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A B S T R A C T

There is solid evidence for an association between physical activity and metabolic health outcomes in children
and youth, but for methodological reasons most studies describe the intensity spectrum using only a few sum-
mary measures. We aimed to determine the multivariate physical activity intensity signature associated with
metabolic health in a large and diverse sample of children and youth, by investigating the association pattern for
the entire physical intensity spectrum. We used pooled data from 11 studies and 11,853 participants aged
5.8–18.4 years included in the International Children's Accelerometry Database. We derived 14 accelerometry-
derived (ActiGraph) physical activity variables covering the intensity spectrum (from 0–99 to ≥8000 counts per
minute). To handle the multicollinearity among these variables, we used multivariate pattern analysis to es-
tablish the associations with indices of metabolic health (abdominal fatness, insulin sensitivity, lipid metabolism,
blood pressure). A composite metabolic health score was used as the main outcome variable. Associations with
the composite metabolic health score were weak for sedentary time and light physical activity, but gradually
strengthened with increasing time spent in moderate and vigorous intensities (up to 4000–5000 counts per
minute). Association patterns were fairly consistent across sex and age groups, but varied across different me-
tabolic health outcomes. This novel analytic approach suggests that vigorous intensity, rather than less intense
activities or sedentary behavior, are related to metabolic health in children and youth.

1. Introduction

There is clear evidence of favorable associations between physical

activity (PA) and metabolic health outcomes in children. While asso-
ciations are evident for moderate-to-vigorous PA (MVPA) and vigorous
PA (VPA), associations appears to be weak for light PA (LPA) and
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sedentary time (SED) (Ekelund et al., 2012; Andersen et al., 2006;
Janssen and LeBlanc, 2010; Poitras et al., 2016; Cliff et al., 2016;
Aadland et al., 2018a). However, few studies include the entire PA
intensity spectrum in their analyses and many studies summarize all
intensities above walking into one category (MVPA), which limits in-
formation about the importance of specific intensities in the moderate
to vigorous range. Capturing the entire intensity spectrum is important
to avoid loss of information and residual confounding (Poitras et al.,
2016; Aadland et al., 2018a; van der Ploeg and Hillsdon, 2017). Ac-
cordingly, associations across the entire PA intensity spectrum, in-
cluding SED, should be examined to obtain a complete picture and to
ease interpretations of associations between PA and health outcomes.
This aim has traditionally been difficult to address, as researchers
mainly have relied on statistical methods that cannot handle multi-
collinearity among the explanatory variables.

Aadland et al. (2018a) recently applied multivariate pattern ana-
lysis to addressed the multicollinearity challenge of accelerometer-de-
rived PA data. This analytical approach provides a solution to limita-
tions imposed by traditional statistical approaches, as it can model any
number of completely multicollinear variables (Wold et al., 1984).
Thus, multivariate pattern analysis allows for modelling multiple
variables across the entire PA intensity spectrum and hence use the rich
information embedded in the acceleration signal, which can provide
greatly improved information from accelerometry (Aadland et al.,
2018a; Aadland et al., 2019a).

The recent application of multivariate pattern analysis to the field of
PA epidemiology provides promising results in terms of how re-
searchers may better exploit and model accelerometry-derived PA data.
However, the previous studies (Aadland et al., 2018a; Aadland et al.,
2019a) only included one cohort of 10-year-old children. Thus, these
findings need verification and extension using a larger and more diverse
sample of children. Therefore, the aim of the present study was to de-
termine the PA intensity signatures associated with metabolic health
outcomes in the International Children's Accelerometry Database
(ICAD), which includes a large sample of children aged 6–18 years from
culturally diverse settings.

2. Methods

2.1. Study design

The International Children's Accelerometry Database (ICAD)
(http://www.mrc-epid.cam.ac.uk/research/studies/icad/) is a database
that contains pooled data on accelerometer-determined PA, SED, and
related health outcomes in children and adolescents from 21 studies
from 10 different countries. The aims, selection and design of studies, as
well as data reduction procedures and methods of the ICAD database
have been described elsewhere (Sherar et al., 2011).

2.2. Participants

In the present analyses, we used data from children and adolescents
aged 6–18 years from 11 studies from Europe (EYHS Denmark, Estonia,
Norway, and Portugal (Andersen et al., 2006), ALSPAC (Golding et al.,
2001), CoSCIS (Eiberg et al., 2005), KISS (Zahner et al., 2006), PANCS
(Kolle et al., 2010)), the United States (NHANES 2003–2004 (National
Health and Nutrition Examination Survey, 2005), NHANES 2005–2006
(National Health and Nutrition Examination Survey, 2010)), and Brazil
(Pelotas (Victora et al., 2007)). Data were collected 1997–2007 and
studies included cross-sectional, longitudinal, and intervention designs.
A detailed overview of the studies are provided by Sherar et al. (2011)
When several waves of data were available (i.e., when participants were
measured at multiple time points), we included only the first wave to
limit the sample to unique observations. The included studies provided
data on PA and at least one of the metabolic risk factors of interest. All
participants and/or their parents/legal guardian provided informed

consent and all study protocols were approved by local ethical com-
mittees.

