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Abstract

We introduce a new, simplified model of proteins, which we call protein metastructure. The
metastructure of a protein carries information about its secondary structure and β-strand
conformations. Furthermore, protein metastructure allows us to associate an object called a
fatgraph to a protein, and a fatgraph in turn gives rise to a topological surface. It becomes thus
possible to study the topological invariants associated to a protein. We discuss the correspon-
dence between protein metastructures and fatgraphs, and how one can compute topological
invariants, such as genus and the number of boundary components, from fatgraphs. We then
describe an algorithm for generating likely candidate metastructures using the information
obtained from topology of protein fatgraphs. This algorithm is further developed to predict
β-sheet topology of proteins, with a possibility to combine it with an existing algorithm. We
demonstrate the algorithm on the data from PDB, and improve the performance of and existing
algorithm by combining with it.

1 Introduction

The configurations of β-strands in a protein,
often called β-sheet topologies, have been
studied since the 1970’s [28]. β-sheets, along
with α-helices, are one of the fundamental
structural components in the proteins. As op-
posed to helices, their structures involve inter-
actions between residues which are far apart
along the backbone. A better understanding
of their structures and foldings is therefore
crucial, if we are to understand the folding
mechanism of entire proteins. The problem
is further complicated by the intrinsic flexibil-
ity of β-sheet structures compared to α-helices
[16]. Early studies [28, 27, 31] have identi-
fied some general rules (such as the preference
for the right-handedness in parallel β-sheets)
from investigation of individual proteins. As
the amount of available data increased, studies
have used computer programs to survey the
database and found frequent patterns in the
β-strand configurations [34, 29]. The infor-
mation can be used to filter and rank a series
of decoy structures by computing probabilities
for different patterns [29]. Another approach

is to assign pseudoenergy to each pair of β-
strand residues and solve the β-sheet topology
prediction problem as an optimisation prob-
lem [15]. At least one study [19] has com-
pared the two methods, and found that the
latter’s performance to be better. One may
also combine the two methods by, for exam-
ple, forbidding certain β-strand configurations
that are not found in the database [32], or by
incorporating the two in Bayesian modelling
[12]. Other studies used integer programming
techniques to predict β-sheet topologies [30,
18].

Fatgraph is a mathematical object, that
has been used successfully to study topolog-
ical structures of another biological macro-
molecule, RNA [24, 26, 2]. A fatgraph can
be thought of as a standard graph, where
the edges and vertices have been “fattened”
to ribbons and discs to form a surface (see
Section 1.2 for details). It has been partic-
ularly useful in solving the problem of enu-
merating topologically distinct RNA [5, 3, 4]
and protein structures [6]. Furthermore, the
technique can be adopted to lower levels of
abstraction by considering more parameters,
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thus allowing for enumeration of more realis-
tic structures [1, 9, 8, 7]. It has also been
shown that the topology of proteing fatgraphs
is strongly linked to their geometric struc-
tures [11, 10]. Inspired by their success, we
introduce a new model for studying β-sheet
topology of proteins, which we call protein
metastructure. This model greatly simplifies
the study of β-sheet topologies by amalgamat-
ing consecutive residues belonging to the same
secondary structure, but still retains the in-
formation needed to understand the configu-
ration of β-strands. We give a detailed defini-
tion in Section 1.1. Furthermore, each metas-
tructure corresponds to a fatgraph, and this
transition to fatgraphs allows us to compute
topological invariants such as the number of
boundary components and genus associated
to each protein. The details of this corre-
spondence are described in Section 1.2. Our
use of fatgraphs in studying β-sheet topolo-
gies was inspired by [25], but our construc-
tion is much simpler, and can be constructed
without the knowledge of proteins’ geomet-
ric structures. We will use the topology of
fatgraphs associated to proteins to predict β-
strand conformations of proteins. More specif-
ically, we will use the distribution of genus
and number of boundary components to fil-
ter the candidate structures, whose topology
does not agree with the distribution (see Sec-
tion 1.3 and Section 3 for details).

1.1 Protein Metastructure

Given a protein, its primary structure is the
sequence of amino acids in the polypeptide
chain. There are 20 different amino acids in
the standard gene code, so a primary struc-
ture can be expressed as a finite word in an
alphabet with 20 letters;

EKKSINECDLKGKKVLIRVDFNVP... (1)

The secondary structure of a protein can be
defined as a set of local substructures, most
frequent of which are α-helices and β-sheets.
The DSSP-algorithm [21] is an algorithm com-
monly used to classify residues into 3 or 7 sec-
ondary structure classes. When used (with 3-
class output) on the above protein it produces
a word in an alphabet with 3 letters;

γγγγαααγγγγγγββββββγγγγγ... (2)

Here we used the letter α for Helices, β for
Sheets, and γ for Coils. When we apply this

reduction to the data extracted from PDB [14]
(see Section 2 for details of data selection), we
begin to see some patterns in the proportion
of these classes in proteins. There are, for ex-
ample, few proteins which contain less than
25% γ residues, or more than 75% of any one
class (Figure 1a). This can be explained by
the rigidness of helix and sheet structures; a
protein composed (almost) exclusively of α or
β residues will not have the necessary flexi-
bility to bend and fold into its native struc-
ture. For that to occur, a certain proportion
of γ residues are required. On the other hand,
too much γ residues would most likely result
in lack of stability and will be energetically
unfavourable. The largest concentration ap-
pears to be around 30∼50% α, 10∼30% β, and
30∼50% γ residues (Figure 1a).

