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Abstract: Combining accelerometry from multiple independent activity monitors worn by the same
subject have gained widespread interest with the assessment of physical activity behavior. However,
a difference in the real time clock accuracy of the activity monitor introduces a substantial temporal
misalignment with long duration recordings which is commonly not considered. In this study, a
novel method not requiring human interaction is described for the temporal alignment of triaxial
acceleration measured with two independent activity monitors and evaluating the performance with
the misalignment manually identified. The method was evaluated with free-living recordings using
both combined wrist/hip (n = 9) and thigh/hip device (n = 30) wear locations, and descriptive data
on initial offset and accumulated day 7 drift in a large-scale population-based study (n = 2513) were
calculated. The results from the Bland–Altman analysis show good agreement between the proposed
algorithm and the reference suggesting that the described method is valid for reducing the temporal
misalignment and thus reduce the measurement error with aggregated data. Applying the algorithm
to the n = 2513 samples worn for 7-days suggest a wide and substantial issue with drift over time
when each subject wears two independent activity monitors.

Keywords: clock drift; method; measurement bias; sensor fusion

1. Introduction

Objectively monitoring physical activity (PA) using activity monitors on a population-
wide scale is an important element of public health surveillance and is increasingly being
used in research due to concerns with inaccuracy and bias in self-reporting [1]. Tradi-
tionally, the most frequent use is a single device worn at the waist or wrist. The ability
to combine measurements from multiple devices has received increased attention due to
improved accuracy for the assessment of PA [2]. Moreover, recognition of common human
activity types like lying, sitting, standing, walking, running and biking from accelerometry
data using multiple independent monitors has been addressed in several studies [3,4]. Im-
portantly, using multiple independent and long duration accelerometry recordings require
appropriate synchronization of the temporal data collection before joint signal processing
can be successfully carried out.

The activity monitors provided by ActiGraph (GT3X, GT3X-BT) and Axivity Inc.
(AX3) are commonly used with the assessment of PA. These types of activity monitors are
self-contained and independent in the sense that each device includes a microcontroller
unit (MCU), battery, memory, various sensors (accelerometer, temperature, light and so on)
and importantly a real time clock (RTC) to keep track of data collection. The battery and
memory capacity of the instruments provide the option to record un-processed acceleration
for 7–10 days. Combining the accelerometry recorded with multiple independent monitors
require the internal time, controlled by the RTC, to be synchronized but also that the
temporal data collection over time is sufficiently stable to avoid misalignment.

The temporal synchronization with data collected from multiple sensors within the
same monitor is trivial as data collection from the different sensors is handled by the same
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MCU and thus synchronized to the same RTC. The ActiGraph GT9X Link manufactured
by ActiGraph Inc. is a good example of such a device. The GT9X Link is equipped with
two accelerometers, a gyroscope and a magnetometer and all data collection is handled
internally by the same MCU. Data collection with multiple independent units placed
at different anatomical landmarks requires synchronization either during recording or
after recording has been terminated. Synchronizing measurements during recording
require devices to be connected either wired or wireless. A wired connection between
individual units was used with the IDEEA2 system and a wireless connection with the
IDEEA3 both available from Minisun (Fresno, CA, USA) [5]. The wear comfort of a wired
setup is possibly challenged with free-living recordings over multiple days or weeks. The
wireless protocol between units clearly improves wear comfort but requires an increase
in power consumption compared to wired communication. This reduces battery life
and recording duration. The maximum recording duration available with the IDEEA3
system is 24 h, which is insufficient for measuring physical activity with epidemiological
studies recommending 7–10 days of recording [6,7]. To our knowledge there is currently
no research grade device commercially available for measuring human acceleration that
provides sufficient recording duration and synchronization of the actual data collection.

Synchronizing the acceleration recorded with multiple independent monitors worn
by the same subject is commonly performed by updating the time and date of the RTC
with the time and date of the host computer. RTC devices are commonly manufactured
with an accuracy of ±20 ppm (0.002%) at +25 ◦C and an accumulated drift of ±12 s after a
7-day recording is to be expected. Moreover, the expected accumulated drift of the different
monitors is most likely not the same, which will cause the temporal synchronization of
the data collection to drift as time progresses. Thus, combining the measurements of two
independent devices extends the potential accumulated drift between devices to ±24 s. In
a study conducted by Schuna et al. (2015), it was demonstrated that the ActiGraph GT3X
real time clock accuracy contributed to an accumulated drift of −4 to 14 s over a 7-day
time period [8]. The consequence of an accumulated drift of 14 s at day 7 is that none
of the acceleration data samples collected for processing data windows of 2 s (used for
activity type classification by Skotte et al. (2014) and Brønd et al. (2019)) are overlapping
after collecting the first 24-h of data. Furthermore, as time progresses, the temporal time
difference between the combined data windows will increase and this will cause algorithms
to combine movements recorded with one monitor with movements recorded by the other
monitor, which has been executed with a substantial time difference. The results of the
time drift demonstrated in Schuna et al. (2015) were confirmed by Steel et al. (2019), who
also evaluated the drift when combining accelerometry and GPS [9]. The effect of the
temporal misalignment was not evaluated in these studies, and no solution proposed. The
accumulated drift after 7 days estimated in the study by Schuna et al. (2015) suggests that
combining acceleration collected for aggregated data of 5–10 s is not valid unless some
temporal alignment is applied.

