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RESEARCH Open Access

Prenatal exposure to bisphenol A and
autistic- and ADHD-related symptoms in
children aged 2 and5 years from the
Odense Child Cohort
Julie Bang Hansen1, Niels Bilenberg2,3, Clara Amalie Gade Timmermann1, Richard Christian Jensen1,
Hanne Frederiksen4,5, Anna-Maria Andersson4,5, Henriette Boye Kyhl6,7 and Tina Kold Jensen1,6,7*

Abstract

Background: Bisphenol A (BPA) is a non-persistent chemical with endocrine disrupting abilities used in a variety of
consumer products. Fetal exposure to BPA is of concern due to the elevated sensitivity, which particularly relates to
the developing brain. Several epidemiological studies have investigated the association between prenatal BPA
exposure and neurodevelopment, but the results have been inconclusive.

Objective: To assess the association between in utero exposure to BPA and Attention Deficit/Hyperactivity Disorder
(ADHD-) symptoms and symptoms of Autism Spectrum Disorder (ASD) in 2 and 5-year old Danish children.

Method: In the prospective Odense Child Cohort, BPA was measured in urine samples collected in gestational
week 28 and adjusted for osmolality. ADHD and ASD symptoms were assessed with the use of the ADHD scale and
ASD scale, respectively, derived from the Child Behaviour Checklist preschool version (CBCL/1½-5) at ages 2 and 5
years. Negative binomial and multiple logistic regression analyses were performed to investigate the association
between maternal BPA exposure (continuous ln-transformed or divided into tertiles) and the relative differences in
ADHD and ASD problem scores and the odds (OR) of an ADHD and autism score above the 75th percentile
adjusting for maternal educational level, maternal age, pre-pregnancy BMI, parity and child age at evaluation in 658
mother-child pairs at 2 years of age for ASD-score, and 427 mother-child pairs at 5 years of age for ADHD and ASD-
score.

(Continued on next page)

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: tkjensen@health.sdu.dk
1Department of Clinical Pharmacology, Pharmacy and Environmental
Medicine, Institute of Public Health, University of Southern Denmark, Odense,
Denmark
6Hans Christian Andersen Children’s Hospital, Odense University Hospital,
Odense, Denmark
Full list of author information is available at the end of the article

Hansen et al. Environmental Health           (2021) 20:24 
https://doi.org/10.1186/s12940-021-00709-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12940-021-00709-y&domain=pdf
http://orcid.org/0000-0003-2311-5778
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:tkjensen@health.sdu.dk


(Continued from previous page)

Results: BPA was detected in 85.3% of maternal urine samples even though the exposure level was low (median
1.2 ng/mL). No associations between maternal BPA exposure and ASD at age 2 years or ADHD at age 5 years were
found. Trends of elevated Odds Ratios (ORs) were seen among 5 year old children within the 3rd tertile of BPA
exposure with an ASD-score above the 75th percentile (OR = 1.80, 95% CI 0.97,3.32), being stronger for girls (OR =
3.17, 95% CI 1.85,9.28). A dose-response relationship was observed between BPA exposure and ASD-score at 5 years
of age (p-trend 0.06) in both boys and girls, but only significant in girls (p-trend 0.03).

Conclusion: Our findings suggest that prenatal BPA exposure even in low concentrations may increase the risk of
ASD symptoms which may predict later social abilities. It is therefore important to follow-up these children at older
ages, measure their own BPA exposure, and determine if the observed associations persist.

Keywords: Bisphenol A, ADHD, Autism Spectrum Disorder, Neurodevelopment, Endocrine disruptor

Introduction
Attention Deficit Hyperactivity Disorder (ADHD) and
Autism Spectrum Disorders (ASD) are two of the most
common neurodevelopmental disorders in children [1].
Both have a large impact on the lives of the affected in-
dividuals and are associated with reduced everyday life
functioning, academic performance and a decreased
quality of life [2, 3]. The global prevalence of ADHD is
estimated to be between 5.3–7.2% [4, 5] and the Euro-
pean prevalence of ASD reported range from 4.2/1000–
17.4/1000 with high variability in prevalence estimates
worldwide [6]. Although genetic factors play an import-
ant role in the occurrence of these disorders, knowledge
of the underlying causes are scarce, and environmental
toxicants are suspected to contribute to their occurrence
[7–10].
During fetal life, the brain development is particular

sensitive, and prenatal exposure to environmental che-
micals is therefore of concern [11]. Bisphenol A (BPA) is
a non-persistent chemical used in the production of
polycarbonate plastics and epoxy resins. It is a known
endocrine disrupter, which possesses estrogenic, anti-
estrogenic, anti-androgenic and anti-thyroid properties
[12]. It is present in a variety of consumer products, in-
cluding; microwave ovenware, food and liquid storage
containers, children’s toys, protective inner lining in food
cans, dental sealants, and thermal paper receipts [13].
Exposure to BPA occurs through oral ingestion of BPA
contaminated food, through dermal contact or inhal-
ation [14]. BPA is present in urine samples of 95% of the
general population in the US [15], and > 80% of samples
of the general population in Denmark [16], thus BPA ex-
posure is ubiquitous. Several human studies have investi-
gated associations between maternal BPA exposure and
behavioural alterations in the offspring e.g. externalizing
and internalizing behaviour, hyperactivity, inattention,
anxiety, aggression and autistic symptoms [17–31].
However, the results have been inconclusive, and most
cohort studies have reported generally larger effect size
in boys [20–24, 27]. Furthermore, a recent study has