We now introduce the reduced secondary
structure sequence by reducing each segment
of identical letters in a secondary structure se-
quence (2) to a single letter;

γαγβγβγβγα...

Not surprisingly, the distribution of propor-
tions of the 3 classes in such reduced sequences
are concentrated around γ = 50% (Figure 1b),
since the reduced sequences are mostly se-
quences of γαs and γβs by construction.

In a reduced sequence, each letter β corre-
sponds to a β-strand. We may therefore add
an additional data to a reduced sequence to
specify β-sheet structure of the protein. To
do this, we define the protein metastructure
as the triple (r, P,A), where r is a finite word
in an alphabet of three letters, α, β and γ, and
P and A are sets of pairs of integers (i, j) for
some 1 ≤ i < j ≤ s, where s is the number of
letter β in r. We also put a further condition,
that P ∩ A = ∅. Then for a given protein, we
obtain its metastructure by setting r to be the
reduced sequence, and populating P and A as
follows;

1. Number the letters β in r along the back-
bone, starting from the N-terminus.

2. Identify all pairs (i, j), where there is at
least one hydrogen bond between ith and
jth strands.

3. Let I be the set of all pairs (i, j) identified
in the previous step. Partition I into two
sets P and A, where P consists of all par-
allel connections and A all anti-parallel
connections.

2



(a) Proportion of 3 classes in secondary
structure sequences

(b) Proportion of 3 classes in reduced se-
quences

Figure 1: Proportion of 3 classes in 16264 se-
lected proteins

If there is only a single bond between two
strands, thus making it impossible to deter-
mine the configuration between the two, we
extend the strands by up to three residues. If
it is still not possible to determine the con-
figuration (because the extended strands has
a single bond between them), then we assign
the pair to P , as parallel configuration. This
is because the standard anti-parallel configu-
ration requires two hydrogen bonds between
a pair of residues, thus making it less likely
that there is only one hydrogen bond present.
This forced assignment was necessary only in
181 out of 10141 proteins in the dataset, rep-
resenting 1.8% of the data.

Let S be the set of all possible metastruc-
tures, and let Sbif ⊂ S be the subset con-
sisting of all metastructures, where at least
one β-strand is connected to more than 2
other strands (bifurcations). Similarly, let

Sbar be the subset of metastructures with β-
barrels (see Table 1 for the size of these sub-
sets of metastructures). Consider S̃ = S \
(Sbif ∪ Sbar). For each s ∈ S̃, we can associate
a metastructure motif diagram (Figure 2) as
follows;

Figure 2: An example metastructure motif di-
agram. The associated metastructure may be
(γβγαγβγβγβγβγ, {(1, 2)}, {(3, 4), (2, 5)})

1. Each β-strand is denoted by a straight
line segment with an arrowhead in the
middle.

2. If (i, j) ∈ P , draw the i’th and j’th
strands next to each other, with arrow-
heads on both segments pointing the
same direction.

3. If (i′, j′) ∈ A, draw the i’th and j’th
strands next to each other, with arrow-
heads pointing the opposite direction.

4. Draw a “sheet” around each stack of
strands.

5. Connect the strands, from the 1st to last,
following the directions of arrowheads,
and avoiding the interior of the sheets.

6. N-terminus is denoted by ◦, and C-
terminus is denoted by ⊗.

7. Note for each sheet, we have a choice
of 2 strands to draw on the top, and a
choice of which way the first strand points
to (see Figure 3; orientation of all other
strands are then decided by parallel/anti-
parallel configurations). We can make
this canonical by requiring that;

(a) the top strand comes before the bot-
tom strand in the backbone-ordering

(b) the first strand (in the backbone-
ordering) in a sheet points from left
to right

3



Figure 3: Four equivalent metastructure di-
agrams. The two requirements force us to
choose the top-left diagram.

We note that the metastructure diagram,
hence the β-sheet topology of a protein with
n β-strands can be recorded in an n × n ma-
trix, whose entries are either 0 or 1. This can
be done by setting (i, j)’th entry to 1 if the
i’th and j’th strands are paired in the par-
allel configuration, and setting (j, i)’th entry
to 1 if the pairing is anti-parallel. All other
entries (where there is no pairing observed)
are set to 0. We call this matrix P the pro-
tein’s pairing matrix (Figure 4). The 1’s in the
upper-triangular part show parallel pairings,
and the 1’s in the lower-triangular part show
anti-parallel pairings. The number of paired
strands the ith strand has can be computed
as the total number of 1 cells in the ith row
and column. In a pairing matrix P, an iso-
lated strands can be seen as zero row and col-
umn; the i’th strand is isolated (has no paired
strand), if and only if the i’th row and the i’th
column do not have a 1. Similarly, the i’th
strand has bifurcation, if and only if the total
number of 1 cells in the i’th row and column
is strictly greater than 2. A β-sheet manifests
itself as a “chain” of strands, with the edge
strand having only one non-zero entry in the
corresponding row or column. A β-barrel is a
circular chain without edge strands (Figure 5).

Note, if T is the set of metastructure mo-
tifs, the map ϕ : S̃ → T described above cor-
responds to “forgetting” r in (r, P,A) ∈ S̃.

1 2 3 4 5

1

2

3

4

5 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

01

1

1

Figure 4: A protein metastructure diagram
and the corresponding pairing matrix. The
1 in (1,2)-th entry corresponds to the parallel
configuration between the first and the second
strand in the backbone, and the two 1’s in the
lower-triangular part correspond to the anti-
parallel configurations between the third and
the fourth strands, and the second and the
fifth strands.