Different methods are available for the temporal alignment of noisy and independent
signals [10]. With absolute alignment of signals the centroid, cross correlation, zero-
phase and maximum position are methods which are commonly used. Centroid based
methods are very sensitive to noise and demonstrate worse results as compared to cross
correlation [10]. The zero-phase alignment method use the shift property available with the
Fourier transform and the maximum position aligns the data based on the maximum value.
The different alignment methods have been evaluated in a study by Gil-Pita et al. (2005)
and the results suggest that the zero phase method demonstrated the best performance
in terms of signal to noise ratio with high resolution radar signals [11]. However, the
listed alignment methods are all valid under the assumption that the shift between the
signals is constant and does not change with time. The time drift demonstrated with
accelerometry recordings is not constant with time and therefore it is not valid to use the
methods with complete accelerometry recordings. In a recent study by Folgado et al. (2018)
a dynamic time warping method was described for the temporal alignment of acceleration
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and gyroscopic time series data [12]. The method was evaluated with data collected from
six subjects performing the same movements but with no restriction to execution speed.
The data was sub sectioned into small data blocks to only focus on a single intended
movement and not the full recording. Thus, even though the movement was not executed
with the same speed this preparation step of the data will greatly improve the methods
ability to align the data. The dynamic time warp method aligns the data by reducing the
sum of Euclidean distances between the two data series and allows for non-linear alignment
of the data. The time warping method has the potential to accommodate the shift with
time. However, the duration of the accelerometry recordings impose computational and
storage challenges which makes the time warping infeasible on the complete accelerometry
recording with data collected over multiple days. Moreover, if the temporal misalignment
caused by the RTC is linear and the alignment is solved by allowing non-linear adjustment
of the data, it potentially introduces local optimization to the data, which is not appropriate.

There is currently no method available to reduce the linear misalignment caused by the
RTC in long duration accelerometry recordings with multiple independent activity monitors.

The aim of this study is to describe a method not requiring human interaction for the
linear temporal alignment of free-living acceleration recordings using two independent
activity monitors and to evaluate the method with the combined wrist and hip and also
combined thigh and hip recordings over multiple consecutive days. The accuracy of the
temporal alignment is evaluated by comparing the estimated initial offset and accumulated
day 7 drift with a manually identified reference.

2. Materials and Methods
2.1. Participants

Eleven students, including three men and eight women, were recruited among sport
science students at the University of Southern Denmark for evaluating the performance of
the proposed method with wrist- and hip-worn monitors (WH group). The mean (±SD)
age, height, and weight of the students were 28.9 (±6.80) years, 171.6 (±8.51) cm, and
69.8 (±10.46) kg, respectively. All participants were generally healthy. The students
were approached during a class session, where they received oral information. Written
information about participation was provided afterwards. The study protocol did not
require registration according to a decision made by the Ethics Committee of the Region of
Southern Denmark. A written informed consent was provided by all participants.

For evaluating the performance of the proposed method with thigh- and hip-worn
monitors a subsample of 30 subjects were randomly selected from the PHASAR study
(TH group). The PHASAR study is a school-based epidemiological study (n = 2674) with
the purpose of evaluating the development of PA in Danish school children during a
nationwide school reform with mandatory requirements of PA in school [13]. An overall
summary of the temporal alignment will be presented for all subjects having more than
6 h of movement (vector magnitude acceleration >0.068 g) with both the hip- and thigh-
worn monitor.

2.2. Measurements

In the WH group, subjects wore one monitor on their non-dominant wrist in a wrist-
band and one monitor on the hip in an elastic band. In the TH group, subjects wore one
monitor on the right leg mid-thigh and the other monitor at the hip and both monitors were
attached using an elastic band. All participants in both groups were instructed to wear
both monitors at all times for a 7-day period while attending their normal daily activities.
The subjects were allowed to remove monitors during water activities and subjects in the
WH group were also allowed to remove monitors during sleep hours.

The tri-axial accelerometer Axivity AX3 (Axivity Ltd., Newcastle, UK) was used with
all measurements and placements. The Axivity AX3 measures acceleration data in gravity
units (g = 9.81 m/s2) and in three orthogonal axes, including ambient light and temperature.
The size of the unit is 23 mm × 32.5 mm × 7.6 mm and it weighs 11 g. The storage available
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with the Axivity AX3 monitor provides the option to record acceleration for 30 days at
12.5 Hz or 14 days at 50 Hz. A 100 Hz sampling frequency was used with the WH group
and 50 Hz with the TH group. All instruments used the same ±8 g measurement range.
The data were resampled to 30 Hz for all subjects using linear interpolation after download.
Monitor initialization, data download and resampling were performed using the OMGui
version 1.0.0.29 on the same host computer [14].

2.3. RTC Accuracy and Temporal Alignment

The temporal alignment and specifically the clock synchronization during data collec-
tion with wireless sensor networks (WSN) have been studied for quite some time [15,16].
With WSN each individual sensor and node in the network has its own RTC similar to
devices measuring acceleration, and clock synchronization is addressed by broadcasting
individual timing messages between nodes in the network [16]. The clock of each node in
the network is ideally configured such that C(t) = t, where t stands for the ideal time. Due
to the RTC accuracy the clock of the ith node is modeled as follows:

Ci(t) = f ∗ t + θ (1)

where θ is the clock offset (phase difference) and f the clock skew (frequency drift). The
clock skew or frequency drift is the arbitrary offset from the nominal frequency of the crystal
oscillator used of the RTC. Clock synchronization with respect to an ideal or absolute time
is not easily solved but is approached by using one node as reference. The clock relationship
between two nodes, Node A and Node B, can be described as follows:

