x) is the Boltzmann suppression factor [35, 46].

In absence of Boltzmann suppression (mDM � TF ),
the asymmetry sharing naturally fixes the DM number
density to the order of the baryonic number density, so
that ΩDM/ΩB ∼ O(1) is found for mDM ∼ O(mp). The
correct relic density ΩDM/ΩB = 5.36 [47], therefore, re-
quires either a small DM mass mDM � fR, a tuning in
|X/B| � 1, or an exponential suppression in the Boltz-
mann factor for TF � mDM . Another possibility is to
allow the decay of the heavy X-charged pNGB into an-
other light stable state [48].
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To assure condition iv), the DM pNGB needs to ef-
ficiently annihilate to suppress the thermal component
of the relic density. For heavy DM candidates (mDM >
mWR = gRfR/2), the dominant annihilation channel is in
a pair of SU(2)R gauge bosons, which has a cross section
of the form:

〈σv〉WR =
g4

Rm
2
DM

32πm4
WR

√
1−

m2
WR

m2
DM

×
(

1−
m2
WR

m2
DM

+
3

4

m4
WR

m4
DM

)
.

(10)

This channel is effective in wiping out the thermal relic
if 〈σv〉WR

� 3× 10−26 cm3s−1 [49], implying

mDM � 0.073 TeV×
(
fR
TeV

)2

, (11)

for mDM � mWR . For lighter DM masses, mDM <
mWR , the main annihilation mode involves a pair of
pNGBs that do not carry X-charges: by studying the
potential, we found that the dominant channel involves
the U(1)Θ pNGB Θ, which can be parametrically lighter
than the other pNGBs [37]. The annihilation cross sec-
tion reads

〈σv〉Θ =
λ2
XXΘΘ

32πm2
DM

√
1−

m2
Θ

m2
DM

, (12)

where the quartic coupling is suppressed by the misalign-
ment in the L-coset, λXXΘΘ ∼ λ0(vSM/fL)2. This pro-
cess can wipe out the thermal density for

mDM � 0.21 TeV×
(
TeV
fL

)2

λ0 , (13)

for mΘ � mDM .
The strongest bound on the compositeness scale comes

from direct searches at colliders for WR, as this state can
be produced via Drell-Yann if it couples to the first gener-
ation. The most recent CMS bound from di-jet resonant
searches [51] reads mWR & 5.2 TeV, which implies for
gR = gL a bound fR & 16.4 TeV. If fL = fR, this bound
also implies a bound on the misalignment in the EW sec-
tor (L-coset), which we can best express in terms of the
fine tuning parameter ξ = v2

SM/f
2
L [52]: the WR searches

imply a bound ξ . 2.25 · 10−4. This is much stronger
in this model than the bounds on Higgs compositeness
from the Higgs couplings to the SM particles set by the
LHC data [53] (ξ . 0.1), and the EW precision measure-
ments [11] (ξ . 0.04). On the contrary, as we expect
mDM ∼ fR, the values seem compatible with the limit in
Eq. (11). The fine-tuning of one part in 4 ·103 should not
discourage the study of this model, as it represents a huge
improvement over the fine-tuning in the SM, which for
the Higgs mass amounts to one part in 1034 against the
Planck scale. As already discussed, due to the large DM
masses, additional tuning is needed in Eq. (9) to obtain
the correct relic density via the asymmetric production.

FIG. 1. Constraints on mDM and the compositeness scale
f ≡ fL = fR. The red shaded region is excluded by thermal
overproduction, while an upper limit on mDM . 110 TeV
comes from unitarity bounds [50]. The low mass limit of the
excluded region depends on λ0, and we show three sample
values. A lower limit on f comes from direct searches of WR

at colliders, which crucially depends on the value of gR (we
show three sample values: gR = 1, gL, gY, with the last being
the minimum allowed value). The high mDM edge of the red
region has a mild dependence on gR, illustrated by the thin
orange band, moving to the right for larger gR.