1.2 Fatgraph

In order to understand topological character-
istics of protein metastructures, we need to
pass from metastructure diagrams to topolog-
ical surfaces. The main idea is to “thicken”
the non-β segments in a given metastructure
diagram to (untwisted) bands or ribbons, as
in Figure 6, to produce a fatgraph D. For-
mally, a fatgraph D is a graph D together
with a cyclic ordering of the incident half-
edges at each vertex. It can be obtained from
a metastructure diagram by contracting each
sheet to a point, and ordering the resulting
half-edges at each vertex anti-clockwise from
the N-terminus, or the starting end of the first
strand in the sheet (Figure 7). A fatgraph D
gives rise to a unique (orientable) surface XD
by thickening each edge to a band and each
vertex to a disc. As an orientable surface, it
obeys Euler’s formula

χ(XD) = v − e+ n = 2− 2g,

where v is the number of vertices (which cor-
respond to the β-sheets in the metastructure
diagram), e the number of edges or bands (cor-
responding to the non-β segments, excluding
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Figure 5: An example pairing matrix with
three sheets. The first sheet consists of strands
1, 2, and 3 in anti-parallel configuration. The
edge strands are 1 and 3, which can be seen
by the fact that the total number of 1-cells in
the first (or third) row and column is 1. On
the other hand, the total number of 1-cells in
the second row and column is 2, indicating the
strand 2 is paired to two other strands. The
second sheet, consisting of strands 4, 5, and 6,
has no edge strand, and forms a barrel. The
third sheet consists of strands 7, 8, 9, and 10.
We see the strand 8 has three paired strands,
thus indicating a bifurcation.

the N- and C-terminal segments), n the num-
ber of boundary components, and g the genus
of XD.

Note this map ψ from T to the set Σ of
fatgraphs with two marked half-edges is not
injective (Figure 7). Nonetheless the compo-
sition ψ ◦ ϕ allows us to compute topologi-
cal invariants, such as genus and number of
boundary components for protein metastruc-
tures.

1.3 Topological characteristics of
proteins

We compute genera and numbers of boundary
components for 10141 selected proteins from
PDB ([14]; see Section 2 for details of the
selection process), which do not contain β-
barrels or bifurcations in β-sheets. Figure 8
shows frequency distribution of actual pro-
teins by their genera and numbers of boundary
components.

The same distribution was also computed

Figure 6: Thickening edges of metastructure
diagrams to obtain fatgraphs (or more pre-
cisely, surfaces associated to fatgraphs). The
surface on the left has genus 0, whereas the
one on the right has genus 1.

1
2

3 4
5

6

Figure 7: Construction of fatgraph from
metastructure diagrams. Note the two differ-
ent motifs result in an identical fatgraph.

from 10141 simulated metastructures, pro-
duced as follows;

1. Reduced sequences were generated in the
following manner.

(a) The length was chosen such that the
distribution of lengths for the simu-
lated data is the same as the distri-
bution for the PDB data.

(b) Each pair of letters (1st and 2nd,
3rd and 4th, and so on) was given
50% chance of being “γα” and 50%
chance of being “γβ”. If the se-
quence has odd number of letters,
the letter “γ” was attached at the
end.
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Figure 8: Frequency distribution (extract) of protein metastructures by genus and number of
boundary components

Figure 9: Frequency distribution (extract)
of simulated protein metastructures by genus
and number of boundary components

2. To each reduced sequence generated as
above, a fatgraph structure was assigned
as follows.

(a) Let U be the set of letter βs in a
given sequence, indexed with their
positions in the sequence; β1, β2, . . . .
Then we partition U into a random
number of subsets, each containing
at least 2 elements.

(b) For each subset Ui, choose a random
ordering of βis in the subset. This
defines the ordering of strands in a
beta-sheet.

(c) For each ordered subset Ui with ni
elements, choose a random sequence
of 1 and -1, of length ni, but start-
ing with 1. This sequence defines
parallel/anti-parallel orientation of
each strand with respect to the pre-
vious strand in a sheet.

We observe that the actual data tends to
favour lower genera (and higher number of
boundary components) compared to the sim-
ulated data (Figure 9). This implies that
metastructures whose associated surfaces have
lower genera are favoured over those that re-
sult in high genera in the nature. Inspired by
this observation, we will develop a method for
prediction of β-sheet topology using the char-
acteristics of the protein’s associated surface
in Section 3.

For later use, we compute the distribution
of the actual protein data by genus, num-
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ber of boundary components and number of
β-strands in the largest β-sheet. We call
this the 3-dimensional genus-boundary distri-
bution (see Supplementary Material).

2 Dataset

The dataset used was prepared similarly to
the HQ60 dataset in [23]. Here we give a brief
summary of this dataset. PISCES [33] is a
service that, among other things, creates sub-
sets of sequences from PDB based on specified
threshold for structure quality and sequence
identity. For the HQ60 dataset, we use only
X-ray structures, with a resolution threshold
of 2.0Å, Rfac threshold of 0.2, and maximum
sequence homology of 60%. The data was ex-
tracted from PDB in May 2021, resulting in
a set of 16262 proteins. The hydrogen bonds
are taken from the DSSP program [21], with
the additional conditions [13];

HO-distance < 2.7Å

angle(NHO), angle(COH) > 90◦.