2.3. Procedures

2.3.1. Physical activity
A detailed description of the assessment and data reduction proce-

dures of PA has been published previously (Sherar et al., 2011). Briefly,
accelerometer data for the vertical axis from all studies were re-
processed and reanalyzed for unification across studies using the Ki-
neSoft software version 3.3.20 (Loughborough, UK). Data were re-
integrated to 60-s epochs and non-wear periods of at least 60 min of
consecutive zeros (allowing for two minutes of non-zero interruptions)
were excluded. Inclusion criteria were a valid wear time of 10–16 h/day
(i.e., excluding individuals with overnight wear) and ≥ 4 days/week.

To capture movement in narrow intervals throughout the intensity
spectrum, we defined 14 PA variables of total time (min/day) spent in
0–99, 100–499, 500–999, 1000–1499, …, 4500–4999, 5000–5999,
6000–7999, and ≥ 8000 counts per minute (cpm). We used the
Evenson et al. cut points of 0–99, 100–2295, 2296–4011, ≥ 4012,
and ≥ 2296 cpm for SED, LPA, MPA, VPA, and MVPA (Evenson et al.,
2008; Trost et al., 2011) as a guide for classification and interpretations
of intensity ranges post hoc.

2.3.2. Metabolic health measures
Height and weight were measured using standardized methods in all

studies. We calculated body mass index (BMI; kg/m2). For descriptive
purposes, we further reported the proportions of individuals being
overweight and obese based on the age- and sex-specific cut-offs sug-
gested by Cole et al. (2000).

We used seven cardio-metabolic variables as outcomes; abdominal
adiposity (waist circumference (WC)) and resting systolic blood pres-
sure (SBP) from 11 studies (Andersen et al., 2006; Golding et al., 2001;
Eiberg et al., 2005; Zahner et al., 2006; Kolle et al., 2010; National
Health and Nutrition Examination Survey, 2005; National Health and
Nutrition Examination Survey, 2010; Victora et al., 2007), lipid meta-
bolism (triglycerides (TG), total cholesterol (TC) and high-density li-
poprotein (HDL)-cholesterol) from 10 studies (Andersen et al., 2006;
Golding et al., 2001; Eiberg et al., 2005; Zahner et al., 2006; Kolle et al.,
2010; National Health and Nutrition Examination Survey, 2005;
National Health and Nutrition Examination Survey, 2010), and glucose
metabolism (insulin and glucose) from nine studies (Andersen et al.,
2006; Eiberg et al., 2005; Zahner et al., 2006; Kolle et al., 2010;
National Health and Nutrition Examination Survey, 2005; National
Health and Nutrition Examination Survey, 2010). WC was measured
using an anthropometric measurement tape at the height of the umbi-
licus at the end of a normal expiration, except in the National Health
and Nutrition Examination Survey (NHANES) where WC was measured
just above the iliac crest at the mid-axillary line (National Health and
Nutrition Examination Survey, 2010). WC:height ratio was used for
analysis. Blood pressure was measured during rest using manual
(National Health and Nutrition Examination Survey, 2005; National
Health and Nutrition Examination Survey, 2010) or automatic
(Andersen et al., 2006; Golding et al., 2001; Eiberg et al., 2005; Kolle
et al., 2010; Victora et al., 2007) methods. The average of two, three or
four recordings was used for analysis. All blood samples were drawn
from fasting individuals. We calculated the TC:HDL ratio and home-
ostasis model assessment of insulin resistance (HOMA) (Matthews et al.,
1985), which were used for the association analyses.

We calculated a composite metabolic health score as the mean of
five variables (WC:height ratio, SBP, TG, TC:HDL ratio, and HOMA).
The score was constructed after adjustment of all variables for sex and
age by obtaining standardized residuals from linear regression. Similar
approaches have been used previously (Andersen et al., 2006; Aadland
et al., 2018a). We regard this composite score as the main outcome.
Additionally, we performed a sensitivity analysis using a composite
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score excluding WC:height ratio, to reduce the influence of fatness on
the model. We also analyzed each of the five risk factors individually.