CB(t) = f AB ∗ CA(t) + θAB (2)

where θAB and fAB is the relative clock offset and skew between Node A and Node B. If the
clock between the nodes is perfectly synchronized then θAB = 0 and fAB = 1. In WSN the
clock synchronization can be regarded as the process of removing the effects of random
delays from multiple timing message transmissions [16]. The process of broadcasting
timing messages is not possible with two independent activity monitors, as they are not
interconnected in a network. Thus, clock synchronization and specifically the temporal
alignment have to be addressed using the acceleration per se. However, this is only possible
under the assumption that the acceleration measured at two different wear locations share
some similarities, as this provides the option to determine the delay or time lag at different
time points during the recording from the acceleration using methods like centroid, cross
correlation, zero-phase and maximum position. This method is, to some extent, similar
to estimating the random delays from multiple timing messages at different time points
during data collection with WSN [11]. Thus, based on Equation (2) and the ability to
estimated time lag at different time points it suggests that the initial offset and drift with
the acceleration measured with two independent activity monitors can be determined by
solving the following model:

lagB(i) = β1 ∗ timeA(i) + β0 · · · · · · i = 1, . . . , n (3)

where lagB(i) is the estimated time lag (in samples) and timeA is the time point in seconds
and the coefficient β1 and β0 representing the drift and initial offset. The units of drift are
samples*s−1 and initial offset is in samples. The initial offset is translated into seconds by
multiplying with the sampling period (1/30~0.033s/sample). The accumulated drift at day
7 (in seconds), which is used for evaluating the performance of the proposed method is
calculated as follows:

Accumulated dri f tDay7 = β1 ∗ 30−1 ∗ 86, 400 ∗ 7 (4)

From the initial offset and drift it is possible to resample the data and thus to reduce
misalignment. Estimating the drift and initial offset from Equation (3) is valid under the
assumption that the RTC accuracy during data collection with both devices is constant.
RTC accuracy during recording is influenced by temperature, barometric pressure, battery
voltage and aging of the crystal which provides the oscillation frequency for the RTC [17].
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For both aging, barometric pressure and battery voltage it is reasonable to assume that
this does not affect accuracy during data collection. For the temperature there will be a
difference between devices, and this is influenced by wear location, weather conditions
and activities performed. If one device is worn on the wrist and one on the thigh, we
expect a larger temperature difference than if the devices were worn on the hip and thigh.
We investigated the temperature difference during wear time with Axivity AX3 devices
worn on the wrist and hip during a free-living condition and the maximum temperature
difference range was from ±5 ◦C with no consistent pattern. The temperature accuracy
coefficient for RTC crystals is typically −0.04 ppm/◦C2, which translates the temperature
difference into an RTC accuracy of ±1 ppm. Thus, the influence of temperature on the RTC
accuracy is small and with no consistent pattern it was decided to exclude the temperature
in the estimation of the initial offset and drift and simply model the association of drift
with time as linear as described in Equation (3).

The accurate estimation of the time lag e.g., from cross correlation, is under the
assumption that some distinct acceleration pattern caused by movement is present in the
acceleration measured with both devices. Heel strike during walking, running or jumping
has the potential to generate a pattern that is detectable in the acceleration measured
at multiple body locations. The acceleration measured at the different wear locations
is a result of the internal and external forces acting on the body. The external forces
are generated by the ground reaction force, which propagates up through the lower
segments. An acceleration measured at the wrist needs to propagate a longer distance
than the acceleration at the hip and this might potentially introduce a delay in the signal
response. The delays were investigated (results not presented) with acceleration measured
at 800 Hz and video at 240 Hz during walking and running on a treadmill and the delay
was negligible. Furthermore, even though the acceleration measured at different wear
locations might share substantial similarities during movements like walking or running
there is also the possibility that for some movements the acceleration is less similar. The
estimated time lag with these movements is associated with a substantial measurement
error and introduces potential outliers. These outliers will compromise the estimation of the
initial offset and drift with standard ordinary least squares (OLS). There are several robust
OLS methods available for addressing potential outliers, and most methods impose an
explicit limit on the effect that outliers can have on the fitted regression [18]. However, the
outliers introduced from estimating the time lag with movements that are not similar are
considered as invalid data points rather than a poor estimate, which is optimally handled
by data-dependent weighting. Therefore, in this proposed method, we iteratively exclude
data points based on the standardized residual until no further outliers are identified. In
the first iteration the data points with a standardized residual larger than 1 SD are excluded
and the threshold for excluding data points is subsequently exponentially increased with
each iteration (1, 2.7, 15.2 . . . ).

2.4. Reference Temporal Alignment

The reference initial offset and accumulated day 7 drift were determined manually
using visual alignment of the unprocessed 30 Hz vector magnitude acceleration data. The
manual alignment process was performed by identifying the number of data samples
required to align the acceleration data during the first 0–5 h of data (offsetstart) and data
samples required to align the data at the end (6–7 days) of the recording (offsetend). The
offsetstart, offsetend and the time points for the alignments (Timestart and Timeend in seconds)
were then subsequently used to calculate the initial offset and accumulated drift at day 7
using the following equations:

dri f t =
o f f setend − o f f setstart

Timeend − Timestart
(5)

Initial o f f set = o f f setstart − dri f t ∗ Timestart (6)

Accumulated dri f tDay7 = dri f t ∗ 30−1 ∗ 86, 400 ∗ 7 (7)
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The units of all offset variables in Equations (5)–(7) are in samples, seconds for all Time
variables and in samples*s−1 for the drift. The manual identification of offsetstart, offsetend,
Timestart and Timeend was performed by visually inspecting the unprocessed acceleration and
specifically by using the time shift function available in the audio editing software Audacity
Version 2.3.3 (retrieved September 2020) [19]. Audacity is a free open-source software
application for processing large amounts of audio data and provides powerful functions
for visual editing and labeling of audio data and is developed by the Audacity Team
(2020). The time shift function in Audacity enables the user to visually adjust the temporal
alignment between data channels and, thus, an option to determine the number of samples
that would align two independent data channels. The original accelerometry data recorded
by the Axivity AX3 were stored in .cwa binary files, which were not directly compatible
with Audacity. Subsequently, the files were made compatible with Audacity by converting
them into uncompressed WAV audio files using the OMGui software. The thigh/hip and
wrist/hip data were combined in a single WAV file using two channels (stereo) of vector
magnitude acceleration without any post-processing. The two accelerometry channels
were split into two mono channels to enable the time shift tool. The specific processes
of determining the offsetstart, offsetend, Timestart and Timeend were carried out in three steps.
The first step involved the amplitude and temporal zoom function to focus on a small
section of the data (5–20 s of data) and importantly to identify sufficient amplitude and
distinct accelerations, which were present in both measurements. Finding the appropriate
acceleration was performed by iteratively adjusting the zoom and temporal scrolling
function to find the most optimal position for aligning the data. Sufficient amplitude
and distinct acceleration are commonly observed with activities like walking, running,
jumping or just bumping both monitors during mounting and unmounting. The second
step involved the time-shift function, which enabled moving one channel with respect
to the other channel and thus to obtain a perfect temporal alignment of the identified
acceleration. The third and final step involved the selection tool, which was used to
determine the number samples shifted.