The secondary structures are also determined
by DSSP, and they are recorded with three
main secondary classes; [H]elix for H, G or
I 8-state classes, [S]heet for E, and [C]oil for
others. Thus we obtain, for each protein
(of length n) in the dataset, a primary se-
quence a1a2 · · · an, where ai is one of the 20
standard gene code amino acids, and a sec-
ondary structure sequence b1b2 · · · bn, where
bi = α, β, or γ. We superimpose these two se-
quences to obtain a hybrid sequence c1c2 · · · cn,
where ci = bi if bi = α or β, and ci = ai oth-
erwise. Together with the information about
hydrogen bonds, we are able to identify β-
strands, their pairings and whether the pairing
is parallel or anti-parallel (see Section 1.1 for
details). For the purpose of the current analy-
sis, we are only interested in proteins contain-
ing β-sheets. Furthermore, proteins contain-
ing β-barrels are excluded from the analysis.
For bifurcated β-sheets, we performed the fol-
lowing pre-processing;

1. For each β-strand s, let p be the number
of β-strands that are paired to it.

2. If p = 3, do the following.

3. Let s1, s2, s3 be the β-strands paired to
s, ordered by the number of H-bonds

to/from s. Let n1, n2, n3 be the number
of H-bonds between s and s1, s2, s3, re-
spectively. We have n1 ≥ n2 ≥ n3.

4. If n3 ≤ n2/2, ignore the pairing between
s and s3.

If, after the above pre-processing, a protein
still contains a bifurcated β-sheet, it is ex-
cluded from the analysis. By performing
the pre-processing, the number of proteins
excluded because of bifurcation was reduced
from 3859 to 1946. The procedure resulted in
11853 proteins for the analysis. See Table 1
for the number of proteins in each category.

α only 1551 (9.5%)
Bifurcation 1946 (12.0%)
β-barrel 912 (5.6%)
Accepted for analysis 10141 (72.9%)
Total (HQ60) 16262

Table 1: Number of proteins filtered from the
dataset.

3 Methods

We will now describe a series of experiments
to attempt to utilise the topological charac-
teristics of protein metastructures described
in Section 1.3.

3.1 Binary classification of can-
didate structures by their
topology

200 proteins are randomly chosen for valida-
tion from the dataset, and the remaining 9941
proteins are used as the learning data. The
idea is to use the learning data to decide the
local configuration of β-strands, i.e. those
strands, that are close to each other along the
backbone. We then use the global topologi-
cal data to decide the global configuration of
the local blocks. We will now describe the
first part of the method below. The aim is to
first populate the pairing matrix P along the
super- and sub-diagonals (i.e. the entries di-
rectly above and below the diagonal). We then
repeat the procedure to populate the second
entries above and below the diagonal, then the
third entries, and so on. Pseudocode for pop-
ulating the super- and sub-diagonals in the
pairing matrix is given in Algorithm 1.
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1. From each protein in the validation data,
we consider its hybrid sequence and ex-
tract segments between two consecutive
β-strands.

2. For each extracted segment s, compute
alignment score for all segments from
the learning data using the Needleman-
Wunsch algorithm1 [22].

3. Let t be the segment from the learning
data with the highest alignment score.
The configuration of two strands at either
end of segment t (whether they are paired
by hydrogen bonds, and if so whether par-
allel or anti-parallel) determines the con-
figuration of two strands at either end of
s.

4. Normalise the alignment score by divid-
ing it by the score for perfect match, and
record it in the appropriate entry in the
pairing matrix P. Specifically, if p(s, t) is
the alignment score for segments s and
t, the normalised score p̃(s, t) is given by
p(s, t)/p(s, s). Suppose s is the segment
between i’th and i + 1’th β-strands, and
that they should be paired in the parallel
configuration. Then set P(i,i+1) = p̃(s, t).
If, on the other hand, they should be
paired in the anti-parallel configuration,
set P(i+1,i) = p̃(s, t)

5. If there is a tie for the high-
est alignment score such that
p(s, t1) = p(s, t2) = · · · = p(s, tk), set x =
#{ti|the two strands at either ends of ti
are paired}, where #S denotes the

number of elements in a set S. Set
y = k − x. The two strands at either end
of s are paired, if and only if x ≥ y. The
parallel/anti-parallel configuration of the
two strands is determined similarly.

The above procedure allows us to populate
P along the super- and sub-diagonals. We now
repeat the procedure with s being a segment
containing k β-strands, k = 1, 2, 3, . . . , such
that s is the segment between i’th and i+k+
1’th β-strands. We do this to populate P up to
d entries above and below the diagonal, where

1For the substitution matrix we use blosum62 [20],
extended by setting a match score with α or β to 4 and
mismatch involving α or β to -4. See Supplementary
Material for more details.

Algorithm 1 Pseudocode for populating the
first diagonal in the pairing matrix P

Let t1, t2, . . . , tm be the hybrid segments be-
tween two consecutive β-strands, extracted
from all proteins in the learning dataset.
Let s1, s2, . . . , sn be the hybrid segments be-
tween two consecutive β-strands in a given
protein in the validation data.
Let P by an empty n× n matrix.
for si in s1, s2, . . . , sn do

for tj in t1, t2, . . . , tm do
Compute alignment score p(si, tj).

end for
Let j̃ ∈ {1, 2, . . . ,m} such that

p(si, tj̃) = maxj{p(si, tj)}.
if j̃ is uniquely determined then

if The two segments at either ends
of tj̃ are paired then

Set p̃i = p(si, tj̃)/p(si, si).
if The two segments are paired in

parallel configuration then
Set P(i,i+1) = p̃i,P(i+1,i) = 0.

else
Set P(i+1,i) = p̃i,P(i,i+1) = 0.

end if
else

Set P(i,i+1) = P(i+1,i) = 0.
end if

else
Let j̃1, j̃2, . . . , j̃k be such that

p(si, tj̃h) = maxj{p(si, tj)} for all
h ∈ {1, 2, . . . , k}.