2.4. Statistical analyses

Descriptive characteristics were reported as frequencies, means,
standard deviations (SD), and medians (time spent in PA intensities).
Associations between PA and metabolic health were determined using
multivariate pattern analysis. All analyses were adjusted for age and sex
by using residuals from linear regression for all outcome variables in-
cluding age and sex as independent variables. We also included sensi-
tivity analyses adding cohort as a random effect in a linear mixed model
to further adjust for potential differences between studies.

We used partial least squares (PLS) regression (Wold et al., 1984) to
determine the multivariate association pattern between metabolic
health measures (outcome variables) and the PA intensity spectrum
(explanatory variables), as shown previously (Aadland et al., 2018a;
Aadland et al., 2019b). Briefly, PLS regression decomposes the ex-
planatory variables into a few orthogonal PLS components (latent
variables), while maximizing the covariance with the outcome variable.
This procedure is able to handle completely multicollinear variables
(Wold et al., 1984). Given the strong correlations among the ex-
planatory variables when using a spectrum description of PA (Aadland
et al., 2019c), each variable provides limited unique information about
the outcome. Thus, their unique contribution to the outcome is neither
meaningful nor possible to estimate. Association estimates are therefore
not independent of each other (Aadland et al., 2019b), which means the

interpretation of associations differs from those of ordinary linear re-
gression.

We validated all models using Monte Carlo resampling (Kvalheim
et al., 2018) with 100 repetitions randomly selecting 50% of the ob-
servations as an external validation set in each repetition. For each PLS
model, we used target projection (Kvalheim and Karstang, 1989;
Rajalahti and Kvalheim, 2011) followed by reporting of selectivity ra-
tios with 95% confidence intervals (CIs). These estimates show the di-
rection and explained variance (R2) for each PA intensity variable with
the predicted outcome in the multivariate space (Aadland et al., 2019b;
Rajalahti et al., 2009a; Rajalahti et al., 2009b). For example, a se-
lectivity ratio of 0.50 and a total model R2 of 10%, means the variable
explains 5% of the actual outcome. Additionally, we reported the as-
sociation using unstandardized estimates (Aadland et al., 2019b) to
allow for an interpretation of the importance of a higher or lower
duration (in minutes/day) among PA intensities.

The association patterns related to metabolic health was compared
by age groups and sex (5.8–11.9-year-old boys and girls and 12.0–18.4-
year-old boys and girls) by performing the analyses separately for these
four subgroups. The multivariate PA signatures were compared among
groups by correlating association patterns using Pearson's r.

The multivariate pattern analyses were performed by means of the
commercial software Sirius version 11.0 (Pattern Recognition Systems
AS, Bergen, Norway).

Fig. 1. The multivariate physical activity sig-
nature associated with metabolic health in chil-
dren and youth. The composite score includes waist
circumference to height ratio, systolic blood pres-
sure, homeostasis model assessment of insulin re-
sistance, total to high-density lipoprotein cholesterol
ratio, and triglyceride (a lower score is more favor-
able). The PLS regression model includes five com-
ponents and is adjusted for age and sex. The se-
lectivity ratio for each variable is the explained to
total variance of the predictive (target projected)
component. A negative bar implies that increased
physical activity is associated with better metabolic
health. R2 = explained variance.
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3. Results

3.1. Participants' characteristics

We included 11,853 participants in the analyses who provided valid
data on age, sex, PA, and at least one outcome variable (Table 1). The
overall number of participants varied from 4185 to 11,735 across
models for single risk factor outcomes, whereas 4105 children provided
data for the composite score (n = 917–1127 for age- and sex-specific
groups) (Supplemental Table 1). Total accelerometer wear time was
mean (SD) 780 (67) minutes/day (mean 771–795 min/day across sex
and age groups) accumulated across a median of six wear days. Time
accumulated across the intensities are shown in Supplemental Table 2.

3.2. Associations between PA and metabolic health

Fig. 1 shows the association pattern between the entire PA spectrum
and the composite metabolic health score (R2 = 4.2%). Associations
were very weak for intensities lower than 1000 cpm, but gradually
strengthened for intensities from 1000–1499 cpm to 4000–4499 cpm
for which more time spent in PA was associated with better metabolic
health. Associations weakened for intensities higher than 4500 cpm.
Sensitivity analyses including adjustment for study (R2 = 2.7%, Sup-
plemental Fig. 1) or with exclusion of WC:height ratio from the com-
posite score (R2 = 3.4%, Supplemental Fig. 2) did not alter the asso-
ciation patterns (r between these association patterns and the pattern
shown in Fig. 1 = 0.98 and 0.94, respectively).