Another valid possibility consists in tuning the mass
of the DM to be mDM � fR. Assuming |X/B| = O(1)
in Eq. (9) (and TF � mDM ), saturating the relic density
would require mDM ≈ 1 GeV. This low mass can be
achieved by properly tuning some couplings in the
effective potential in Eq. (5). As the DM pNGB is nearly
massless, this limit is technically natural according
to ’t Hooft naturalness principle [54] as it reveals the
restoration of a global symmetry.

In summary, we have presented a family of Techni-
Composite Higgs models which employ new strong dy-
namics to produce both a pNGB Higgs and an asym-
metric DM candidate. The key novel ingredient is a
Left-Right symmetry and the contemporary presence of
a Composite Higgs vacuum in the L-sector and a Tech-
nicolor vacuum in the R-sector. An illustrative example
of the allowed parameter space is shown in Fig. 1. This
shows model-independently the main features of Techni-
Composite models: a successful ADM relic density can be
obtained for masses above 10 TeV or for masses around
the GeV scale. This family of models can thereby nat-
urally explain the observed Higgs mass and DM abun-
dance with a minimum of tuning, although some tuning
remains necessary to ensure the correct vacuum align-
ment and DM mass.
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Supplementary material

I. EFFECTIVE LAGRANGIAN AND VACUUM ALIGNMENT

We consider the scenario with RR real and RL pseudoreal of GHC, which applies to the model studied in the
main text. To describe the general vacuum alignment in the effective Lagrangian of this scenario, we identify an
SU(2)L ×U(1)Y′ subgroup in SU(4)L by the generators

T iLL =

(
σi 0
0 0

)
, T 3

LY′ =

(
0 0
0 −σT3

)
, (E1)

and an SU(2)R ×U(1)Y′ subgroup in SU(4)R by the generators

T iRR =

(
σi 0
0 0

)
, T 3

RY′ =

(
0 0
0 −σT3

)
, (E2)

where σi are the Pauli matrices with i = 1, 2, 3. Note that the Y′-charge generator is identified as Y′ ≡ T 3
LY′ + T 3

RY′ ,
while the standard hypercharge is given by Y ≡ T 3

LY′ + T 3
RR + T 3

RY′ after the breaking of SU(2)R. Furthermore, T 3
LY′

and T 3
RY′ are part of global SU(2) symmetries that define a custodial symmetry in both cosets [20]. This is required

in the L-coset to reproduce the correct Z/W mass ratio.
The alignment between the extended EW subgroup SU(2)L × SU(2)R × U(1)Y′ and the stability group Sp(4)L ×

SO(4)R can then be conveniently parameterized by one misalignment angle, θL. To do so, we identify the vacua that
leave the SU(2)L×U(1)Y symmetry intact, E±L , and the one breaking SU(2)L×U(1)Y to U(1)EM, EBL . In the R-coset,
there is no vacuum that preserves SU(2)R×U(1)Y′ , hence we define the one breaking the gauge group to U(1)Y, EBR .
They are given in term of two-index SU(4) matrices as:

E±L =

(
iσ2 0
0 ±iσ2

)
, EBL =

(
0 12

−12 0

)
,

EBR =

(
0 12

12 0

)
.

(E3)

Either choice of E±L is equivalent [30], and in this letter we have chosen E−L . The true SU(4)L vacuum can be written
as a linear combination of the above vacua, EL(θL) = cθLE

−
L + sθLE

B
L (a CH vacuum), while the vacuum of the

SR sector is ER ≡ EBR (a TC-like vacuum). We use the short-hand notations sx ≡ sinx, cx ≡ cosx and tx ≡ tanx
throughout.

The Goldstone excitations around the vacuum are then parameterized by

ΣL(x) = exp

[
2
√

2 i

(
ΠL(x)

fL
+

ΠΘ(x)

fΘ

)]
EL(θL),

ΣR(x) = exp

[
2
√

2 i

(
ΠR(x)

fR
− ΠΘ(x)

fΘ

)]
ER,

(E4)

where the pion matrices Πx are defined as

ΠL(x) =

5∑
i=1

Πi
LX

i
L ∈ GL/HL,

ΠR(x) =

9∑
a=1

Πa
RX

a
R ∈ GR/HR,

ΠΘ(x) = Θ(x)
14

4
∈ U(1)Θ/∅ .