Set X = {h|two strands at either
ends of tj̃h are paired}

Set Y = {1, 2, . . . , k} \X
if #X ≥ #Y then

Set p̃i = p(si, tj̃)/p(si, si).
Let P ⊂ X be the subset such

that the two segments at either ends of
tj̃h , h ∈ P are paired in parallel configura-
tion.

Let A ⊂ X be the corresponding
subset for anti-parallel configuration.

if #P ≥ #A then
Set P(i,i+1) = p̃i,P(i+1,i) = 0.

else
Set P(i+1,i) = p̃i,P(i,i+1) = 0.

end if
else

Set P(i,i+1) = P(i+1,i) = 0.
end if

end if
end for

8



d is given by;

d =





1 if n < 7

n− 5 if 7 ≤ n < 11

5 if 11 ≤ n.

Here the limit of 5 for d is forced by the fact
that as the segments get longer, it becomes
increasingly harder to obtain high alignment
scores. This results in the chance of hav-
ing P(i,j) = 1, in the discretisation process
desribed below, being extremely small, when
|i− j| > 4 (We were not able to get 1 in these
cells in our tests). This is possibly related
to the fact that the above method is essen-
tially a method based on local data, and thus
is not suited for predicting non-local config-
uration of β-strands. For that, another ap-
proach is needed which takes into account the
global characteristics, which we will describe
in the second part of the method. Before that,
we need to translate the entries of the partial
pairing matrix computed above, which are real
numbers between 0 and 1, to either 0 or 1. We
do this by changing the non-zero entries to 1,
starting from the largest to the smallest. If,
at any point, setting an entry to 1 results in a
bifurcation or a β-barrel, the entry is set to 0
and we move onto the next largest entry (Fig-
ure 10). For later use, we name this procedure
MakeBinary(), which takes a (partial) matrix
of pairing scores as an input and returns a
(partial) pairing matrix.

We now have a partial pairing matrix, popu-
lated up to d entries above and below the diag-
onal, without bifurcations or barrels. We pop-
ulate the remaining entries by going through
all possibilities, while avoiding bifurcations
and β-barrels. We also require that the re-
sulting matrix does not contain any isolated
strand. The result is a number of candi-
date matrices, whose number depends on the
partial pairing matrix computed in the first
part of the method. We now construct a fat-
graph from each candidate matrix, and com-
pute its genus and number of boundary com-
ponents, together with the number of strands
in the largest sheet. We compare this data
with the 3-dimensional genus-boundary distri-
bution computed in Section 1.3. By a layer
in the 3-dimensional genus-boundary distribu-
tion, we mean the 2-dimensional distribution
of genus and number of boundary components
for a specific value of number of strands in the

largest sheet. Let g, n, l denote the genus,
the number of boundary components and the
number of strands in the largest sheet. Let
f(g, n, l) be the frequency of the cell (g, n, l)
in the 3-dimensional genus-boundary distribu-
tion. We define the topology score stopo(τ) for
a metastructure τ with genus g, n boundary
components and l strands in the largest sheet,
by

stopo(τ) =
f(g, n, l)

Tl
,

where Tl is the sum of frequencies for the lth
layer. For a cutoff value v ∈ (0, 1), a candidate
metastructure τ is accepted, if stopo(τ) ≥ v,
and rejected if stopo(τ) < v. We also compute
accuracy of each candidate structure, and look
at the relationship between accuracy and ac-
ceptance of candidate structures.

3.2 Metastructure prediction
by sequence alignment and
topology

The method described in Section 3.1 was
modified to provide a single, “best candi-
date” metastructure. The modification was
made such that instead of classifying candi-
date metastructures as either accepted or re-
jected, a weighted sum of all candidate pair-
ing matrices was produced, with weight given
by the 3-dimensional genus-boundary distri-
bution. More precisely, suppose a candidate
pairing matrix P results in a structure with
genus g, n boundary components and l strands
in the largest sheet. Let f(g, n, l) be the fre-
quency of the cell (g, n, l) in the 3-dimensional
distribution, and Tl be the sum of frequencies
for the lth layer, as before. Then our final
score matrix P̂score is given by

P̂score =
∑

P

f(g, n, l)

Tl
P,

where the sum is over all candidate pairing
matrices for a protein. The final pairing ma-
trix P̂ is computed from P̂score as before. A
pseudocode for this procedure is shown in Al-
gorithm 2.

3.3 Metastructure prediction by
Betapro and topology

Betapro is a computer program for predicting
β-sheet topology using recurrent neural net-
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Figure 10: Illustration of the procedure MakeBinary(), which takes a partial score matrix (left)
as an input and produces a pairing matrix (right). We start with the highest alignment score
and set the first two, 0.98 and 0.95 to 1. The third highest, 0.87, would result in bifurcation, so
it is set to 0. The next three scores are set to 1, but the last non-zero entry, 0.23 will result in
a barrel involving strands 4, 5, and 6, so it is set to 0. The resulting partial pairing matrix has
three blocks, listed as a set of strands, (1,2,3), (4,5,6) and (7,8). Filling this matrix by either
0 or 1 would result in 220 = 1048576 different matrices, but the restrictions placed on pairing
matrices means there are only 97 valid completions.

Algorithm 2 Pseudocode for computation of
prediction pairing matrix P̂.

Let Ppartial be a given partial pairing ma-
trix.
Let P̂score be a zero matrix of the same size
as Ppartial.
for all Completion P of Ppartial do

if P contains a barrel, a bifurcation or
an isolated strand then

Move to next completion
end if
Compute genus g, number of boundary

components n, and size of the largest sheet
l for the metastructure corresponding to P.