2.5. Automated Temporal Alignment

The overall aim of the proposed method, as previously described, was to identify the
initial offset and drift with time, which were used to resample the data. The method was
divided into three stages and is visually presented in Figure 1.

Figure 1. Overview of the three stages and individual processing steps used in the temporal alignment method.
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In stage I, the acceleration for both devices was pre-processed and the time lag was
determined for 1-h non-overlapping data blocks. Only data blocks with an average ac-
celeration exceeding 0.01 g were used. The average acceleration was calculated as the
mean of the absolute Euclidean Norm minus one (ENMO) [20]. The pre-processing of the
acceleration prior to determining the lag included calculating ENMO, reducing digital
noise by dead-band thresholding (only including acceleration larger than 0.068 g), reducing
measurement and calibration error using band-pass filtering (4th order Butterworth IIR
filter with 0.1 and 7 Hz cut-off frequencies) and converting all negative acceleration to
positive (absolute). The cut-off frequency and order of the band-pass filter were chosen
based on the recommended practice with filtering biomechanical data [21]. A zero time
delay with the band-pass filtering was obtained by using the filtfilt function in Matlab [22].
The individual pre-processing steps were processed in the same order as listed. The 0.01 g
1-h data block threshold was simply selected to ensure that the data block was not just
showing sedentary behavior, but contained some movement. The low threshold was also
used to ensure that a sufficient number of data blocks were included in the subsequently es-
timation of initial offset and drift (see stage II). The time lag between signals was identified
as the maximum correlation coefficient identified in the normalized correlogram generated
with a cross-correlation. The xcorr cross-correlation function available in Matlab using
maximum lag of 1000 sample points (33.3 s) was used to calculate the correlogram [23].
The correlogram generated with subject three from the WH group at three time points is
presented in Figure 2 as an example. The three time points presented are days 1, 3 and
5. The maximum correlation coefficient (peak) clearly shifts to the right indicating the
progression of the lag and specifically the drift with time. The distance of the two peaks
close to the central peak for day 1 is approximately 0.5 s. This corresponds to the commonly
used step frequency of 2 Hz and suggested that the central peak is the strong correlation of
the movement pattern generated by foot strike during walking or running and that the
side peaks are the correlation with the previous and next step.

Figure 2. Subject three correlogram for hip and wrist pre-processed acceleration for days 1, 3 and 5.
The data block for day 1 and 3 is from 02.00–03.00 PM, whereas for day 2 it is from 03.00–04.00 PM.
The arrows identify the peak correlation coefficient which gives the lag and thus time shift between
the two 1-h data blocks. The hip-worn monitor is the reference and thus the lag is the number of
samples that is required to offset the acceleration of the wrist to align it with the hip acceleration.
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In stage II, the offset and drift were estimated by iteratively evaluating the linear
regression of the observed lag (samples) with time using the fitlm linear regression function
available in Matlab [24]. As described earlier, during each iteration the standardized
residual was used to exclude data points until no further outliers were identified and the
threshold for excluding data points was exponentially increased with each iteration (1,
2.7, 15.2 . . . ). The final regression analysis for subject three is presented in Figure 3 as an
example. Three data points were excluded during the iterations. The individual data points
are almost perfectly aligned on the regression line. The root mean squared error (RMSE) is
0.642 samples and the R2 value is 0.999.

Figure 3. Individual data points, confidence bounds and regression line for the association between
the estimated lag for the one-hour data blocks and time. This is data for subject three in the WH
group. Initial offset was estimated to −12.8 samples and the drift to 30.2 samples per day. Time is
the hip-worn reference monitor time and lag is the number of samples required to offset the wrist
acceleration to align with the hip acceleration.

In the final stage III the acceleration measured with one monitor was temporally
aligned to the reference monitor using the identified initial offset and drift estimated in
stage II using resampling. The reference monitor for both the WH and TH group was the
hip-placed monitor. The alignment process was implemented in two steps. The first step
aligned the overall data using the offset by either removing (positive offset) or prepending
samples (negative offset) at the beginning of the recording. In the second step the data were
resampled using the interp1 function available with Matlab [25]. Different interpolation
methods are available with the interp1 function and selecting the optimal interpolation
method has to be carried out with careful consideration of the subsequent use of the
acceleration. In applications where the aim is to generate ENMO or the mean average
deviation physical activity intensity information, which is sensitive to the frequency content
of the data, it might be optimal to use the previous neighbor interpolation (‘previous’
interpolation) as this will to a large extent preserve the signal amplitude and thus frequency
content. However, in applications in which the acceleration is used for activity type
identification it might be optimal with linear or cubic spline interpolation (‘linear’ or
‘cubic’ interpolation). The default method used in the proposed alignment method is the
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‘previous’ interpolation, but alternative interpolation methods can be used by adjusting the
parameters in the function call. The Matlab code for the described method is available on
Github (https://github.com/jbrond/Aligndata accessed on 1 July 2021).