(E5)

The last one encodes the diagonal pNGB state Θ associated with the broken global symmetry group U(1)Θ, acting
on the two fermion representations and having no gauge anomaly with the HC group. The matrices Xi

L are the
θL-dependent broken generators of SU(4)L, while Xa

R are the broken generators of SU(4)R. While in general the
decay constants are different, for simplicity from now on we will assume f ≡ fL,R = fΘ.
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In the SL sector, we identify the would-be Higgs boson as h ≡ Π4
L ∼ cθL(UU +DD) + sθLRe UTCD and the singlet

pNGB as η ≡ Π5
L ∼ Im UTCD, while the remaining three Π1,2,3

L are exact Goldstones eaten by the massive W± and
Z. In the SR sector, we identify the complex isotriplet scalars,

Π0
CS ≡

Π8
R + iΠ9

R√
2

∼ CTCS,

Π+
CC ≡

Π4
R + iΠ5

R + Π6
R + iΠ7

R

2
∼ CTCC,

Π−SS ≡
Π4
R + iΠ5

R −Π6
R − iΠ7

R

2
∼ STCS,

(E6)

where Π0
CS,CS

is identified as the DM candidate. The remaining three, Π1,2,3
R , are exact Goldstones eaten by the

massive W±R and ZR. Note that, following Ref. [35], we have used Dirac spinors to indicate the hyperfermions,
combining the SU(2)L,R doublet and singlet Weyl spinors.

Below the condensation scale ΛHC ∼ 4πf , the effective Lagrangian is given by

Leff = Lkin − Veff . (E7)

The kinetic part of the Lagrangian is given by

Lkin =
f2

8
Tr[DµΣ†LD

µΣL] +
f2

8
Tr[DµΣ†RD

µΣR]. (E8)

with

DµΣL/R = ∂µΣL/R − i(GL/R,µΣL/R + ΣL/RG
T
L/R,µ),

GL/R,µ = gL/RW
i
L/R,µT

i
L/R + gY′B

′
µT

3
LY′/RY′ ,

where gL,R,Y′ are the gauge couplings of SU(2)L, SU(2)R and U(1)Y′ , respectively. Here the hypercharge coupling is
given by g−2

Y = g−2
Y′ + g−2

R . Henceforth, the minimal value gR can acquire is gmin
R = gY.

At leading order, each source of symmetry breaking contributes independently to the effective potential in Eq. (E7):

Veff ⊃ Vgauge + Vtop + Vm + VB. (E9)

Here the EW gauge interactions in Eq. (E8) yield the gauge loop contributions to the potential Veff :

Vgauge =− CLf4

{
g2

L

∑
i

Tr
[
T iLLΣL(T iLLΣL)∗

]
+ g2

Y′Tr
[
T 3
LY′ΣL(T 3

LY′ΣL)∗
]}

+ CRf
4

{
g2

R

∑
i

Tr
[
T iRRΣR(T iRRΣR)∗

]
+ g2

Y′Tr
[
T 3
RY′ΣL(T 3

RY′ΣL)∗
]}

,

(E10)

where CL,R encode non-perturbative low energy constants. The top loop contributions arising from the six-fermion
operator

ξt
Λ5
t

(QTLPLQL)(QTRPRQR)qL,3qR,3 + h.c. (E11)

yield the effective potential contribution:

Vtop = −1

4
Cty

2
t f

4
{ ∣∣Tr

[
P 1
LΣL

]∣∣2 ∣∣Tr
[
P 2
RΣR

]∣∣2
+ Tr

[
P 1
LΣL

]
Tr
[
P 2
RΣR

]
Tr
[
P 2
LΣ†L

]
Tr
[
P 1
RΣ†R

]
+ (L↔ R)

}
,

(E12)

where Ct is a non-perturbative coefficient for the top loop, yt (proportional to (ΛHC/Λt)
5ξt) is identified by the top