Find the frequency of the cell (g, n, l)
and the sum of frequencies for the lth layer
Tl.

P̂score = P̂score + f(g,n,l)
Tl

P
end for
Set P̂ = MakeBinary(P̂score)

work (RNN) [15]. It takes a primary struc-
ture sequence as input, or a primary and sec-
ondary structure sequences, if the secondary
structure is available from other sources. The
output is a score matrix, where the entries are
not restricted to (0, 1), but positive real num-
bers computed as a sum of pseudoenergy for
each residue pair in a β-strand pairing. The
reported performances of Betapro are 0.54 for
Recall and 0.59 for Precision [15].

In order to predict protein metastructure,
we run Betapro using the primary and sec-
ondary structure sequences as input. From the
output score matrix, we choose m entries with
the highest scores, where m equals 4% of the
number of entries in the score matrix, exclud-
ing the main diagonal. The entries that result
in a bifurcation or a barrel, are ignored. The
chosen entries are considered as β-strand pair-
ings, and they are set to 1 in the partial pair-
ing matrix. Next, all valid (i.e. avoiding iso-
lated strands, bifurcations and barrels) com-
pletions of the partial pairing matrix are gen-
erated. Each completion is given two scores,
one based on Betapro score matrix, and the
other based on the genus-boundary distribu-
tion. The first, sbp, is the sum of all scores in
Betapro score matrix, where there is 1 in the
pairing matrix. The second, stopo, is given
by f(g, n, l)/Tl, where g, n, l is the genus, the
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number of boundary components, and size of
the largest sheet, as before. Our prediction is
the structure with the highest combined score,

ŝ = asbp + bstopo, (3)

where a, b ∈ [0, 1] with a + b = 1. The corre-
sponding pseudocode is shown in Algorithm 3.

4 Results

Some of the larger proteins in the 200 test pro-
teins could not be analysed using the method
described, as there were too many possible
ways to complete the pairing matrix. We
therefore limit the analysis to the 181 pro-
teins containing up to 20 β-strands. Their fre-
quency distribution by the number of residues
and β-strands is shown in Figure 11.

(a) By the number of residues

(b) By the number of strands

Figure 11: Frequency distribution of 200 pro-
teins by the number residues (a) and by the
number of strands (b).

The algorithm from Section 3.1 produced
91,431,292 candidate structures in total, but
there are significant variations in the num-
ber of candidate structures per protein (Fig-
ure 12), as the possible number of candidates

Algorithm 3 Pseudocode for computation
of prediction pairing matrix P̂ from Betapro
score matrix Pbp.

Let Pbp be the pairing score matrix pro-
duced by Betapro.
Let Ppartial be an empty matrix of the same
size as Pbp.
Order the entries in Pbp from largest to
smallest.
Set c = 0.
while c ≤ m do

Let (i, j) be the index for the first ele-
ment in the ordered list of entries in Pbp.

Set Ppartial(i,j) = 1.
if Ppartial results in a barrel or a bifur-

cation then
Set Ppartial(i,j) = 0.
c = c− 1.

end if
Remove the first element from the or-

dered list of entries in Pbp.
c = c+ 1

end while
for all Completion P of Ppartial do

if P contains a barrel, a bifurcation or
an isolated strand then

Move to next completion
end if
Compute genus g, number of boundary

components n, and size of the largest sheet
l for the metastructure corresponding to P.

Find the frequency of the cell (g, n, l)
and the sum of frequencies for the lth layer
Tl.

Set stopo(P) = f(g,n,l)
Tl

.

Set Pscore = P×̇Pbp, where ×̇ denotes
the entry-wise multiplication.

Set sbp(P) =
∑

i,j Pscore(i,j).
Set ŝ(P) = asbp(P) + bstopo(P).

end for
Set P̂ to be the comple-
tion P′, such that ŝ(P′) =
max{ŝ(P)|P is a completion of Ppartial}.
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also depends on the partial structure deter-
mined using alignment of the α/γ segments
between β-strands. In the current analysis,
one protein (4UPIA) accounted for 63,907,920
candidate structures, representing 70% of the
total number. Note, although some of these
numbers are large, they still represent a sig-
nificant reduction from the theoretically pos-
sible number of candidate structures, which is
given by n! ·2n−2 for a protein with n strands,
when considering only those structures with a
single sheet. Naturally the numbers are even
larger when considering multiple-sheet struc-
tures. We list the first few terms in Table 2.

Figure 12: Number of candidate structures
per protein, filtered by the number of strands.
Note the log scale. There are large variations
in the number of candidates among the pro-
teins with the same number of strands.

Strands
Number of structures

Single sheet Multiple sheets
2 2 2
3 12 12
4 96 108
5 960 1200
6 11520 15960
7 161280 246960

Table 2: The number of theoretically possible
structures for a protein with n strands.

