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Abstract. The wake potential induced by a swift nonrelativistic ion has been studied theoretically for
a random stopping medium consisting of quantal-harmonic-oscillator atoms. The primary purpose has
been to study the influence of atomic binding on the frequently-studied wake potential in a Fermi gas.
Quantitative comparisons at constant plasma frequency and increasing oscillator frequency show a gradual
decrease in wavelength and a slight decrease in amplitude of the oscillatory part of the wake potential,
as well as a systematic decrease in screening of the near-field next to the projectile. These findings can
be expected on the basis of the Drude-Lorentz formula for the effective resonance frequency. We find a
distinct dependence of the induced potential on the ion charge as long as the plasma frequency exceeds
the oscillator frequency. In the opposite case of a dominating oscillator frequency we find little difference
between the field induced by a point charge and that by a neutral atom. As an application area we briefly
discuss the proximity effect in the energy loss of molecular ions. We find that the polarization wake modifies
the proximity effect, in contrast to the frequently-expressed view that it causes the proximity effect.

PACS. 34.50.Bw; and 71.45.Gm;

1 Introduction

In 1940 Fermi [1] pointed out that a swift charged parti-
cle traversing condensed matter carries with it an induced
electromagnetic field which gives rise to a significant re-
duction in the energy loss (Fermi density effect). Early
studies of this ‘wake’ [2] field focused on particles moving
at relativistic velocities [1, 3, 4]. Neufeld and Ritchie [5]
demonstrated that significant polarization of the stopping
medium also may be expected at nonrelativistic projec-
tile speeds, and they derived an explicit expression for the
wake potential on the basis of the Drude-Lorentz model
of a conducting medium.

The wake phenomenon received considerable interest
in connection with experimental observations on the pen-
etration of swift molecules and clusters [6–9]. Theoretical
estimates were based on the Lindhard scheme [10], and the
stopping medium was modeled mostly as a Fermi gas, ei-
ther by the Lindhard dielectric function or modifications
thereof [6, 11–14]. Extensions beyond these schemes in-
clude a first-order theory involving bound electrons in a
lattice [15] and a second-order correction to the wake po-
tential of a Fermi gas [16].

While the Fermi gas is an illuminating model system
to study stopping phenomena in general, we find its dom-
inance in the description of the polarization wake some-
what surprising. After all, the polarization vector in elec-
trostatics conventionally characteristizes the state of an
insulating material. In the study of time-dependent fields

the difference between the response of free and bound elec-
trons may be less pronounced than in equilibrium, but to
the best of our knowledge, significance and magnitude of
the difference and its dependence on beam and target pa-
rameters are largely unknown.

The present study is based upon a quantal extension
of the classical Drude-Lorentz insulator. Unlike the Fermi
gas, which is uniquely defined by the density of free elec-
trons, the Drude-Lorentz model operates with at least two
independent parameters, one or more binding frequencies
ωj and a plasma frequency ωp, the latter characterizing
the electron density. It is the interplay between these pa-
rameters that may give insight into the above problemat-
ics, and studying a system with just one binding frequency
ought to produce a transparent picture.

The Drude-Lorentz theory describes long-wavelength
polarization phenomena and, therefore, breaks down near
the trajectory, where the induced field is most pronounced.
It is necessary, therefore, to utilize a description that de-
scribes variations over short wavelengths in a consistent
manner. An appropriate tool here is the dielectric func-
tion ε(k, ω) based on the linear response of a 3D quantum
oscillator, as derived in ref. [17] on the basis of refs. [10]
and [18].
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Fig. 1. Induced potential for Fermi gas at 2mv2/�ωp = 10 and
rs = 1, 2, 4 (top to bottom).

2 Recapitulation

2.1 Induced Potential

According to Lindhard [10] the longitudinal field induced
by a point charge Z1e moving with a speed v � c in a
medium characterized by a dielectric function ε(k, ω) may

be expressed by a potential

Φind(r, t) =
Z1e

2π2

∫
d3k

k2
eik·(r−vt)

(
1

ε(k, ω)
− 1

)
. (1)

In a reference frame moving with the projectile this may
be written in the form [5]

Φind(x, ρ) =
Z1e

π

∫ ∞

0

k dk J0(kρ)

∫ ∞

−∞

eiκx dκ

k2 + κ2

×
(

1

ε
(√

k2 + κ2, κv
) − 1

)
(2)

in terms of cylindric cordinates (x,ρ), where J0 indicates
a Bessel function in standard notation [19].