Yukawa coupling and the projectors,

(P 1
L,R)ij =

1

2
(δ1iδ3j ± δ3iδ1j), (P 2

L,R)ij =
1

2
(δ2iδ4j ± δ4iδ2j), (E13)
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select the components of QTL,RQL,R that transform as doublets of SU(2)L,R. Moreover, the explicit hyper-fermion
bilinear mass terms yield potential contributions:

Vm = 2πZL Tr
[
MLΣ†L

]
+ h.c., (E14)

where ML = diag(m1ε,−m2ε) is the mass matrix of the SL hyper-fermions. Finally, it is relevant to consider possible
four-hyper-fermion operators in the SR sector of the form QRQRQRQR which yield potential contributions [33]:

VB = CBg
2
Bf

4 Tr
[
BΣ†RBΣR

]
. (E15)

The coefficients CL,R, Ct, ZL and CB in Eq. (E10)-(E15) areO(1) form factors that can be computed on the lattice [55].
At leading order, the effective potential for the misalignment angle is given by

V 0
eff =− 8πf3ZLmUDcθL − f4CLg̃

2
Lc

2
θL − f

4Cty
2
t s

2
θL , (E16)

where mUD ≡ m1 +m2 and g̃2
L ≡ (3g2

L + g2
Y′)/2. By minimizing the above potential, ∂θLV 0

eff = 0, we obtain

cθL =
4πZLmUD

f(Cty2
t − CLg̃2

L)
, (E17)

where the GL/HL part of the vacuum is aligned in a composite Higgs direction (0 < cθL < 1), while the GR/HR part
of the vacuum remains in a TC direction. The conditions for this vacuum alignment to be a stable minimum in the
presence of these terms are ∂θLθLV 0

eff > 0 and that all the squared masses of the pNGBs are positive. However, the
condition ∂θLθLV 0

eff > 0 is fulfilled by requiring m2
h > 0 due to the fact that ∂θLθLV 0

eff = f2m2
h. Therefore, we need

that all the pNGBs have positive squared masses. The Higgs and η masses are

m2
h = 2(Cty

2
t − CLg̃2

L)v2
EW, m2

η = m2
h/s

2
θL , (E18)

while the masses of the complex isotriplet composite scalars, Π0
CS,CS

,Π±CC ,Π
±
SS , in the SR sector are

m2
Π0

CS
= 2(CBg

2
B − CRg̃2

R + Cty
2
t s

2
θL)f2,

m2
Π±CC

= m2
Π±SS

= m2
Π0

CS
+ 2CRg

2
Y ′f

2,
(E19)

where g̃2
R ≡ (−g2

R + g2
Y′)/2. To obtain a stable vacuum, we therefore need m2

h > 0 and m2
Π0

CS
> 0. Following the

common lore that the top loops tend to break the electroweak symmetry while gauge loops preserve it, we assume
that the form factors CL,R,t > 0. Hence, the masses squared are always positive, as long as the top loops dominate, as
expected as the Yukawa coupling is larger than the gauge ones. Furthermore, in the R-coset, we find that g̃2

R ≥ 0 for
gR ≥

√
2gY, while it becomes positive for gY < gR <

√
2gY. In the latter range, it tends to cancel the contribution of

the top. As m0
ΠCS

= mDM , the magnitude of the Dark Matter candidate mass crucially depends on the value of these
coefficients. In general, the first Eq. (E19) implies that the DM mass is of the order of the pNGB decays constants,
i.e. mDM ∼ f . Small masses, of the order of GeV, could be obtained if a tuned cancellation is enacted. This could
happen if the gauge contribution is large and positive, for gR & gY, or for CB < 0.

As discussed in the main text, for light DM mass the annihilation is dominantly into the light pNGB associated to
the U(1)Θ symmetry. If either of the vector-like masses m1 or m2 are vanishing, the pNGB Θ state mixes with the
SL pNGB η state, resulting in that the mass eigenstate Θ̃, consisting mostly of Θ, is massless while η̃ has a mass of
order f :

m2
Θ̃

= 0, m2
η̃ =

1

4

m2
h

s2
θL

(5 + c2θL) ≈ 3m2
h

2s2
θL

. (E20)

However, the Θ̃ state can achieve a small mass from its mixing with a Θ′ state corresponding to the U(1) symmetry
which is quantum anomalous. In addition, the mass of Θ′ is generated by instanton effects related to the U(1)
anomaly [37].