The topology filter, depending on the cut-
off value and the number of strands, further
reduces the number of candidate structures
(Figure 13). Upon considering the balance be-
tween the ability to reduce the number of can-
didate structures and still retain high quality
candidate structures, we decided to use the
cutoff stopo value of 0.02 for the subsequent
analysis. The actual number of accepted can-

didate structures are shown in Figure 14. As
we also can see from Figure 13, the topology
filter is very effective at reducing the num-
ber of structures for proteins with larger num-
ber of strands (i.e. large number of candi-
dates). In the current analysis, 3 proteins ac-
counted for 99.6% of all candidate structures.
For these the topology filter reduced the num-
ber of candidates by 92-97% (Table 3). When
using any positive cutoff value for such a fil-
ter, there is a chance that no candidate struc-
ture for a protein is accepted. If it happens,
we reduce the cutoff value only for the pro-
teins with no accepted candidate structure,
until one or more candidate structures are ac-
cepted. In the current analysis, the cutoff val-
ues were reduced by 0.005 down to 0.005. If,
at the end of this iteration, we have proteins
with no accepted structure, we randomly se-
lect one candidate structure for acceptance.
This procedure, however, was not necessary
for the current analysis, and all proteins had
at least one candidate structure accepted at
the cutoff value of 0.02.

Figure 13: Percentages of accepted structures
by cutoff values and the number of strands.

# candidates # accepted % accepted
63907920 4889934 7.7%
26437952 631882 2.4%

731584 20521 2.8%

Table 3: The numbers and percentages of
accepted structures for the three proteins
with most candidate structures, accounting
for more than 99% of all candidates. The
topology filter rejects more than 90% of can-
didates.

In order to examine how well our topological
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Figure 14: Number of accepted candidate
structures per protein, filtered by the number
of strands. Note the log scale. Compared to
Figure 12, the numbers are significantly lower
where there are large number (> 104) of can-
didate structures.

filter distinguishes between “good” and “bad”
candidates, we investigate how the rate of ac-
ceptance changes for “good” and “bad” candi-
date structures. Precision and Recall are two
measures often used for judging quality of pre-
dicted protein structures. They are given by

Precision =
TP

TP + FP

Recall =
TP

TP + FN
,

where TP,FP and FN stand for the number of
true positive, false positive and false negative
strand pairings.

For each target and for a given quality mea-
sure Q (=Precision or Recall), we divide the
candidate structures into three classes; low
quality (structures with Q < 0.6), medium
quality (0.6 ≤ Q < 0.9), and high quality
(0.9 ≤ Q). We then compute the acceptance
rate for each class. The results are shown in
Table 4. The acceptance rates increase with
an increase in the quality levels.

Quality Precision Recall
Low 66.33% 65.45%
Medium 70.71% 72.04%
High 90.80% 89.62%

Table 4: Average acceptance rate by quality
classes.

Metastructure prediction by sequence align-
ment and topology (Section 3.2) and by Be-
tapro and topology (Section 3.3) were per-

formed on the same set of proteins. The
average Precision and Recall for the predic-
tions are shown in Table 5. Different values
of a in the combined score function (3) only
had a very small effect (< 0.005) on Preci-
sion or Recall values (Table 5). The strand
pairing scores from Betapro are strictly pos-
itive, potentially promoting the formation of
large sheets which are topologically complex.
To mitigate this, we applied logarithm to the
strand pairing scores from Betapro and used
them in the algorithm. This resulted in an
increase in Precision but a (smaller) decline
in Recall (Table 5). This change was seen
across different number of strands (Figure 15).
To investigate the effect of the number of se-
lected pairings before computing completions,
we ran the algorithm using 4, 5, and 6% for
pre-selection, together with the “fewest possi-
ble” pre-selections, which is the number where
a computation is possible within a reasonable
amount of time (24 hours on a modern cpu).
The number p of pre-selected pairs for a pro-
tein with n strands was;

p =





0 if n ≤ 8

n− 8 if 9 ≤ n ≤ 11

n− 7 if 12 ≤ n ≤ 20

The results are shown in Table 6. Pre-
selecting more pairings should have the effect
of increasing false positive (FP) and decreas-
ing false negative (FN), thereby reducing Pre-
cision and increasing Recall, which we observe
here.

Precision Recall
Alignment 0.42 0.47
Betapro, a=0.1 0.56 0.62
Betapro, a = 1 0.56 0.62
logBetapro 0.67 0.57

Table 5: Average Precision and Recall for dif-
ferent metastructure prediction methods.

Fewest 4% 5% 6%
Precision 0.667 0.667 0.659 0.650
Recall 0.567 0.567 0.572 0.577

Table 6: Average Precision and Recall for dif-
ferent levels of pre-selection.
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(a) Average Recall

(b) Average Precision

Figure 15: Average Recall (a) and Precision
(b) by number of strands, Betapro and logBe-
tapro scores.

5 Discussion

The difference in the distributions of the gen-
era and the numbers of boundary components
from the actual (Figure 8) and simulated data
(Figure 9) indicate that the folding of β-sheets
is not a completely random process. Indeed,
it does appear that an increase in genus is
costly and a structure that has lower genus is
favoured over one with higher genus. This ob-
servation agrees with previous studies, which
do not look at genus of β-sheets, but finds that
certain β-sheet structures, many of which cor-
respond to an increase in genus, are absent or
very rare in proteins [29, 34]. The result of
our binary classification analysis (Section 3.1)
agrees with this observation. Even though the
result is skewed by a highly uneven distribu-
tion of the number of candidate structures per
protein, and the response of acceptance rate
for an increase in quality is not linear, it does
appear that the topology of protein metastruc-
ture captures some information about the na-

tive structure. Extending this result to predic-
tion of metastructures proved more challeng-
ing. We did achieve a result comparable to
that reported for Betapro when using strand-
pairing scores as is, which was improved to
be better than Betapro with an application of
logarithm to the pairing scores. This is likely
to be because the unprocessed Betapro scores
are strictly greater than zero, thus encourag-
ing formation of larger sheets in order to max-
imise the final score ŝ, even though the contri-
bution from the topology score stopo should, to
some extent, prevent the formation of sheets
that are too large and topologically complex.
By applying logarithm to the Betapro scores,
we encourage fewer pairings (and thus discour-
age large sheets), which resulted in improved
Precision. We were, however, not able to out-
perform the figures reported by other, more
recent studies (Table 7). The structure of the
BCov and BetaProbe programs meant that it
was not possible to combine them with our
method in a similar manner to Section 3.3. It
would be interesting to see if one can improve
the results of Top-DBS program by combining
with our method. Unfortunately the program
code for Top-DBS was not available for inspec-
tion.