2.2 Fermi Gas

Numerous graphs from the literature show wake poten-
tials calculated from this or related models [12]. Figure
1 shows induced potentials evaluated numerically from
eq. (2) by inserting the standard Lindhard function [10],
which is charaterized by an electron density n, expressed
here by the Wigner-Seitz radius rs. Even though the elec-
tron density varies strongly, decreasing as 64:8:1 from top
to bottom, the three plots look rather similar, indicating
that the main effect of the density variation is taken care
of by the scaling variables denoting the axes. It appears
justified, therefore, in the following to ignore this differ-
ence and, for definiteness, to operate with the potential
for rs = 2.

2.3 Classical Oscillator

Another option is based on the Drude-Lorentz dielectric
function for an ensemble of harmonic oscillators with a
resonance frequency ω0 [20],

ε(k, ω) ≡ ε(ω) = 1 +
ω2
p

ω2
0 − ω2 − iγω

, (3)

where γ is an infinitesimal positive constant. In that case,
the integral in eq. (1) reduces to [5]

φind = φ
(1)
ind + φ

(2)
ind (4)

with

φ
(1)
ind = −Z1eω

2
p

v2

∫ ∞

0

dk

k2 + ω′2/v2
J0(kρ) e

−k|x| (5)

for all x, and

φ
(2)
ind =

2Z1eω
2
p

vω′ sin

(
ω′x
v

)
K0

(
ω′

v
ρ

)
(6)

for x < 0, where

ω′ =
√
ω2
p + ω2

0 , (7)
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Fig. 2. Induced potential for a medium of classical oscillators
at 2mv2/�ωp = 10 and ω2

p/ω
2
0 = 0.5, 1, 2 (top to bottom).

and K0(z) is a modified Bessel function in standard nota-
tion [19].
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Fig. 3. Replot of figure 2 in terms of the effective resonance
frequency ω′ defined by eq. (7).

In figure 2 the function φind(x, ρ) has been plotted in
terms of the same variables as in figure 1. It is seen that
both the magnitude of the field and the oscillation period
are sensitive to the oscillator frequency ω0. However, the
proper frequency unit here is ω′ according to eqs. (5) and
(6). Figure 3 represents all three plots from figure 2 in
appropriate scaled variables.

Equations (4) - (6) are based on a long-wavelength
description of the induced field. Therefore the range of
validity is restricted to not too small distances ρ from the
trajectory. This is manifested in a sharp increase seen in
figure 2 and divergencies of eqs. (5) and (6) at ρ = 0.

3 Quantum Oscillator

According to ref. [17] the dielectric function of a random
assembly of quantum oscillators is given as

ε(k, ω) = 1 +
ω2
p

2ωk
e−ωk/ω0

∞∑
n=1

1

n!

(
ωk

ω0

)n

×

×
(

1

nω0 − ω − iγ
+

1

nω0 + ω + iγ

)
, (8)

where ωk = �k2/2m.
The analytic structure (an infinite number of zeroes,

each located between two poles) of eq. (8) requires full
numerical evaluation of the double integral eq. (2). It is not
possible to simplify the inner integral along the κ-axis by
applying the residue theorem, since an infinite number of
additional non-trivial residues are present in the complex
κ-plane.

Let κj = ωj/v denote the j-th positive zero of ε(k, ω).
Then, using the Kramers-Kronig relation to express the
real part (ε1) of eq. (8) via its imaginary part, eq. (2) can
be rewritten as

Φ(x, ρ) = 2Z1e
∑
j

∫ ∞

0

dk

k
Λj(k, x, ρ) (9)
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where

Λj(k, x, ρ) =

∣∣∣∣∂ε1∂κ

∣∣∣∣
−1

κj

{Ij(k, x, ρ)

+Fj(κj , k, ρ)
[
gj(k, x) +Θ(k − κj) sin(κjx)

]}
(10)

and

Ij(k, x, ρ) =
1

π

∫ k

0

dκ cos(κx)
Fj(κ)− Fj(κj)

κ− κj
, (11)

Fj(κ, k, ρ) =
2κj

κ+ κj
J0

(√
|k2 − κ2| ρ

)
, (12)

gj(k, x) =
1

π
cos(κjx)

[
Ci(κjx− kx)− Ci(κjx)

]
+

1

π
sin(κjx)

[
Si(κjx− kx)− Si(κjx)

]
. (13)

In the definition of eq. (11) the arguments k and ρ of
Fj have been omitted for brevity; Si and Ci denote the
integral sine and cosine, respectively. The discontinuities
of the k-integrand Λj are contained in the step function Θ
and in the logarithmic singularity for k → κj of gj(k, x).
This separation is essential for numerical performance and
stability.