provided evidence that prenatal BPA exposure has an
adverse effect on the development of white matter
microstructure in some brain regions which might medi-
ate behavioural problems in children [29]. Three studies
found no association between prenatal BPA exposure
and behaviour [30–32]. The inconsistencies may be ex-
plained by methodological differences between studies,
the time window of exposure assessment, the specific
behavioural domains tested, the matrix of exposure as-
sessment (urine sample or cord blood), child age (2–10
years), exposure level, and sociodemographic character-
istics of the study participants [33–35].
A previous study in the Odense Child Cohort (OCC)

found an association between prenatal BPA exposure
and delayed language development, but no association
with ADHD related symptoms at 2 years of age among
658 children [32]. The lack of an association might be
attributed to the low prevalence of ADHD symptoms at
2 years, and thus a follow up at 5 years might detect
symptoms that were not recognized at 2 years. We
therefore aimed to investigate, if maternal exposure to
BPA was associated with increased symptoms of ASD at
2 and 5 years, and with increased ADHD symptoms at 5
years in 427 mother-child pairs from the OCC.

Materials and methods
Study population
From 2010 to 2012, women residing in the municipality
of Odense with a newly diagnosed pregnancy before 16
weeks of gestation were invited to participate in the pro-
spective OCC, and 2874 agreed to participate [36].
Twins and mothers of non-western origin (N = 332)
were excluded from this study.

BPA exposure assessment
BPA was measured in maternal urine samples. An ali-
quot of 10–12mL fasting urine was collected in the
morning at approximately week 28 of pregnancy (range:
week 26–34). Samples were stored in freezers at − 80 °C
until chemical analysis [36, 37]. The first 196 samples
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were selected randomly from women enrolled in OCC
between September 2010 and June 2011. The remaining
samples were selected based on availability of question-
naire and clinical data. Urine samples were deconjugated
by enzymatic hydrolysis and then analysed by an isotope
dilution Turboflow-LC-MS/MS method for simultan-
eous determination of BPA and other phenols [16, 38].
Samples were analysed in 17 batches (5 batches in 2011
and 11 in the end of 2012) all including standards for
calibration curves, about 35 cohort samples, two blanks
and two control pools spiked with high and low level
bisphenol A standards. The inter-day variation was
≤14%. The limit of detection (LOD) for urinary BPA was
0.12 ng/mL. There was no difference in the spiked con-
trol material between the two measuring periods [16].
To account for urinary dilution, all BPA concentra-

tions were adjusted for osmolality. In contrast to urinary
creatinine adjustment, urine osmolality is directly related
to the number of particles in solution and is unaffected
by the molecular weight and size of these particles [39].
Osmolality was measured by freezing point depression
method with automatic cryoscopic osmometer (Osmo-
mat®030 from Gonotec, Berlin, Germany). BPA concen-
trations >LOD were adjusted for urinary dilution by
multiplying the individual BPA urine concentration (ng/
mL) with the median osmolality for all urine samples
(0.62 osm/kg) and dividing it with the osmolality (osm/
kg) of the individual urine sample. The BPA concentra-
tions below the LOD were not osmolality adjusted but
were substituted by LOD/√2.

Child behaviour checklist for ages 1½-5
The Child Behaviour Checklist; 1½-5 (CBCL/1½-5) is a
parent rated questionnaire measuring emotional and be-
havioural problems in children between 1½ and 5 years
of age. CBCL/1½-5 consists of 100 problem questions,
which the parents are asked to rate on a 3-point Likert
scale based on the preceding 2 months as: 0 = not true,
1 = somewhat/sometimes true or 2 = very true/ often true.
A standardized version of CBCL/1½-5 translated into
Danish [40] was sent to the parents in the OCC, when
children were between 1.9–4.0 (median 2.7) and 4.9–7.0
(median 5.2) years of age.
We measured ADHD related symptoms at the DSM-

oriented ADHD problem scale, extracted from CBCL/
1½-5. It contains 6 questions (cannot concentrate, hyper-
active, cannot stand waiting, demands met immediately,
gets into everything, quickly shifts) with a scale-score be-
tween 0 and 12 points. Autistic symptoms were mea-
sured at the DSM-oriented ASD problem scale (also
called Pervasive Developmental Problem (PDP) scale),
extracted from CBCL/1½-5. It contains 13 questions
(afraid to try new things, avoids eye contact, can’t stand
having things out of place, disturbed by any change in

routine, does not answer, does not get along with other
children, repeatedly rocks head or body, seems unrespon-
sive to affection, shows little affection toward people,
speech problem, strange behaviour, upset by new people
or situations, withdrawn) with a possible scale-score be-
tween 0 and 26 points. Results were kept as raw scores
and dichotomized at the 75th percentile to identify a
subclinical population, and at the 90th percentile, since
a score on the DSM-ADHD scale derived from CBCL/
1½-5 above the 90th percentile is a predictor of a later
ADHD diagnosis [41].