Thus, for DM masses below the WR mass, the dominant annihilation channel is ΠXΠX → Θ̃Θ̃ with the coupling
λXXΘ̃Θ̃ given by

Leff ⊃ λXXΘ̃Θ̃Π0
CSΠ0

CS
Θ̃Θ̃ (E21)



10

with

λXXΘ̃Θ̃ =4Cty
2
t s

2
θL

cθL√
2 + c2θL

≈ 4√
3
Cty

2
t

(
vEW

f

)2

≡ λ0

(
vEW

f

)2

.

This implies that λ0 ∼ 4√
3
Cty

2
t , which could be an order 1 number.

In the scenario with RR = F (fundamental, pseudo-real) of GHC = Sp(2NHC), the DM candidate is identified by a
complex isosinglet, ΠCS,CS , where its mass is given by

m2
ΠCS

= 2(CBg
2
B − CRg̃2

R + Cty
2
t s

2
θL)f2, (E22)

where g̃2
R = (3g2

R + g2
Y′)/2 which is always positive. Due to the fact that sθL � 1, m2

ΠCS
is negative when CBg2

B = 0

and therefore a small DM mass, mΠCS
� f , can be achieved by tuning CBg

2
B to a certain value of order unity.

Furthermore, in the scenarios with the top mass arising from PC operators, the DM mass can also be tuned by the
term CBg

2
B to small values in both scenarios. These models are inspired by the work in Ref. [41].

II. EXAMPLES OF THEORIES FEATURING THE TECHNI-COMPOSITE HIGGS MECHANISM

In the main body of the article, we studied in detail one specific model based on a gauge symmetry Sp(2N)HC

and with fermions in two different representations. However, the same mechanism can be found in many other
models, with different possibilities for the L and R-cosets, as listed in Tables T1 and T2, respectively. Here we list the
quantum numbers of the HC fermions needed to obtain the minimal cosets, for the three classes of HC representations:
pseudo-real, real and complex.

GHC SU(2)L SU(2)R U(1)Y′ U(1)TB,L

pseudo-real
(U,D) RL � 1 0 0
Ũ RL 1 1 −1/2 0
D̃ RL 1 1 +1/2 0

complex
(U,D) RL � 1 0 1
Ũ RL 1 1 −1/2 1
D̃ RL 1 1 +1/2 1

(Uc, Dc) R∗L � 1 0 -1
Ũc R∗L 1 1 +1/2 -1
D̃c R∗L 1 1 −1/2 -1

real
(U,D) RL � 1 1/2 0
(Ũ , D̃) RL � 1 -1/2 0
X RL 1 1 0 0

TABLE T1. Fermion field content and their charges for the minimal L-cosets.

Finally, in Table T3 we provided some examples of gauge-fermion theories generating various combinations for the
L and R-cosets. In the cases with RL = RR, the global symmetry is extended to a single simple group that contains
the L and R sub-cosets



11

GHC SU(2)L SU(2)R U(1)Y′ U(1)X U(1)TB,R

pseudo-real
(C, S) RR 1 � 0 +1 0
C̃ RR 1 1 −1/2 −1 0
S̃ RR 1 1 +1/2 −1 0

complex
(C, S) RR 1 � 0 +1 1
C̃ R∗R 1 1 −1/2 −1 −1
S̃ R∗R 1 1 +1/2 −1 −1

real
(C, S) RR 1 � 0 +1 0
C̃ RR 1 1 −1/2 −1 0
S̃ RR 1 1 +1/2 −1 0

TABLE T2. Fermion field content and their charges for the minimal R-cosets.