The upper summation limit jmax in eq. (9) has been de-
termined dynamically, i.e., the summation stops as soon as
a term contributes less than 10−9 times the sum acquired
so far. However, to avoid spurious convergence, jmax has
not been allowed to fall below 10. Depending on the pa-
rameters, typical values for jmax lie between 20 and 100.

Equation (9) represents a decomposition of the wake
potential into partial contributions from an infinite num-
ber of individual oscillator excitations. Behind the pro-
jectile (x < 0) each term will show a more or less regu-
lar oscillatory behavior, characterized by a wave number
very roughly given by kj ≈ jω0/v. However, interference
patterns will emerge from the superposition eq. (9), in
particular for high projectile speed and sufficiently large
(−x).

Numerical evaluation leads to potentials shown in fig-
ure 4, which can be compared directly with figure 2. Equiv-
alent graphs show mutual agreement as far as the oscil-
lation period and the behavior at large values of ρ are
concerned, while the behavior close to the trajectory has
now become regular.

Figure 5 shows the same data replotted in terms of
the variables appropriate to the classical Drude-Lorentz
oscillator, figure 3. It is seen that this renders the oscilla-
tion period almost independent of ω2

p/ω
2
0 . As it must be,

the three potentials are in complete agreement at large
values of ρ, while a minor difference remains close to the
trajectory.

4 Preliminary Discussion

Having identified approximate scaling properties of the
induced potential for an ensemble of quantum oscillators
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Fig. 4. Induced potential for a medium of quantum oscillators
at 2mv2/�ωp = 10 and ω2

p/ω
2
0 = 0.5, 1, 2 (top to bottom).

Length scale as in figures 1 and 2.

we are ready to come back to the question asked in the
introduction: How does electron binding affect the wake
potential of an electron gas?

This may be found by comparing figure 4 with figure
1. Note first that both graphs refer to the same ion veloc-
ity expressed by 2mv2/�ωp = 10, and that the same units
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Fig. 5. Figure 4 replotted in terms of variables as in figure 3.

have been applied in equivalent axes. Ignoring small differ-
ences between the three graphs in figure 1, we notice that
the bottom graph in figure 4 is most similar to figure 1. In
this case we have ω2

p > ω2
0 . In the opposite case, the top

graph in figure 4, where ω2
p < ω2

0 , the oscillation frequency
is greater and the oscillation amplitude is smaller.
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Fig. 8. Lateral variation of the induced potential for B =
2mv2/�ωp = 10 in the position of the ion x = 0 as well as in the
longitudinal positions corresponding to maxima and minima
closest to the ion.

5 Results

5.1 The Core Potential

While the qualitative behavior of the wake potential can
be illustrated by 3D graphs, details show up more directly
in two dimensions. Here we first consider the potential
in the very trajectory, i.e., for ρ = 0. Although we have
learned that ω′ is the effective resonance frequency to rep-
resent the induced potential in an almost universal plot,
units involving the plasma frequency ωp are employed here
in order to illustrate deviations from the Fermi-gas de-
scription of a wake.

Figure 6 shows induced potentials for the Fermi gas
and ensembles of oscillators for B = 2mv2/�ωp = 10.
Outstanding features are the behavior near the projectile
(x = 0) on the one hand, and far behind the projectile
(negative x) on the other.

For the Fermi gas (upper left graph) we observe pro-
nounced asymmetric screening of the Coulomb potential
near x = 0. A very similar screening effect is found for the
oscillator for ω2

p/ω
2
0 = 10. It decreases slowly as the ra-

tio ω2
p/ω

2
0 decreases down to � 1, from where it decreases

more rapidly to become insignificant at ω2
p/ω

2
0 � 0.1. A

very similar behavior has been found for B = 2mv2/�ωp =
20 and 5.0 (not shown).