Covariates
Data on maternal education and Body Mass Index (BMI)
and smoking habits were obtained through question-
naires filled in during pregnancy. Birth information, in-
cluding; maternal age, parity, birth weight, gestational
age, and child sex was extracted from obstetric journals.
Data on child’s health including duration of breastfeed-
ing were obtained through questionnaires filled in, when
the children were 3 and 18months of age. Maternal eth-
nicity was obtained through data from the municipality.
Finally, information regarding parental psychiatric diag-
nosis was extracted from the Danish National Patient
Registry.

Statistical analysis
ADHD- and ASD scores were not normally distributed
and scores of respectively below and above the 75th and
90th percentile was calculated for both scales. The 75th
and 90th percentile dichotomization of the ADHD score
corresponded to a score of ≥4 and ≥ 5, respectively, at 5
years of age. The 75th and 90th percentile dichotomiza-
tion of the ASD score corresponded to a score of ≥3
and ≥ 4, respectively, at 2 years of age, and a score of ≥4
and ≥ 5, respectively, at 5 years. At 2 years of age, 26% of
children had an ASD score ≥ 3, and were dichotomized
into </≥ 75th percentile. At 5 years of age respectively
20 and 26% of children had a score of ≥4 on the ASD
and ADHD scale. Therefore, the children were dichoto-
mized into ≤/> the 75th for ASD score and </≥ 75th
percentile for ADHD score. BPA concentrations were
not normally distributed, and 15% of concentrations
were below LOD. Thus, we both divided BPA concentra-
tions into tertiles, and kept it as an ln-transformed con-
tinuous variable. However, it should be noted that
residuals did not fit the logistic model with ln-
transformed continuous BPA, and thus results should be
interpreted with caution. The characteristics of the in-
cluded participants were compared to the excluded par-
ticipants by the use of Chi2 test. Differences in urinary
BPA concentration, ADHD and ASD scores (below and
above 75th percentile) were examined according to ma-
ternal and child characteristics using non-parametric
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Kruskal Wallis test (BPA) and Chi2 test (ADHD and
ASD).
First, we used multiple logistic regression to calculate

the Odds Ratio (OR) and 95% confidence intervals (95%
CI) of having an ADHD or ASD problem score > 75th
and ≥ 90th percentile across increasing maternal BPA ex-
posure (continuous ln-transformed or divided into ter-
tiles) and to test the trend across tertiles. Second, ASD-
and ADHD-scores were analysed as ordinal data using
negative binomial regression to estimate the relative
change in ASD or ADHD-score expressed as ratio of risk
between exposure groups. In addition, a sub-analysis
was undertaken to calculate the odds ratio of having an
ASD-score above the 75% percentile at both 2 and 5
years of age. Confounders were selected based on careful
review of the literature, and if they varied by exposure
and outcome status. Furthermore, covariates were in-
cluded, if they changed the effect estimate of the inde-
pendent variable with ≥10%. Possible confounders
included in the final analyses were maternal educational
level, parity, pre-pregnancy BMI and maternal age. Fur-
thermore, we adjusted for child age at evaluation, as
small differences in age could affect neuropsychological
status. In addition, the unstratified analyses were also
adjusted for child sex. A sensitivity analyses was per-
formed for the 75th percentile additionally adjusting for
the possible mediators breastfeeding and birth weight, as
we were interested in the direct rather than the total ef-
fect of BPA on ADHD and ASD symptoms. Since previ-
ous research has found BPA to cause sexually dimorphic
alterations in child behaviour [33, 34], all regression

analyses were also performed for boys and girls separ-
ately, and we tested, if the associations were modified by
sex by inserting interaction terms (BPA x child sex) in
the regression models. No significant interaction was
found between maternal BPA exposure and child sex.
To evaluate the fit of the logistic regression models,

goodness of fit was tested using Hosmer-Lemeshow test
and accepted for all models. Results are presented with
an Odds Ratio (OR) 95% confidence interval (CI), and a
p-value < 0.05 was considered statistically significant.

Results
A total of 2217 mother-child pairs were enrolled in the
OCC at 27months of age. Of these, 1707 responded to
CBCL1½-5 at 2 years of age, 1076 participants responded
at 5 years of age, and 796 mothers had BPA measured in
urine. A total of 658 participants had both BPA and
CBCL1½-5 data available at 2 years of age, and 427 at 5
years of age, and were therefore included in this study
(Fig. 1). Compared to the excluded participants (N =
1559), the included participants were less often smokers
and breastfeed for a longer period of time (Supplemen-
tary Table 1).
BPA was detected in 85.3% of samples with a median

(25–75 percentile) concentration of 1.2 ng/mL (0.5–2.6)
(Table 1). BPA concentrations were significantly higher
among overweight women. Furthermore, BPA concen-
trations were higher among nulliparous women, among
less educated women and among children born at term.
Women who did not breastfeed their children exclu-
sively also had higher BPA concentration than women

Fig. 1 Flowchart presenting the selection of the 658 and 427 study participants from the Odense Child Cohort
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Table 1 Maternal and child characteristics according to median (M) and 25–75 percentiles (25–75%) BPA concentrations in maternal
urine; and percentage of children with an ADHD- or ASD- score above the 75th percentile at 2 or 5 years of age
Maternal and child characteristics N (%) BPA ng/mL