2.6. Statistics

Bland–Altman analysis was used to assess bias and 95% limits of agreement (LOA)
and a paired t-test was used to assess if the algorithm estimated initial offset and drift
at day 7, which were significantly different from the manually identified references. A
p-value < 0.05 was considered significant. All statistical analysis and data processing were
performed using Matlab (Mathworks Natick, MA, USA) version 9.0.0.341360 (R2016a)
and R (R Core Team, R Foundation for Statistical Computing, Vienna, Austria) version
3.6.2 [26,27]. The blandr package available with the statistical software R was used to
conduct the Bland–Altman analysis [28].

3. Results

Initial offset and accumulated day 7 drift reference, estimated and absolute difference
for each subject in the WH group are presented in Table S1 of the Supplementary Materials.
The reference initial offset ranged from −6.2 to 3.2 s and accumulated day 7 drift from
−15.4 to 22.1 s, whereas the algorithm estimated initial offset ranged from −6.2 to 3.1 and
day 7 drift from −15.2 to 21.8 s. The initial offset absolute difference between reference
and estimated ranged from 0.00 to 0.73 s, and day 7 drift ranged from 0.01 to 0.36 s.
The algorithm estimated offset and day 7 drift were not significantly different from the
references (p = 0.97 and p = 0.41). The Bland–Altman plot for the reference and algorithm
estimated initial offset and accumulated day 7 drift are presented in Figure 4 for the WH
group. The initial offset bias estimated with the Bland–Altman analysis was −0.016 s (LOA:
−0.59 to 0.55 s) and bias for the drift at day 7 was 0.013 s (LOA: −0.51 to 0.54 s).

Figure 4. Bland-Altman plots of the initial offset (A) and the accumulated drift at day 7 (B) for the
WH group.

Initial offset and accumulated day 7 drift reference estimated and absolute difference
for each subject in the TH group are presented in Table S2 of the Supplementary Materials.
The reference initial offset ranged from −6.9 to 9.8 s and accumulated day 7 drift from
−23.1 to 453.1 s, whereas for the algorithm estimated initial offset ranged from −7.1 to 9.9 s
and accumulated day 7 drift from −23.0 to 441.3 s. The initial offset absolute difference
between reference and estimated ranged from 0.00 to 3.21 s, and accumulated day 7 drift
ranged from 0.01 to 11.78 s. The estimated initial offset and accumulated day 7 drift were

https://github.com/jbrond/Aligndata
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not significantly different from the references (p = 0.86 and p = 0.87). The Bland–Altman
plot for the reference and algorithm estimated initial offset and accumulated day 7 drift
are presented in Figure 5 for the TH group. The initial offset bias estimated with the
Bland–Altman analysis was 0.005 s (LOA: −4.62 to 3.95 s) and the bias for the accumulated
day 7 drift was −0.33 s (LOA: −4.62 to 3.95 s). The accumulated day 7 drift estimated with
subject nine was substantially longer than what can be explained by the RTC clock drift
alone, suggesting subject nine as a potential outlier. The potential cause of this is addressed
in the discussion, although if subject nine was excluded from the analysis, the bias for the
initial offset was −0.106 s (LOA: −0.39 to 0.18 s), whereas the bias for the accumulated day
7 drift 0.06 s (LOA: −0.57 to 0.69 s).

Figure 5. Bland-Altman plots of the initial offset (A) and the accumulated drift at day 7 (B) for the
TH group. Subject nine was excluded from the plots.

To provide a descriptive overview of the extent of drift in a large-scale population-
based study, a total of 2513 subjects from the PHASAR study database were identified with
valid measurements for both thigh- and hip-worn accelerometers. The number of subjects
with accumulated day 7 drift divided into six categories are presented in Figure 6. The
number of subjects with less than 5 s accumulated day 7 drift was 958 (38.1%) whereas the
number of subjects with substantial drift >15 s was 939 (37.4%).

The number of unique monitor serial numbers with an accumulated day 7 drift
more than 30 s was 41 and only four monitors were involved in multiple recordings
demonstrating the abnormal drift.
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Figure 6. The number of subjects with an accumulated day 7 drift in seconds divided into six
categories (0–5, >5–10, >10–15, >15–20, >20–30 and >30 s).

4. Discussion

This study is the first to describe and evaluate a method not requiring human interac-
tion for the temporal alignment of acceleration measured by two independent monitors
worn at different body placements. The visually identified reference and algorithm es-
timated day 7 drift in this study is comparable to the drift estimated in the study by
Schuna et al. (2015) and Steel et al. (2019), with the exception of one subject in the TH
group, who demonstrated an accumulated day 7 drift of 441.3 s. Despite this single subject,
the present study supports the hypothesis that RTC accuracy causes the clock drift with
individual monitors measuring acceleration. The identification of the initial offset and drift
with time are two important elements in the temporal alignment of acceleration measured
using two independent monitors. In this study, the reference initial offset and accumulated
day 7 drift for all subjects were determined manually using visual inspection of the unpro-
cessed acceleration and the results demonstrated a good agreement between the reference
and the algorithm with small LOA. Moreover, the algorithm estimated initial offset and
accumulated day 7 drift were not significantly different from the reference. The results
also substantiate that the linear drift with time, which is an important assumption with
the algorithm. The absolute difference for the initial offset and accumulated day 7 drift
was marginally increased with the WH group as compared to the TH group. This might
be explained by the different movements that can be expected at the wrist as compared
to the hip. The arms are free to move and therefore not at all times coherent with hip
movements which is valuable for describing gross body movements like walking, running
and jumping. Thus, the acceleration measured at the wrist and hip is at times not in sync
and this might affect the cross correlation used to assess the drift over time. However, the
presented results clearly demonstrated that the proposed algorithm is valid to minimize the
effect of offset and drift for combining the acceleration recorded with multiple independent
monitors on aggregated data. Although, the results do not suggest that the method is valid
for sample-by-sample level data.