The oscillatory part of the induced potential shows a
different behavior. Firstly, at all values of ω2

p/ω
2
0 the in-
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duced potential appears to dominate over the Coulomb
potential behind the first maximum. Next, a gradual tran-
sition is seen from an oscillation governed by the plasma
frequency to the opposite case of a more rapid oscilla-
tion governed primarily by the oscillator frequency for
ω2
p/ω

2
0 � 1. Thirdly, interferences occur which may be

destructive at intermediate values of ω2
p/ω

2
0 , as seen e.g.

for ω2
p/ω

2
0 = 2. Lastly, distinct oscillations are seen also for

ω2
p/ω

2
0 = 0.1, albeit with a comparatively small amplitude

and a higher frequency, compared to the Fermi gas.
In two of the graphs (ω2

p/ω
2
0 = 10 and 0.1) we have

included an additional curve indicated by crosses, which
reflects the leading term j = 1 in eq. (9). This illustrates
the fact that the convergence of the series in eq. (9) be-
comes increasingly slow as ω2

p/ω
2
0 increases.

Note that restriction to j = 1 in eq. (9) is by no means
equivalent with restriction of the sum in eq. (8) to n = 1.
That approximation reduces the dielectric function to the
Drude-Lorentz function cut off at ωk � ω0. This approxi-
mation is equivalent with the distant part of Bethe stop-
ping theory, i.e., it would underestimate the stopping force
by about a factor of two.

5.2 Lateral Variation

Figure 7 shows the variation of the potential at x = 0
in the lateral direction for 2mv2/�ωp = 10, which can be
compared to four of the longitudinal variations shown in
figure 6. As regards the behavior in the vicinity of the ion,
i.e., for ωpρ/v � 1, the conclusions are very similar to
those drawn from figure 6. In particular, screening of the
Coulomb potential appears negligible for ω2

p/ω
2
0 = 0.1.

Figure 8 shows lateral variations behind the projectile
in the maxa and minima of the induced potential at ρ = 0.
The difference in decay length between the two extremes,
ω2
p/ω

2
0 = 10 and 0.1 follows the difference in the corre-

sponding periods in figure 6, while the variation in decay
length from maximum to maximum or from minimum to
minimum appears insignificant.

5.3 Charge Dependence

We have also studied the dependence of the induced field
on the ion charge q1e. The potential of the screened pro-
jectile charge has been expressed by a rather common ex-
pression [21],

V (r) =
q1e

r
+

(Z1 − q1)e

r
e−r/a, (14)

and for the screening radius a we have adopted the ex-
pression [22]

a = (1− q1/Z1) aTF = (1− q1/Z1) 0.8853a0/Z
1/3
1 , (15)

a choice that has also been adopted in the PASS code [23].
Screening enters the integrand in eq. (9) as an addi-

tional factor

f(k, a, β) =
k2a2 + q1/Z1

k2a2 + 1
. (16)

The two graphs in the upper row of figure 9 refer to
the Fermi gas (left) and an oscillator gas with ω2

p/ω
2
0 = 10,

i.e., high electron density. As expected, the graphs are very
similar, and the magnitude of the induced field decreases
with decreasing charge. This implies weaker screening of
the field in the vicinity of the projectile as the charge
decreases, and a strong suppression of the oscillatory po-
tential far behind it.

Similar, slightly reduced features are still found for
ω2
p/ω

2
0 = 1, whereas the graph referring to low density

or ω2
p/ω

2
0 = 0.1 shows only a barely visible screening ef-

fect of the potential near the projectile, but a surprisingly
weak dependence of the far field on the ion charge.

6 Inner and Outer Electron Shells

In order to extract some implications on real systems we
need to consider multiple-electron target atoms. We may
get a hint from the long-wavelength limit of the dielectric
function,

ε(ω) = 1 + ω2
p

∑
j

fj
ω2
j − ω2 − iγjω

,
∑
j

fj = 1, (17)

which is a straight extension of the Drude-Lorentz func-
tion to a multi-electron atom characterized by resonance
frequencies ωj and oscillator strengths fj . Here ω

2
p is deter-

mined by the total electron density of the target material.
We may write eq. (17) in an alternative way,

ε(ω) = 1 +
∑
j

ω2
pj

ω2
j − ω2 − iγjω

, (18)

where

ω2
pj = ω2

pfj =
4πNje

2

m
(19)

with
Nj = NZ2fj , (20)

where N is the number of atoms per volume, Z2 the num-
ber of electrons on a target atom and Nj = Z2fj the
number of j-electrons per volume.

With this, the function 1/ε(ω)−1 has the same form as
eq. (18), except that the resonance frequencies are shifted.
This implies that polarization fields add up linearly within
this approximation, albeit modified due to shifted reso-
nance frequencies. For qualitative orientation we may ig-
nore these shifts.