M (25–75%)
ASD-score > 75%
2 years
Percent

ASD-score > 75%
5 years
Percent

ADHD-score > 75%
5 years
Percent

658 (100) 1.2 (0.5–2.6)

Parity

Nulliparous 371 (56) 1.37 (0.47–2.88) 32 42 29

Multiparous 287 (44) 1.20 (0.49–2.26) 18 24 22

P-valuea 0.07 < 0.001* < 0.001* 0.08

Pre-pregnancy BMI (kg/m2)

> 18.5- < 25 412 (62) 1.03 (0.30–2.32) 27 32 24

25–30 169 (26) 1.82 (0.90–2.77) 24 33 28

> 30 77 (12) 1.17 (0.55–2.97) 24 49 33

P-valuea 0.002* 0.65 0.06 0.35

Smoking

No 639 (97) 1.23 (0.47–2.54) 25 32 25

Yes 19 (3) 1.21 (0.63–2.68) 37 73 33

P-valuea 0.19 0.29 0.001* 0.49

Education b

high school or less 177 (27) 1.53 (0.55–2.66) 32 54 39

high school + 1–4 years 336 (53) 1.20 (0.49–2.73) 25 29 22

high school + > 4 years 131 (20) 1.35 (0.33–2.24) 18 21 18

P-valuea 0.34 0.04* < 0.001* < 0.001*

Age

< 25 61 (9) 1.08 (0.39–3.34) 40 35 44

25–34 438 (67) 1.23 (0.47–2.49) 26 35 25

> 34 159 (24) 1.28 (0.55–2.52) 19 30 21

P-valuea 0.82 0.006* 0.06 0.03*

Psychiatric predisposition

None 565 (86) 1.27 (0.50–2.52) 24 33 24

Predisposition from parents 93 (14) 1.14 (0.38–2.97) 36 42 33

P-valuea 0.88 0.01* 0.16 0.14

Birth weight (gram)

≤ 3560 332 (51) 1.24 (0.44–2.89) 27 42 27

> 3560 326 (49) 1.23 (0.52–2.38) 25 26 24

P-valuea 0.13 0.52 < 0.001* 0.5

Exclusive breastfeeding (weeks)c

0 101 (16) 1.96 (0.79–3.72) 23 45 36

1–12 256 (42) 1.20 (0.47–2.38) 25 34 31

> 12 259 (42) 1.24 (0.41–2.42) 27 32 18

P-valuea 0.22 0.65 0.18 0.005*

Gestation

< 37 + 0 24 (4) 0.54 (0.00–2.73) 42 62 31

> 37 + 0 634 (96) 1.23 (0.49–2.54) 25 33 26

P-valuea 0.84 0.07 0.03* 0.67
aP-value < 0.05 with Kruskal wallis test (BPA) or Chi2 test (Autistic- or ADHD symptoms)
b 4 observations missing
c42 observations missing
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who breastfed, though these differences were not statisti-
cally significant (Table 1).
The median score (25–75%) on the ASD-scale was 1

(0–2) for girls, and 1 (0–3) for boys at 2 years of age and
1 (0–3) for girls, and 2 (1–3) for boys at 5 years of age.
The median score (25–75%) on the ADHD scale was 2
(0–3) for girls, and 2 (1–4) for boys at 5 years of age.
Higher ADHD/ASD scores were found among children
of mothers, who were nulliparous, smokers, less edu-
cated, younger, among children with a psychiatric pre-
disposition, children who had been exclusively breastfed
for a shorter duration, children with lower birth weight,
and children who were born prematurely (Table 1).
At 2 years of age, no monotonic-trend was observed

across tertiles of BPA for the categorized and continuous
ASD-score (Table 2, Table 3). In addition, no association
was found with continuous ln-transformed BPA (Table
3). At 5 years of age, children within the 3rd tertile of
BPA exposure had a 23% increase in ASD-score (IRR:
1.23 (95% CI 0.98,1.53)), compared to those in the 1st
tertile (p-trend = 0.07), although not significant (Table
2). Furthermore, children within the 3rd tertile of pre-
natal BPA exposure had an OR of 1.80 (95% CI 0.97,
3.32) scoring above the ASD-score > 75th percentile

compared to those within the 1st tertile of exposure (p-
trend = 0.06), and each doubling in BPA exposure (ng/
mL) was associated with a 25% higher odds of an ASD-
score score > 75th percentile (OR: 1.25 (95% CI 1.03,
1.52)). The sex-stratified analysis showed that the associ-
ation was stronger in girls, and girls in the 3rd tertile of
BPA exposure had an OR of 3.17 (95% CI 1.85,9.28) and
boys had an OR of 1.42 (95% CI 0.64,3.13) compared to
those within the 1st tertile of exposure, and a similar dir-
ection of association was found with continuous ln-
transformed BPA (Table 3). The association was even
stronger for the 90th percentile cut-off in girls, (OR:
5.03 (95% CI 0.97–26.08)) (p-trend 0.04) but the confi-
dence interval was also wider (Table 3).
Forty children had an ASD-score ≥ 75th percentile at

both 2 and 5 years. Increased odds of an ASD-
score ≥ 75th percentile was found among children in the
3rd tertile of prenatal BPA exposure, with an OR of 2.05
(95% CI 0.90,4.64) (p-trend = 0.06). For each doubling in
BPA exposure the odds of a score ≥ 75th percentile in-
creased with 38% (OR: 1.38 (95% CI 1.02,1.84)) com-
pared to a score < 75th percentile (Table 4).
An increase in OR was found among children in the