The drift observed with one subject in the TH group is substantially larger than the
<24 s expected with the accuracy of the RTC clock. A total of 25 subjects (1%) in the
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PHASAR data demonstrate an accumulated day 7 drift above 30 s suggesting that the
results from the subject in the TH group are not a single event. The data from this subject
were further scrutinized to understand the potential cause of the abnormal drift, and
from the regression analysis it seems that the drift was suddenly decreased for a short
moment after approximately 24-h of recording. Therefore, this is not a sudden change in
the accuracy of the RTC per se but an Axivity AX3 specific behavior which seems to halt the
sampling process and, thus, increase drift between monitors to a level above what could be
expected based on the RTC accuracy alone. A total of 41 unique monitors were used for
the recordings demonstrating an abnormal drift >30 s and only four monitors were used in
multiple recordings. If the same devices demonstrate a consistent abnormal drift >30 s it
could indicate some hardware malfunction. However, only four of the identified monitors
were used in multiple recordings that demonstrated abnormal drift, and this suggests that
the abnormal drift was more likely caused by the internal firmware and not hardware.
The described algorithm is valid under the assumption that drift is linear with time, and
not valid for considering the abnormal drift. We suggest that when drift is >24 s, the data
should be manually investigated to ensure the validity of the alignment. However, until
the issue is solved by the company (Axivity) it is possible to use the proposed algorithm to
accommodate the abnormal drift to some extent.

In this study, the acceleration measurements were re-sampled to 30 Hz due to both
practical and computational limitations and also to facilitate the development of an algo-
rithm applicable with devices that do not provide long duration recordings with sampling
frequencies above 30 Hz. A higher sampling frequency than 30 Hz does provide and
increase temporal granularity of the data and this might improve accuracy of the temporal
alignment. We conducted a post hoc Bland–Altman analysis comparing the initial offset
and drift with both 30 Hz and 50 Hz sampling frequency with the WH group. The results
showed a very small bias (−2.24 and 0.25 milliseconds) and narrow LOA (−0.04 to 0.035 s
and −4.0 to 4.5 milliseconds) with no clear pattern indicating that an increased sampling
frequency improved the accuracy with the proposed algorithm. This could indicate that
the poor accuracy was caused by the wear locations per se and specifically the substantial
difference in measured accelerations [29] or the temperature fluctuation during record-
ing. However, even though increasing sampling frequency did not improve the accuracy
with the proposed algorithm it might be different with alternative pre-processing or if
temperature was used in modelling the lag progression with time.

An important assumption for the proposed method was the linear drift across the full
measurement period. The RTC accuracy (commonly 20 ppm) was specified at 25 degrees
and accuracy is influenced by temperature, barometric pressure, battery voltage and ageing
of the crystal setting the oscillation frequency. This suggests that the assumption of linear
drift might be compromised during measurements in a natural environment with potential
large temperature fluctuations or if the subject wearing the devices dismounts one device
and not the other which will introduce large systematical temperature differences. The tem-
perature at various device wear locations during free-living measurements fluctuates with
both activities performed, weather condition and wear location per se. These fluctuations
in temperature may explain the reduced accuracy obtained with the proposed method.
A further development of the proposed method could be introducing temperature in the
prediction of offset and most importantly drift, although the difference in acceleration
measured at different wear locations in combination with the slow response rate of the
temperature measurements might be challenging to further improve the accuracy of the
alignment method.

All monitors were initialized within minutes from each other suggesting that the
initial offset was not caused by the RTC accuracy of the host computer. The offset was
more likely caused by the firmware implemented in the activity monitor and specifically
the execution of alternate tasks than acceleration measurements during initiation of the
recordings. Moreover, during the post hoc analysis it was discovered that the OmGUI
software used for resampling the acceleration data into 30 Hz and 50 Hz did not provide
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the exact same data in the first initial seconds of the recording. Thus, a small difference in
the initial offset was introduced by the resampling process. This limitation of the software
is important to address in future studies evaluating the effect of increasing or decreasing
the sampling frequency with acceleration measure with Axivity monitors. The start offset
between monitors might not be the same for different brands of activity monitors.

The specified ±20 ppm accuracy of the RTC seems to be the standard for most bands
providing the measurement of acceleration. The manufacturing process is the source of
the RTC accuracy, and devices with higher accuracy are available. However, RTC with
improved accuracy including temperature compensation also increases the costs and might
not remove the requirement for alignment. Matched devices with similar accuracy could
be a secondary alternative, although this would complicate administration of the devices
during measurements.

5. Conclusions

In this study, we described a method for the automated temporal alignment of triaxial
acceleration measured with two independent activity monitors, which does not require the
interaction by the individual. The results of the estimated initial offset and accumulated
drift at day 7 demonstrate a valid method for reducing the measurement error caused by
RTC accuracy when combining acceleration measured with independent devices. Moreover,
applying the automated alignment method to a large cohort study including 2513 subjects
suggests a wide and substantial issue with drift over time when each subject wears two
independent activity monitors.

Supplementary Materials: The Matlab source code is available online at https://www.mdpi.com/
article/10.3390/s21144777/s1, Table S1. Reference values, estimated and absolute differences in
seconds (number of samples) for the initial offset, and day seven accumulated drift with the subjects
in the WH group, Table S2. Reference values, estimated and absolute differences in seconds (number
of samples) for the initial offset, and day seven accumulated drift with the 30 subjects randomly
selected from the TH group.

Author Contributions: Conceptualization, J.C.B.; methodology, J.C.B.; software, J.C.B.; valida-
tion, J.C.B.; formal analysis, J.C.B.; data collection, J.C.B., N.H.P. and K.T.L.; investigation, J.C.B.,
N.H.P., K.T.L.; resources, A.G.; data curation, J.C.B.; writing—original draft preparation, J.C.B.;
writing—review and editing, J.C.B., N.H.P., K.T.L. and A.G.; visualization, J.C.B.; supervision, A.G.;
project administration, J.C.B., A.G., N.H.P. and K.T.L.; funding acquisition, A.G. All authors have
read and agreed to the published version of the manuscript.