GHC RL dim(RL) RR dim(RR) Annotations
SU(4)/Sp(4)L ⊗ SU(4)/SO(4)R ⊗U(1)Θ/∅

Sp(2N)HC F 2N A N(2N − 1)− 1 N odd to avoid Witten anomalies
Sp(2N)HC F 2N Adj N(2N + 1) N even to avoid Witten anomalies

SU(4)2/SU(4)L ⊗ SU(4)/SO(4)R ⊗U(1)Θ/∅⊗U(1)TB,L

SU(4)HC F 4 A2 6 -
SO(10)HC Spin 16 F 10 -

SU(4)2/SU(4)L ⊗ SU(2)2/SU(2)R ⊗U(1)Θ/∅⊗U(1)TB,L ⊗U(1)TB,R

SU(5)HC F 5 A2 10 -
SU(5)/SO(5)L ⊗ SU(4)/SO(4)R ⊗U(1)Θ/∅

SO(7)HC F 7 Spin 8 -
SU(5)/SO(5)L ⊗ SU(4)/Sp(4)R ⊗U(1)Θ/∅

Sp(2N)HC A N(2N − 1)− 1 F 2N N ≥ 2

SU(5)/SO(5)L ⊗ SU(2)2/SU(2)R ⊗U(1)Θ/∅⊗U(1)TB,R

SU(4)HC A 6 F 4 -
SO(10)HC F 10 Spin 16 -

SU(8)/Sp(8)
Sp(2N)HC F 2N F 2N -

SU(9)/SO(9)

SU(4)HC A 6 A 6 -
SO(10)HC F 10 F 10 -

SU(6)2/SU(6)⊗U(1)TB

SU(N)HC F N F N -
SU(5)HC A 10 A 10 -

TABLE T3. Examples of gauge fermion theories leading to the Techni-Composite Higgs models.
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III. ASYMMETRY SHARING

We here in detail show how the asymmetric dark matter relic can be calculated [35, 46]. First, note that at high
temperatures the particle number density n+ and the anti-particle number density n− of a given species are given by

n± = g

∫
d3k

(2π)3

g

e(E∓µ)β − η
with η = +1 for bosons

η = −1 for fermions (E23)

where g is the number of internal degrees of freedom, µ is the chemical potential of the particle species and β = 1/T
(with kB = 1). At the freeze-out temperature of sphalerons, TF , we have µ/TF � 1 such that the difference in particle
numbers of a given species is given by

n = n+ − n− = gT 3
F

µ

TF

σ(m/TF )

6
, (E24)

which reveals that the chemical potentials are the relevant quantities. Here the statistical suppression factor σ is

σ(m/TF ) =


6

4π2

∫∞
0
dxx2 cosh−2

(
1
2

√
x2 + (m/TF )2

)
for fermions

6
4π2

∫∞
0
dxx2 sinh−2

(
1
2

√
x2 + (m/TF )2

)
for bosons.

(E25)

The statistical factor σ(m/TF ) is normalized such that

lim
m/TF→0

σ(m/TF ) =

{
1 for fermions,
2 for bosons,

(E26)

while σ(m/TF ) ' 2(m/2πTF )3/2e−m/TF for large m/TF � 1. In therms of chemical potentials, the ratio of DM and
baryon energy densities can be expressed as

ΩDM
ΩB

=
1
2mDM

mP

∣∣∣∣µXµB
∣∣∣∣σ(mDM

2TF

)
, (E27)

where we neglected the σ(m/2TF ) for the SM fermions. The task is then to calculate the total chemical potential µX
of all fermions charged under U(1)X and the total chemical potential of all baryons µB

To study the chemical potentials we adopt the we adopt the notation of Ryttov-Sannino [35] and Harvey-Turner
[46]. The equilibrium condition from sphalerons, as written in this convention, was already given in the main text.
Additionally, the 6-fermion operators, given by Eq. (E11), lead to equilibrium conditions of the form