3rd tertile of BPA exposure and ADHD symptoms at

Table 2 Negative binomial regression analysis of the association between osmolality adjusted maternal BPA exposure divided into
tertiles and the incidence rate ratio (IRR) and 95% confidence intervals (CI 95%) of ADHD-score in boys and girls at 2 and 5 years of
age

Osmolality adjusted BPA (ng/mL) Adjusteda IRR (CI 95%)
All (N = 654)

Adjusteda IRR (CI 95%) Boys (N = 347) Adjusteda IRR (CI 95%) Girls (N = 307)

ASD-score at 2 years

1th tertile (≤0.87) Reference Reference Reference

2nd tertile (0.88–1.96) 0.87 (0.71–1.07) 0.85 (0.65–1.10) 0.89 (0.64–1.24)

3rd tertile (≥ 1.97) 1.02 (0.84–1.24) 1.08 (0.84–1.39) 0.91 (0.66–1.25)

p-trendb 0.80 0.48 0.54

Osmolality adjusted BPA (ng/mL) Adjusteda IRR (CI 95%)
All (N = 425)

Adjusteda IRR (CI 95%) Boys (N = 223) Adjusteda IRR (CI 95%) Girls (N = 202)

ASD-score 5 years

1st tertile (≤0.87) Reference Reference Reference

2nd tertile (0.88–1.96) 1.13 (0.89–1.42) 1.09 (0.80–1.51) 1.18 (0.58–5.54)

3rd tertile (≥ 1.97) 1.23 (0.98–1.53) 1.20 (0.88–1.63) 1.29 (0.93–1.78)

p-trendb 0.07 0.24 0.13

Osmolality adjusted BPA (ng/mL) Adjusteda IRR (CI 95%)
All (N = 425)

Adjusteda IRR (CI 95%) Boys (N = 223) Adjusteda IRR (CI 95%) Girls (N = 202)

ADHD-score at 5 years

1st tertile (≤0.87) Reference Reference Reference

2nd tertile (0.88–1.96) 0.96 (0.76–1.22) 0.88 (0.66–1-17) 1.11 (0.75–1.65)

3rd tertile (≥ 1.97) 1.08 (0.86–1.35) 0.98 (0.75–1.30) 1.26 (0.87–1.85)

p-trendb 0.86 0.43 0.76
aAnalyses adjusted for maternal education, maternal age, pre-pregnancy BMI, child age at evaluation, parity. The sex-combined analyses were additionally
adjusted for child sex
bTrend across tertiles tested by inserting the tertile osmolality adjusted BPA as an ordinal indicator variable (0,1,2)
* P-value < 0.05
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Table 3 Multiple logistic regression analysis of the association between osmolality adjusted maternal BPA exposure divided into
tertiles and as continuous ln-transformed and the odds ratio (OR) and 95% confidence intervals (CI 95%) of an ASD-score > 75th
percentile compared to < 75th percentile (reference) and≥ 90th percentile compared to <90th percentile (reference) in boys and
girls at 2 and or 5 years of age

≥75th percentile
Adjusted OR (CI 95%)

≥90th percentile
Adjusted OR (CI 95%)

ASD-score 2 years

Osmolality adjusted BPA (ng/mL) All
(N = 166/488)

Boys
(N = 97/250)

Girls
(N = 69/238)

All
(N = 98/556)

Boys
(N = 64/283)

Girls
(N = 34/273)

1th tertile (≤0.87) Reference Reference Reference Reference Reference Reference

2nd tertile
(0.88–1.96)

0.81 (0.47–1.20) 0.86 (0.47–1.59) 0.71 (0.35–1.43) 0.84 (0.47–1.48) 0.80 (0.39–1.66) 0.89 (0.35–2.27)

3rd tertile
(≥ 1.97)

1.06 (0.70–1.68) 1.07 (0.60–1.94) 1.05 (0.54–2.31) 1.18 (0.69–2.00) 1.37 (0.70–2.68) 0.83 (0.34–2.06)

p-trendb 0.65 0.78 0.86 0.49 0.31 0.69

Continuous
lnBPAc

1.08 (0.94–1.24) 1.11 (0.93–1.34) 1.02 (0.83–1.25) 1.10 (0.93–1.31) 1.17 (0.94–1.45) 0.97 (0.73–1.29)

>75th percentile
Adjusted OR (CI 95%)

≥90th percentile
Adjusted OR (CI 95%)

ASD-score 5 years

Osmolality adjusted BPA (ng/mL) All
(N = 86/339)

Boys
(N = 54/169)

Girls
(N = 32/170)

All
(N = 59/366)

Boys
(N = 34/189)

Girls
(N = 25/177)