Funding: The PHASAR data collection is funded by TrygFonden (ID 115606) and Anders Grøntved
is funded by European Research Council Starting Grant (no. 716657).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Danish Ethics Committee.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data for the WH group are available on figshare https://doi.org/
10.6084/m9.figshare.12793532.v1 (accessed on 12 August 2020) and the data for the TH group are
only available on request due to project and ethical restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, I.-M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P. Effect of physical inactivity on major non-communicable

diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. Available online: https://www.
ncbi.nlm.nih.gov/pubmed/22818936 (accessed on 1 July 2021). [CrossRef]

2. Liu, S.; Gao, R.X.; John, D.; Staudenmayer, J.W.; Freedson, P.S. Multisensor data fusion for physical activity assessment. IEEE
Trans. Biomed. Eng. 2011, 59, 687–696. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/s21144777/s1
https://www.mdpi.com/article/10.3390/s21144777/s1
https://doi.org/10.6084/m9.figshare.12793532.v1
https://doi.org/10.6084/m9.figshare.12793532.v1
https://www.ncbi.nlm.nih.gov/pubmed/22818936
https://www.ncbi.nlm.nih.gov/pubmed/22818936
http://doi.org/10.1016/s0140-6736(12)61031-9
http://doi.org/10.1109/tbme.2011.2178070
http://www.ncbi.nlm.nih.gov/pubmed/22156943


Sensors 2021, 21, 4777 14 of 15

3. Skotte, J.; Korshøj, M.; Kristiansen, J.; Hanisch, C.; Holtermann, A. Detection of physical activity types using triaxial accelerom-
eters. J. Phys. Act. Health 2014, 11, 76–84. Available online: http://www.ncbi.nlm.nih.gov/pubmed/23249722 (accessed on
8 February 2015). [CrossRef]

4. Stewart, T.; Narayanan, A.; Hedayatrad, L.; Neville, J.; Mackay, L.; Duncan, S. A dual-accelerometer system for classifying
physical activity in children and adults. Med. Sci. Sports Exerc. 2018, 50, 2595–2602. Available online: https://www.ncbi.nlm.nih.
gov/pubmed/30048411 (accessed on 10 January 2019). [CrossRef]

5. Zhang, K.; Pi-Sunyer, F.X.; Boozer, C.N. Improving energy expenditure estimation for physical activity. Med. Sci. Sports Exerc.
2004, 36, 883–889. Available online: https://www.ncbi.nlm.nih.gov/pubmed/15126725 (accessed on 10 January 2019).

6. Aadland, E.; Ylvisaker, E. Reliability of the actigraph GT3X+ accelerometer in adults under free-living conditions. PLoS ONE 2015,
10, e0134606. Available online: https://www.ncbi.nlm.nih.gov/pubmed/26274586 (accessed on 10 January 2019). [CrossRef]

7. Aadland, E.; Ylvisaker, E. Reliability of objectively measured sedentary time and physical activity in adults. PLoS ONE 2015, 10,
e0133296. Available online: https://www.ncbi.nlm.nih.gov/pubmed/26192184 (accessed on 10 January 2019). [CrossRef]

8. Schuna, J.; Barrieira, T.; Tudor-Locke, C. An evaluation of the clock drift phenomenon with the actigraph accelerometer. In
Proceedings of the International Conference on Ambulatory Monitoring of Physical Activity and Movement (ICAMPAM),
Limerick, Ireland, 10–12 June 2015.

9. Steel, C.; Bejarano, C.; Carlson, J.A. Time drift considerations when using GPS and accelerometers. J. Meas. Phys. Behav. 2019,
2, 203–207. Available online: https://journals.humankinetics.com/view/journals/jmpb/2/3/article-p203.xml (accessed on
5 January 2020). [CrossRef]

10. Coakley, K.J.; Hale, P. Alignment of noisy signals. IEEE Trans. Instrum. Meas. 2001, 50, 141–149. [CrossRef]
11. Gil-Pita, R.; Rosa-Zurera, M.; Vicen-Bueno, R.; Utrilla-Manso, M. Improving alignment of noisy signals using an iterative zero

phase method. In Proceedings of the 2005 13th European Signal Processing Conference, Antalya, Turkey, 4–8 September 2005;
pp. 1–4.

12. Folgado, D.; Barandas, M.; Matias, R.; Martins, R.; Carvalho, M.; Gamboa, H. Time alignment measurement for time series.
Pattern Recognit. 2018, 81, 268–279. Available online: https://www.sciencedirect.com/science/article/pii/S0031320318301286
(accessed on 20 August 2020). [CrossRef]

13. Pedersen, N.H.; Koch, S.; Larsen, K.T.; Kristensen, P.L.; Troelsen, J.; Møller, N.C.; Brønd, J.C.; Hjelmborg, J.V.B.; Brage, S.; Grøntved, A.
Protocol for evaluating the impact of a national school policy on physical activity levels in Danish children and adolescents: The
PHASAR study—A natural experiment. BMC Public Health 2018, 18, 1245. Available online: https://www.ncbi.nlm.nih.gov/pubmed/
30409171 (accessed on 8 June 2020). [CrossRef]

14. Jackson, D.G. Omgui Software. Openmovement. 2016. Available online: https://github.com/digitalinteraction/openmovement/
wiki/AX3-GUI (accessed on 1 April 2016).

15. Rhee, I.-K.; Lee, J.; Kim, J.; Serpedin, E.; Wu, Y.-C. Clock synchronization in wireless sensor networks: An overview. Sensors 2009,
9, 56–85. [CrossRef] [PubMed]

16. Wu, Y.; Chaudhari, Q.; Serpedin, E. Clock synchronization of wireless sensor networks. IEEE Signal Process. Mag. 2011, 28,
124–138. [CrossRef]

17. Vig, J.R. Introduction to Quartz Frequency Standards. Revision; NASA STI/Recon Technical Report N 93; Defense Technical
Information Center: Fort Belvoir, VA, USA, 1992; p. 15330.