µUL − µUR + µSR − µSL − µuL,i + µuR,i = 0,

µUL − µUR + µSR − µSL + µdL,i − µdR,i = 0,

µUL − µUR + µSR − µSL − µνL,i + µνR,i = 0,

µUL − µUR + µSR − µSL + µeL,i − µeR,i = 0,

(E28)

and

µDL − µDR + µCR − µCL − µuR,i + µuL,i = 0,

µDL − µDR + µCR − µCL + µdR,i − µdL,i = 0,

µDL − µDR + µCR − µCL − µνR,i + µνL,i = 0,

µDL − µDR + µCR − µCL + µeR,i − µeL,i = 0,

(E29)

where the index i refers to the three generations of SM fermions, each of which has equilibrium conditions of this
form. However, depending on the temperature, only some generations of quarks and leptons have efficient 6-fermion
operators. As was pointed out in the letter, a fermion ψ, receiving its mass mψ from such an interaction is in
equilibrium at a temperature T if [44, 45]

2.3× 104 ×

√
10 TeV
f

mψ

vEW
&

(
f

T

)9/2

. (E30)
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We assume that the conditions corresponding to (E28) and (E29) apply for any fermions for which the condition
(E30) is satisfied for all participating species at the condensation temperature T = f .

Furthermore, thermal equilibrium in the electroweak interactions imply the following conditions:

µuL,i = µdL,i + µWL, µuR,i = µdR,i + µWR,

µeL,i = µνL,i + µWL, µeR,i = µνR,i + µWR,

µDL = µUL + µWL, µSL = µCL + µWR.

(E31)

The equilibrium is constrained by conditions on the net charge of plasma. To quantify this, consider the eigenvalues
of third the components of the isospins of SU(2)L,R, which are

T 3
LL =3×

∑
i

(
1

2
µuL,i −

1

2
µdL,i

)
+
∑
i

(
1

2
µνL,i −

1

2
µeL,i

)
− 4µWL + 2

(
1

2
µUL −

1

2
µDL

)
, (E32)

T 3
RR =3×

∑
i

(
1

2
µuR,i −

1

2
µdR,i

)
+
∑
i

(
1

2
µνR,i −

1

2
µeR,i

)
− 4µWR + 2

(
1

2
µCR −

1

2
µSR

)
. (E33)

The overall electric charge, Q = T 3
LL + T 3

RR + Y ′, is then

Q =3×
∑
i

(
2

3
µuL,i +

2

3
µuR,i −

1

3
µdL,i −

1

3
µdR,i

)
+
∑
i

(−1µeL,i − 1µeR,i + 0µνL,i + 0µνR,i)

+ d(RL)

(
1

2
µUL +

1

2
µUR −

1

2
µDL −

1

2
µDR

)
+ d(RR)

(
1

2
µCL +

1

2
µCR −

1

2
µSL −

1

2
µSR

)
(E34)

− 4µWL − 4µWR.

The conditions imposed depend on the type of phase transition. Above the transition, where SU(2)L,R are good
symmetries, T 3

LL,RR must vanish. If the phase transition is sudden, i.e. first order, then this property is assumed to
be inherited by the relic such that relevant condition is

Q = 0, T 3
LL = 0, T 3

RR = 0. (E35)

Below the transition, SU(2)L,R are broken, such that T 3
LL,RR need no longer vanish. If the phase transition is gradual,

i.e. second order, then this leads to violation of T 3
LL,RR conditions. Instead, the VEV drives the chemical potentials

of neutral condensates to zero, such that the relevant condition is

Q = 0, µUL − µUR = 0, µCR − µCL = 0. (E36)

We are ultimately interested in comparing the total baryon and DM densities, which depend on the total chemical
potentials of the baryons and technibaryons (charged under U(1)X), which are

µB =
∑
i

(µuL,i + µuR,i + µdL,i,+µdR,i) , (E37)

µX = d(RR) (µCR + µCL + µSL + µSR) . (E38)

Solving all the above conditions for µX and µB we find∣∣∣∣µXµB
∣∣∣∣ = 2

(
3 +

L

B

)
, (E39)

if 6-fermion operations are inefficient for at least one generation but efficient for at least one other generation. Since the
occupation numbers are proportional to the chemical potentials, we can identify |µX/µB | = |X/B|. If all generations
are in equilibrium, then the lepton number is constrained to L = −3B so that µX = 0. Furthermore, if 6-fermion
operators are inefficient for all generations, then µX is unconstrained in the case of first-order transitions while Eq.
(E39) applies for the case of second-order transitions.
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