1th tertile (≤0.87) Reference Reference Reference Reference Reference Reference

2nd tertile
(0.88–1.96)

1.22 (0.63–2.36) 1.02 (0.43–2.40) 1.80 (0.58–5.54) 0.86 (0.36–1.99) 0.68 (0.24–1.90) 1.96 (0.32–11.83)

3rd tertile
(≥ 1.97)

1.80 (0.97–3.32) 1.42 (0.64–3.13) 3.17 (1.85–9.28)* 1.65 (0.78–3.49) 1.20 (0.47–2.99) 5.03 (0.97–26.08)

p-trendb 0.06 0.37 0.03* 0.15 0.69 0.04*

Continuous
lnBPAc

1.25 (1.03–1.52)* 1.16 (0.91–1.49) 1.48 (1.04–2.12)* 1.20 (0.94–1.53) 1.10 (0.83–1.47) 1.61 (0.96–2.69)

aAnalyses adjusted for maternal education, maternal age, pre-pregnancy BMI, child age at evaluation, parity. The sex-combined analyses were additionally
adjusted for child sex
bTrend across tertiles tested by inserting the tertile osmolality adjusted BPA as an ordinal indicator variable (0,1,2)
cBPA inserted as a continuous variable transformed by the natural logarithm
* P-value < 0.05

Table 4 Multiple logistic regression analysis of the association between osmolality adjusted maternal BPA exposure divided into
tertiles and as continuous ln-transformed and the odds ratio (OR) and 95% confidence intervals (CI 95%) of an ASD-score ≥ 75th
percentile compared to < 75th percentile (reference) in boys and girls at 2 and 5 years of age

Osmolality adjusted BPA (ng/ml) All (N = 38/376)
Adjusteda OR (CI 95%)

Boys (N = 25/197)
Adjusteda OR (CI 95%)

Girls (N = 13/179)
Adjusteda OR (CI 95%)

ASD-score ≥ 75th percentile at both 2 and 5 years

1th tertile (≤0.87) Reference Reference Reference

2nd tertile (0.88–1.96) 0.72 (0.26–2.01) 0.58 (0.15–2.17) 0.95 (0.17–5.52)

3rd tertile (≥ 1.97) 2.05 (0.90–4.64) 2.17 (0.79–6.01) 1.94 (0.44–8.57)

p-trendb 0.06 0.09 0.33

Continuous lnBPA c 1.38 (1.02–1.84)* 1.42 (0.99–2.02) 1.34 (0.79–2.25)
aAnalyses adjusted for maternal education, maternal age, pre-pregnancy BMI, child age at evaluation, parity. The sex-combined analyses were additionally
adjusted for child sex
bTrend across tertiles tested by inserting the tertile osmolality adjusted BPA as an ordinal indicator variable (0,1,2)
cBPA inserted as a continuous variable transformed by the natural logarithm
* P-value < 0.05
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age 5 years at the 75th percentile and at the 90th per-
centile cut-off (Table 5), although modest in magnitude
and not statistically significant.
In the sensitivity analysis additionally adjusted for

breastfeeding and birth weight the ORs did not change
substantially (supplementary Table 2).

Discussion
In this low exposed mother child cohort, maternal ex-
posure to BPA was associated with an increased odds of
an ASD-score > 75th percentile among children at 5
years of age. No association between maternal BPA ex-
posure and ASD or ADHD scores at respectively age 2
and 5 years was found. It is important to note, that none
of these children were assessed or diagnosed with ASD
or ADHD and CBCL/1½-5 is not a diagnostic tool. How-
ever, the scores obtained from the scales are in accord-
ance with the Danish reference norms [40], and previous
research has established that the CBCL derived DSM-
ADHD and DSM-ASD scales are both valid assessors of
ADHD or ASD psychopathology [41, 42]. The lack of an
association at age 2 years may be explained by CBCL/
1½-5 ASD scale does not capture autism specific symp-
toms as well at age 2 years compared to age 5 years.
The association between maternal BPA exposure and

child neurodevelopment has been investigated by several
studies (reviewed in [33–35]). To the best of our know-
ledge, five studies have investigated the association be-
tween prenatal exposure to BPA and social impairment

or autism-symptoms [26, 27, 30, 31, 43]. Two North
American prospective cohort studies and one North
American prospective high-ASD risk cohort found no
association between maternal BPA exposure and ASD or
non-typical development at 3 years [43], autistic symp-
toms in preschool children [30] or social impairment in
school-aged children [31], which is in contrast to our
findings. However, in the latter study of school aged
children Miodovnik et al. (2011) [31] a significant associ-
ation between prenatal BPA exposure and total SRS-
score was found when 6 outliers were removed. Our
findings are in accordance with a Korean prospective co-
hort with 304 mother-child pairs, which found decreased
social communication skills in 4-year old girls with pre-
natal BPA exposure > 3.0 μg/g (creatinine adjusted) [26].
However, the American and Korean studies included
multiethnic or Korean participants most with higher
BPA exposure, whereas our participants were homoge-
neous and most of Western origin. Since ethnic origin
may impact how parents rate child behaviour [44, 45],
our findings are not directly comparable, but are in the
same direction. A Canadian cohort study comparable to
ours in terms of sociodemographic characteristics of the
study population and BPA exposure [27] found an asso-
ciation between prenatal BPA exposure and poorer re-
ciprocal social behaviours in 537 children, strongest in
boys, measured with the Social Responsiveness Scale 2
(SRS-2) at 3 years [27]. They measured BPA at 12 weeks
of gestation with a median concentration of 0.8 ng/mL,