18. Greco, L.; Luta, G.; Krzywinski, M.; Altman, N. Analyzing outliers: Robust methods to the rescue. Nat. Chem. Biol. 2019, 16,
275–276. [CrossRef] [PubMed]

19. Busleiman, A.; Crook, J.; Danneberg, R.; Daulton, S.; Kozikowski, R.; Licameli, P.; Sampson, P.; Wharrie, B. Audacity Version 2.3.3.
2019. Available online: https://www.audacityteam.org/ (accessed on 1 February 2020).

20. Van Hees, V.T.; Gorzelniak, L.; León, E.C.D.; Eder, M.; Pias, M.; Taherian, S.; Ekelund, U.; Renström, F.; Franks, P.; Horsch, A.; et al.
Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily
Physical Activity. PLoS ONE 2013, 8, e61691. Available online: http://www.ncbi.nlm.nih.gov/pubmed/23626718 (accessed on
21 January 2018). [CrossRef]

21. Christodoulakis, G.; Busawon, K.; Caplan, N.; Stewart, S. On the filtering and smoothing of biomechanical data. In Proceedings
of the 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010),
Newcastle Upon Tyne, UK, 21–23 July 2010; pp. 512–516. [CrossRef]

22. Mathworks Inc. Zero-Phase Digital Filtering. 2021. Available online: https://se.mathworks.com/help/signal/ref/filtfilt.html
(accessed on 2 June 2021).

23. Mathworks Inc. Cross-Correlation. 2021. Available online: https://se.mathworks.com/help/matlab/ref/xcorr.html (accessed on
8 February 2021).

24. Mathworks Inc. Fit Linear Regression Model. 2021. Available online: https://se.mathworks.com/help/stats/fitlm.html?
searchHighlight=fitlm&s_tid=srchtitle (accessed on 8 February 2021).

25. Mathworks Inc. 1-d Data Interpolation (Interp1). 2021. Available online: https://se.mathworks.com/help/matlab/ref/interp1
.html (accessed on 2 June 2021).

26. Team, R.C. R: A Language and Environment for Statistical Computing, 1.2.5033. 2019. Available online: https://www.R-project.
org/ (accessed on 7 February 2019).

http://www.ncbi.nlm.nih.gov/pubmed/23249722
http://doi.org/10.1123/jpah.2011-0347
https://www.ncbi.nlm.nih.gov/pubmed/30048411
https://www.ncbi.nlm.nih.gov/pubmed/30048411
http://doi.org/10.1249/mss.0000000000001717
https://www.ncbi.nlm.nih.gov/pubmed/15126725
https://www.ncbi.nlm.nih.gov/pubmed/26274586
http://doi.org/10.1371/journal.pone.0134606
https://www.ncbi.nlm.nih.gov/pubmed/26192184
http://doi.org/10.1371/journal.pone.0133296
https://journals.humankinetics.com/view/journals/jmpb/2/3/article-p203.xml
http://doi.org/10.1123/jmpb.2019-0004
http://doi.org/10.1109/19.903892
https://www.sciencedirect.com/science/article/pii/S0031320318301286
http://doi.org/10.1016/j.patcog.2018.04.003
https://www.ncbi.nlm.nih.gov/pubmed/30409171
https://www.ncbi.nlm.nih.gov/pubmed/30409171
http://doi.org/10.1186/s12889-018-6144-8
https://github.com/digitalinteraction/openmovement/wiki/AX3-GUI
https://github.com/digitalinteraction/openmovement/wiki/AX3-GUI
http://doi.org/10.3390/s90100056
http://www.ncbi.nlm.nih.gov/pubmed/22389588
http://doi.org/10.1109/MSP.2010.938757
http://doi.org/10.1038/s41592-019-0369-z
http://www.ncbi.nlm.nih.gov/pubmed/30923374
https://www.audacityteam.org/
http://www.ncbi.nlm.nih.gov/pubmed/23626718
http://doi.org/10.1371/journal.pone.0061691
http://doi.org/10.1109/CSNDSP16145.2010.5580374
https://se.mathworks.com/help/signal/ref/filtfilt.html
https://se.mathworks.com/help/matlab/ref/xcorr.html
https://se.mathworks.com/help/stats/fitlm.html?searchHighlight=fitlm&s_tid=srchtitle
https://se.mathworks.com/help/stats/fitlm.html?searchHighlight=fitlm&s_tid=srchtitle
https://se.mathworks.com/help/matlab/ref/interp1.html
https://se.mathworks.com/help/matlab/ref/interp1.html
https://www.R-project.org/
https://www.R-project.org/


Sensors 2021, 21, 4777 15 of 15

27. Matlab. Version 9.9.0 (r2020b Update 4); The MathWorks Inc.: Natick, MA, USA, 2020.
28. Datta, D. Blandr: A Bland-Altman Method Comparison Package for R. 2017. Available online: https://github.com/

deepankardatta/blandr (accessed on 1 May 2021).
29. Hildebrand, M.; Van Hees, V.T.; Hansen, B.H.; Ekelund, U. Age group comparability of raw accelerometer output from wrist- and

hip-worn monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. Available online: http://www.ncbi.nlm.nih.gov/pubmed/248871
73 (accessed on 21 January 2018). [CrossRef]

https://github.com/deepankardatta/blandr
https://github.com/deepankardatta/blandr
http://www.ncbi.nlm.nih.gov/pubmed/24887173
http://www.ncbi.nlm.nih.gov/pubmed/24887173
http://doi.org/10.1249/mss.0000000000000289

	Introduction 
	Materials and Methods 
	Participants 
	Measurements 
	RTC Accuracy and Temporal Alignment 
	Reference Temporal Alignment 
	Automated Temporal Alignment 
	Statistics 

	Results 
	Discussion 
	Conclusions 
	References