Under the above assumptions, a single electron shell
is characterized by a plasma frequency ωpj , eq. (19) and
a resonance frequency ω0j which, very roughly, may be
approximated by

�ω0j �
Z ′
j
2
e2

2n2
ja0

, (21)
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where Z ′
j is the effective charge determining the motion

of a j-electron. With this we find

ω2
pj

ω2
0j

� 12

D3
Zj

(
nj

Z ′
j

)4

, (22)

where Zj = Z2fj and D is a dimensionless measure of the
internuclear distance in the material defined by

4π

3
N (Da0)

3
= 1, (23)

i.e., typically D = 3− 4.
For a given material, with Z2 andD fixed, the behavior

of the ratio ω2
pj/ω

2
0j is governed by the factor (nj/Z

′
j)

4,

which increases rapidly from 1/Z4
2 for the K shell to some

value of the order of ∼ 1 in the outermost shell. The factor
12/D3 ∼ 1/3 in the front is roughly constant for most solid
materials, whereas Zj increases monotonically, except for
the outermost shell.

Thus, the present results do not suggest to challenge
the assumption underlying more or less implicitly the ex-
isting literature, that wake phenomena are associated with
weakly-bound target electrons. Therefore a description in
terms of only two frequencies appears meaningful to anal-
yse wake phenomena in real solids.

In a free-electron metal, where the ratio ω2
p/ω

2
0 is nor-

mally 	 1, figures 6, 7 and 9 indicate that a description
in terms of a Fermi-gas model of the solid, with ωp deter-
mined by the number of conduction electrons, should be
adequate. In insulators, an effective resonance frequency
ω0 may be defined if a distinct low-frequency part can
be identified in the oscillator-strength spectrum. The per-
tinent plasma frequency is then given by the number of
electrons contained in that part of the spectrum.

7 Implications

As mentioned in the introduction, wake phenomena in the
nonrelativistic regime have been discussed primarily in
connection with the penetration of molecular and cluster
ions. For pertinent reviews we refer to refs. [9] and [24].
Here we focus on the energy loss of molecular ions.

Measurements with H+
2 and H+

3 ions indicated enhanced
energy losses per atom as compared to the stopping of iso-
lated H ions [25]. Recent measurements [26] indicate that
the enhancement is smaller than reported in ref. [25], but
the existence of the effect is well established by numer-
ous existing data [24]. There is also common agreement
that enhanced stopping is due to enhanced energy trans-
fer to target electrons, while diminished stopping, which
has been found for heavier molecular ions [27], has been
ascribed to a charge-state effect [28–30].

Estimates of enhanced stopping have commonly been
based on the Lindhard formalism [10], with the projectile
being represented by the charge distribution of a molecule
or cluster either at a fixed orientation or averaged over
random orientations [24, 31]. This has given rise to the
widely-spread view that it is the wake force that causes

enhanced or diminished energy losses. As one of numerous
examples we mention a statement in a recent paper [32]
that ‘The wake forces between fragments . . . are the main
responsible for the vicinage effects in the energy loss’. On
the other hand, in ref. [33] we have shown that relative
enhancements in stopping increase monotonically with de-
creasing target density, i.e., the relative enhancement is
greatest when there is no wake at all. Since it appears
difficult to reconcile these two views, we need to go into
some detail.

Let us first note that energy loss to target electrons has
an interaction range � v/ω, i.e., the adiabatic radius [34],
where ω is a representative resonance frequency for the
outermost electrons. Therefore, there is general agreement
that proximity effects in energy loss are negligible if the
internuclear distance exceeds this radius. In the present
context we have

ω �
√
ω2
p + ω2

0 , (24)

where ω0 is the resonance frequency of the outermost shell
of an isolated target atom. If inner shells cannot be ne-
glected, ω is even greater.

The abscissa variables in figures 6 and 7 being ωpx/v
and ωpρ/v, respectively, the pertinent range of interest is
given by ∣∣∣ωpx

v

∣∣∣ � ωp

ω
< 1 (25)∣∣∣ωpρ

v

∣∣∣ � ωp

ω
< 1. (26)

1

2

E

F1

F2

F

v

Fig. 11. Domains in molecule penetration. See text

7.1 Analysis via Bohr’s Picture

Now consider a molecule of an arbitrary orientation pene-
trating through some material. Figure 11 shows the action
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on a target electron E of a molecule 12 moving with a ve-
locity v. If we neglect induced potentials, the central forces
F 1 and F 2 result in momentum transfers P 1 and P 2

and, hence, a kinetic-energy transfer (P 1+P 2)
2/2m. This

quantity exceeds the individual energy transfers (P 2
1 +

P 2
2 )/2m if P 1 · P 2 > 0. This condition is fulfilled for all

electrons outside the circle connecting the two nuclei in
the figure.