Table 5 Multiple logistic regression analysis of the association between osmolality adjusted maternal BPA exposure divided into
tertiles and as continuous ln-transformed and the odds ratio (OR) and 95% confidence intervals (CI 95%) of an ADHD-score ≥ 75%
compared to < 75% (reference) and≥ 90th percentile compared to <90th percentile (reference) in boys and girls at 5 years of age

Osmolality adjusted BPA (ng/mL) All chidren (N = 109/316)
Adjusteda OR (CI 95%)

Boys (N = 66/157)
Adjusteda OR (CI 95%)

Girls (N = 43/159)
Adjusteda OR (CI 95%)

ADHD-score 5 years ≥ 75th percentile

1st tertile (≤0.87) Reference Reference reference

2nd tertile (0.88–1.96) 0.81 (0.45–1.45) 0.80 (0.37–1-73) 0.88 (0.36–2.20)

3rd tertile (≥ 1.97) 1.09 (0.64–1.87) 1.06 (0.51–2.17) 1.29 (0.57–2.99)

P-trendb 0.71 0.86 0.52

Continuous lnBPAc 1.05 (0.88–1.25) 1.01 (0.80–1.26) 1.14 (0.85–1.50)

Osmolality adjusted BPA (ng/mL) All chidren (N = 64/361)
Adjusteda OR (CI 95%)

Boys (N = 39/184)
Adjusteda OR (CI 95%)

Girls (N = 25/177)
Adjusteda OR (CI 95%)

ADHD-score 5 years ≥ 90th percentile

1st tertile (≤0.87) Reference Reference Reference

2nd tertile (0.88–1.96) 0.92 (0.42–1.93) 0.60 (0.21–1.69) 1.78 (0.55–5.73)

3rd tertile (≥ 1.97) 1.33 (0.68–2.61) 1.45 (0.61–3.45) 1.29 (0.46–4.64)

p-trendb 0.37 0.32 0.56

Continuous lnBPAc 1.17 (0.93–1.46) 1.17 (0.88–1.56) 1.25 (0.85–1.85)
aAnalyses adjusted for maternal education, maternal age, pre-pregnancy BMI, child age at evaluation, parity. The sex-combined analyses were additionally
adjusted for child sex
bTrend across tertiles tested by inserting the tertile osmolality adjusted BPA as an ordinal indicator variable (0,1,2)
cBPA inserted as a continuous variable transformed by the natural logarithm
* P-value < 0.05
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whereas we measured BPA at 28 weeks of gestation, and
the median BPA concentration was 1.2 ng/mL. We
found stronger associations in girls, whereas Braun et al.
(2017) [27] found strongest associations in boys. ASD is
several times more frequent in boys compared to girls
[46], and in animal studies, BPA exposure has been
shown to affect sexual differentiation of the brain and
can either increase, decrease or eliminate sex-differences
[33]. During fetal life sex steroids are crucial for the sex-
ual differentiation of the brain, and the most vulnerable
time for the sexual differentiation is assumed to be be-
tween week 8–24 of gestation [33, 47]. The difference in
the sex-specific direction of the association between our
study and the study by Braun et al. (2017) [27] might be
attributed to the difference in time of exposure assess-
ment, as early pregnancy might impact behavior in a dif-
ferent way as opposed to mid pregnancy. Furthermore,
Lim et al. (2017) [26] also found stronger associations in
girls and measured BPA exposure between 14 and 27
(median 20 weeks) of gestation. In our study, only 33
girls scored above the 75th percentile, which reduced
power. In addition, different tests were used.
In a previous publication from our cohort, no associ-

ation between maternal BPA exposure and ADHD
symptoms at age 2 years was found [32]. These findings
were confirmed at age 5 years in the current work, and
are in contrast to the results of a large exposome study
including data from 5 European cohorts that found pre-
natal BPA to be associated with worse externalizing be-
havior problems measured with the Strength and
Difficulties Questionnaire between 3 and 7 years of age
[48]. In addition, four studies comparable to our have in-
vestigated prenatal BPA exposure and ADHD related
symptoms, and the results were conflicting [20, 21, 25,
27]. A French [25] cohort study found an association be-
tween prenatal BPA exposure and ADHD symptoms in
boys at age 5 years, measured by the Strength and Diffi-
culties Questionnaire, and a Spanish [20] cohort study
found increased inattention in boys and decreased in-
attention in girls at 4 years of age measured with the Cri-
teria of Diagnostic and Statistical Manual of Mental
Disorders-4th Edition (ADHD-DSM-IV). BPA exposure
was, however, higher than in our cohort, which could
explain, why we found no associations [20, 25]. A Can-
adian [27] and an American study [21] with BPA expos-
ure concentrations comparable to ours found no
association between prenatal BPA exposure and ADHD
symptoms at age 3 years measured with the Behaviour
Assessment System for Children 2 (BASC-2), and at 6–
10 years of age as measured with CBCL (school age ver-
sion), respectively, which is in accordance with our find-
ings. Furthermore in a Canadian [29] birth cohort
maternal BPA exposure measured in urine samples in
the 2nd trimester (median 1.5 ng/mL) was associated