Program Precision Recall
Betapro [15] 0.59 0.54
BCov [30] 0.60 0.62

BetaProbe [18] 0.67 0.70
Top-DBS [17] 0.75 0.78
Current Study 0.67 0.57

Table 7: Comparison of Precision and Recall
values for prediction of β-sheet topology.

One of the reasons why the results from our
study could not match those from more re-
cent studies may be that the topology filter,
in its current form, is too coarse. Suppose we
have a protein with three β-strands. There
are 12 different protein metastructure config-
urations possible, but 8 of them have genus
0 and 3 boundary components, with the rest
having genus 1 and 1 boundary component.
This suggests a “finer” filter, which can distin-
guish between the structures having the same
genus and number of boundary components
(and maximum sheet size), may be able to
produce a better result. However, with the
size of the currently available dataset, making
the filter finer would result in the frequency
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in each cell being too small for sampling the
distribution of genera or numbers of boundary
components (or some other topological data).

The term β-sheet topology is commonly
used to describe the configuration of β-strands
in a β-sheet. However, to our knowledge, it
has not been studied in relation to topologi-
cal invariants. We have shown in this paper
that the topological invariants such as genus
and the number of boundary components can
describe certain aspects of β-sheet topology of
proteins, and how they might be used in pre-
diction of β-sheet topologies. We believe the
protein metastructure and topology of the as-
sociated fatgraph have a potential to provide
a simpler, more mathematically natural way
to analyse β-sheet topology.
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Supplementary Material

S1 Extension of Blosum62

The sequences we align consists of 20 letters representing standard gene code amino acids and two extra
letters, α and β. We therefore need to extend the blosum62 substitution matrix to include scores for
these two extra letters. We use 4 and -4 respectively for match and mismatch involving α and β. We
investigated the effect of these scores by computing average Recall and Precision for different scores as
follows;

1. For each match/mismatch score combination, compute alignment scores for the first and second
diagonal (i.e. for the sequences involving zero or one β-strand).

2. Let v be a number between 0 and 1. For each cell P(i,j) in the pairing matrix P, where the alignment
scores have been computed, set the value to 1 if P(i,j) > v, 0 otherwise.

3. Compute Recall and Precision for each protein.

The average Recall and Precision for various cutoff values and score combinations are shown in Figure S1.
We see the variation in Precision is very small across different score combinations. The same holds
for Recall, for small cutoff values. We also note that, compared to the average Recall, the average
Precision does not vary much for different cutoff values. We therefore choose the cutoff value of 0 and
match/mismatch score combination of 4 and -4 for the current analysis.

(a) Average Recall (b) Average Precision

Figure S1: Average Recall (Figure S1a) and Precision (Figure S1b) for various cutoff values. The different
lines represent different match/mismatch score combinations.
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S2 The topology filter

The topology filter, as used in the paper, is the distribution of genera and numbers of boundary compo-
nents for the protein metastructures filtered by the number of strands in the largest sheet. The filtering
was done to be able to reflect the difference in the distributions between proteins with a small number
of strands and those containing more strands, as one would expect those proteins with a large number
of strands to have more (topologically) complex structures. The number of strands in the largest sheet
was chosen as the filtering variable, because we expect the largest contribution to the genus (and the
number of boundary components) to come from the largest sheet. We show the distributions up to the
maximum sheet size of 10 in Figure S2. We also show the distributions of the same data, filtered by the
number of strands Figure S3 and by the number of sheets Figure S4. It was thought that filtering by
the number of sheets results in too few layers and will make the resulting topology filter less powerful,
as it will not be able to distinguish subtler differences. To investigate whether filtering by the number of
strands produces better results, we ran the binary classification (see Section 3.1) using the topology filter
with the maximum sheet size as the third axis, and one with the number of strands as the third axis.
The classification results were analysed by computing the proportion of the candidate structures above
certain quality thresholds, that were accepted (Figure S5). For a good filter, we expect the percentages of
acceptance to increase, as we restrict to candidate structures to only look at the high-quality structures.
So we expect the lines to lie diagonally from the bottom-left to top-right. It was found the filter using
the maximum sheet size performed better, particularly with Recall. We did not investigate why it is the
case, but it may be that folding several large sheets into energetically favourable structure is complex,
and in nature a combination of one large sheet and several smaller ones is more common.

Figure S2: The distribution of genus and number of boundary components, filtered by the size of the
largest sheet.
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Figure S3: The distribution of genus and number of boundary components, filtered by the number of
strands.
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Figure S4: The distribution of genus and number of boundary components, filtered by the number of
sheets.

(a) Maximum sheet size (b) Number of strands

Figure S5: Acceptance rates for candidates above quality thresholds (measured in Recall and Precision).
The topology filter with maximum sheet size (Figure S5a) shows increasing acceptance rates when the
candidates are restricted to high-quality structures. On the other hand, the filter with number of strands
(Figure S5b) shows relatively high acceptance rates for lower-quality candidates, and the rate drops for
Recall, when the candidates are restricted to high-quality structures.
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