Evidently, the relative contribution to stopping by elec-
trons outside the circle increases as the ratio between
the adiabatic radius and the internuclear distance in the
molecule increases.

In a dense medium, it is the sum of the two potentials
as well as the two induced potentials that act on the target
electron. As a first consequence the respective forces F 1

and F 2 get smaller as the induced potential increases,
and so does the relative enhancement in stopping, as was
shown in ref. [33]. An exception is found for molecules
aligned with the beam direction, where the range of the
effective interaction potential gets extended, so that both
positive and negative enhancements become possible [24,
31].

1

2 v

Fig. 12. Both atoms outside each other’s Mach-cones. See text

7.2 Analysis via Fermi’s View

According to Fermi, the energy loss per pathlength of a
point charge is given by the gradient of the induced po-
tential at the position of the particle, multiplied with its
charge [1, 4, 10]. In this picture, the force on atom 1 in a

dicluster is given by the sum of its induced force, F ind
11 ,

the force F 21 from atom 2 in the absence of the medium
and the induced force F ind

21 from atom 2. With this, the
force on the molecule is

F = F ind
11 + F ind

22 + F ind
21 + F ind

12 , (27)

since F 21 + F 12 = 0.
While F ind

11 and F ind
22 are directed along the (nega-

tive) beam direction, F ind
21 and F ind

12 have both lateral and
longitudinal components. It is the latter that govern en-
ergy loss, while the former contribute to multiple scatter-
ing. Thus, a positive enhancement of the stopping force is
found for

F ind
21,x + F ind

12,x < 0, (28)

where x denotes the beam direction.

Equation (28) is certainly fulfilled for a dicluster ori-
ented perpendicular to the beam, as is evident e.g. from
figure 1. It is also fulfilled in a configuration sketched in
figure 12. It is well known, although not very clear from
our 3D graphs, that the oscillatory part of the induced
potential is confined by a Mach-type cone. Outside this
cone the induced potential is attractive. Figure 13 shows
a contour plot of the induced potential plotted in figure 1,
upper graph.

Clearly, enhanced stopping is determined by the wake
field in this picture, but so is basic atomic stopping. Or
conversely: If there is no wake, not only is there no en-
hanced stopping: There is no stopping at all.

Now, consider an electron gas (free or bound) at a cer-
tain density. If that density decreases, the induced field
gets smaller. This affects both F 11 and F 21 and the corre-
sponding forces acting on atom 2. However, F 21 decreases
more slowly, since the screening radius v/ω′ gets larger.
Hence the proximity effect increases with decreasing elec-
tron density, in agreement with ref. [33].

7.3 Microscopic and macroscopic quantities

Evidently, the proximity effect is related to the induced
field. Does this imply that it is caused by the wake field?

Consider a dilute gas, where [20]

1

ε
− 1 � −4πχ, (29)

where χ, the susceptibility is related to the atomic polar-
izability γ as χ = Nγ.

Now, within the range of validity of eq. (29), the ratio
F21/F11 and, therefore, the stopping ratio R – i.e., the
ratio between the stopping force on the cluster and the
sum of the stopping forces on the constituents – becomes
independent of the density N . Thus, for a dilute gas the
stopping ratio is a microscopic parameter independent of
the density of the medium. In contrast, the wake field is a
macroscopic quantity which vanishes in the limit ofN = 0.

We conclude that the frequently-expressed view that
the proximity effect in energy loss should be caused by
the polarization wake is not tenable. The wake potential
influences the proximity effect, but that effect is greatest
for binary collisions in vacuum where there is no wake at
all.

Interestingly, the claim of the wake being the cause of
the proximity effect has not been made in the pioneering
papers [25, 31], nor did we find it in a major review [12].
However, we did find an early explicit statement in ref.
[35], which seems to have triggered numerous subsequent
ones, including the one quoted above from ref. [32].

This work has been supported by the Danish Natural Science
Research Council (FNU).
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Fig. 13. Contour plot of figure 1, top graph.
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Fig. 6. Induced potential (red dotted lines), Coulomb potential (blue dashed lines) and total potential (solid black lines) at
ρ = 0 for B = 2mv2/�ωp = 10. Crosses denote the induced potential approximated by the first term (j = 1) in eq. (9). Results
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Fig. 7. Same as figure 6 for x = 0 and variable ρ.
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