with increased internalizing but not externalizing behav-
iour problems measured with the CBCL at 2–5 years of
age in 56 mother child pairs [29]. The study is not dir-
ectly comparable to ours, as they measured internalizing
and externalizing problems, and we only measured spe-
cific ADHD- and ASD symptoms, but our results are in
the same direction. In addition, Grohs et al (2020) [29]
suggested that the association was mediated by less de-
veloped white matter microstructure in the splenium
measured with diffusion magnetic resonance imaging
(MRI) scan in the 56 children who provided both pre-
natal BPA and CBCL data.
The ability of in utero BPA exposure to alter behav-

iour has been confirmed in several animal studies
(reviewed in [49]). In rodents, gestational or perinatal
exposure to BPA have been associated with increased
anxiety-like behaviour in male [50] and female mice
[51], increased hyperactivity [52] and increased anxiety-
like behaviour in both male and female mice [53]. The
exact mechanism by which BPA impact behaviour is not
completely understood, but in vitro and in vivo studies
have found that exposure to BPA may modify normal
brain development [54–57] Neurodevelopment is a com-
plex process that starts early in the embryonic stage, and
disruption of the critical developmental processes such
as cell proliferation, neural migration, differentiation and
synaptogenesis might cause adverse effects on the devel-
oping brain and could result in neurobehavioural disor-
ders later in life [58]. A recent overview of the adverse
effects of BPA exposure suggest that by disruption of
thyroid and estrogenic pathways BPA may alter Brain-
Derived Neurotropic Factor (BDNF) levels, which could
be an important link between BPA exposure and altered
neurodevelopment [59]. BDNF is a member of the neu-
rotrophin family of proteins and is involved in modulat-
ing neurite outgrowth, synapse plasticity, and the
promotion of neuronal survival and protection [59]. In
utero BPA exposure has been linked to DNA methyla-
tion changes in the transcriptionally relevant region of
the BDNF gene in mice [60], and in vitro, alone and in
co-exposure with other chemicals BPA increases BDNF-
levels which may be linked to cellular changes (increased
number of neurons and altered synaptogenises) seen in
children with ASD [61]. Furthermore, elevated blood
BDNF levels are seen in children with ASD and thus
BDNF is a possible biomarker for ASD [62].
Our study presents several strengths, including the

relatively large study population and the prospective de-
sign. Furthermore, we were able to adjust for potential
confounding factors. However, some limitations need
mentioning. First, only a single urine sample was used as
a proxy for fetal exposure to BPA. BPA is rapidly conju-
gated in the human body and almost fully excreted in
urine within 24 h, and therefore temporal and diurnal
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variation in exposure patterns and excretion rates may
occur [63–65]. BPA has a high within-subject variability
[65, 66]. Thus, timing of urine collection may influence
the observed BPA concentration, and a single spot urine
sample may not reflect average gestational exposure
[66]. Obtaining more than one urine sample could have
improved precision. Furthermore, we measured BPA in
fasting morning samples, which may have contributed to
lower BPA concentrations. Misclassification of BPA ex-
posure is, however, not likely to be differentially associ-
ated with CBCL results, as the women were unaware of
their BPA exposure, when they responded to the CBCL
questionnaire, and the strengths of the associations
might therefore be underestimated, which could explain
the non-significant findings. Likewise, the use of a parent
rated questionnaire (CBCL/1½-5) to assess ASD and
ADHD symptoms may cause parental reporting bias, as
parents may under- or overestimate the severity of
symptoms. Misclassification of ADHD- and autistic
symptoms is, however, also likely non-differential, as
women were unaware of their BPA exposure when
responding to the questionnaires, thereby likely making
the association go towards the null-hypothesis and ex-
plain the lack of statistically significant findings in our
study.
Even though we adjusted for potential confounders,

the possibility of additional confounding from e.g. ma-
ternal IQ cannot be dismissed. Furthermore, it is pos-
sible that other environmental chemicals in co-exposure
with BPA could impact the findings. Finally, BPA was
measured in gestational week 28, and brain development
may be more vulnerable during early or late pregnancy
or even during childhood, as studies have found child-
hood (preschool) BPA exposure is associated with be-
havioural alterations in children [18, 19, 22–24]. Thus,
the association between BPA exposure and child behav-
iour could be dependent on the developmental time-
window of exposure assessment. Unfortunately, we did
not measure postnatal BPA exposure in children from
the OCC. Future studies are needed to identify periods
of heightened vulnerability to BPA exposure during fetal
and childhood development.

Conclusions
In conclusion, in this low exposed mother-child cohort,
children of mothers within the highest tertile of BPA ex-
posure had suggestive higher odds of having an ASD-
score > 75th percentile at 5-years of age whereas no as-
sociation was found at age 2 years. High scores may pre-
dict later ASD symptoms which may influence social
and learning abilities, and it is therefore important to
follow-up these children and measure their own BPA ex-
posure to determine if these findings persist.
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