Association patterns between the entire PA spectrum and the com-
posite metabolic health score were fairly consistent across sex and age
groups (R2 = 3.3–7.0%; r for association patterns = 0.76–0.95 across
subgroups) (Fig. 2). However, a somewhat stronger unfavorable asso-
ciation for 0–99 cpm was found for boys than for girls, and a higher
explained variance was found for the 6–12 year-old girls compared to
other groups. Adjustment for study had a minor impact on association
patterns (r = 0.81–0.98 for patterns adjusted and unadjusted for
study), but reduced the explained variance for 6–12 year old girls from
7.0 to 3.8% (i.e., the results became more similar to other groups).

We found some variation in associations for the five single risk
factors (Fig. 3). For SBP we did not find a significant predictive asso-
ciation pattern, whereas explained variances were 1.7, 1.7, 2.7 and
4.2% for TG, TC:HDL ratio, HOMA, and WC:height ratio, respectively.

Associations for WC:height ratio and HOMA gradually strengthened up
to 4000–4999 cpm and thereafter decreased. For TG and TC:HDL ratio,
associations gradually strengthened up to 1500–2499 cpm, then de-
clined (TG) or plateaued (TC:HDL ratio), before associations strength-
ened again and peaked at 6000–7999 cpm. Adjustment for study had a
minor impact on association patterns (r = 0.85–0.99 for patterns ad-
justed and unadjusted for study), though we did not find a predictive
model for TG.

The relative importance of each minute of PA in different intensities
for the composite metabolic health score is shown in Supplemental
Fig. 3. Whereas more time spent in 0–99 cpm was associated with a
deterioration of metabolic health (0.00035 SDs per min/day), more
time spent in other intensities was associated with improved metabolic
health. Associations gradually strengthened for intensities from
100–499 cpm (−0.00066 SDs per min/day) up to 4500–4999 cpm
(−0.05207 SDs per 1 min/day), and thereafter weakened.

4. Discussion

To handle many strongly correlated PA intensity variables from
accelerometry, we investigated the multivariate PA signature associated
with metabolic health in a large and diverse sample of children by
means of multivariate pattern analyses. Extending previous findings
using this type of analysis applied to PA data (Aadland et al., 2018a;
Aadland et al., 2019a), this novel approach shows how the whole in-
tensity spectrum of PA associates to metabolic health in childhood. Our
results show strongest associations with metabolic health for vigorous
intensities, whereas associations were weaker for lower intensities, in
particular for time spent sedentary.

Consistent with previous studies and recommendations (Ekelund
et al., 2012; Janssen and LeBlanc, 2010; Poitras et al., 2016; Cliff et al.,
2016; Aadland et al., 2018a; Aadland et al., 2019a), our findings sup-
port that children and youth should spend time in moderate to vigorous
intensities to improve their metabolic health. However, our findings
suggest that vigorous intensities are more important than previously
believed. The strongest association with metabolic health was found for
an intensity of 4000–5000 cpm, which is suggested as an appropriate
threshold for classification of vigorous intensity (Trost et al., 2011).
This accelerometer output is achieved for brisk walking or slow running
at ≈ 6 km per hour in children and adolescents (Supplemental Table 3).
However, in the present study, participants' PA was summed over 60 s.

Table 1
Children's characteristics. Numbers are means (SD) if not otherwise stated.

Overall sample Boys 6–12 y Girls 6–12 y Boys 12–18 y Girls 12–18 y

n 11,853 3850 4215 1830 1958
Demography
Age (years) 11.8 (2.3) 10.6 (1.5) 10.6 (1.5) 14.3 (1.7) 14.4 (1.6)
Anthropometry
Body mass (kg) 44.4 (14.8) 38.0 (10.1) 39.1 (10.9) 57.6 (16.0) 55.8 (13.7)
Height (cm) 150.1 (13.8) 143.6 (10.3) 144.5 (10.8) 164.9 (11.9) 161.0 (8.9)
Body mass index (kg/m2) 19.2 (6.1) 18.3 (8.9) 18.4 (3.4) 20.9 (4.2) 21.4 (4.6)
Overweight/obese (%) 16.6/5.7 15.4/5.0 15.8/7.7 16.9/6.9 17.8/4.9
Waist circumference (cm) 67.5 (10.9) 65.1 (9.5) 64.5 (9.4) 74.0 (11.2) 73.0 (11.4)
Waist circumference:Height (ratio) 0.45 (0.06) 0.45 (0.05) 0.45 (0.05) 0.45 (0.06) 0.45 (0.07)
Indices of metabolic health
Systolic blood pressure (mmHg) 105.2 (11.6) 103.1 (9.3) 103.6 (10.0) 110.4 (17.8) 107.8 (9.8)
Total cholesterol (mmol/l) 4.28 (0.73) 4.31 (0.70) 4.40 (0.73) 4.04 (0.73) 4.17 (0.74)
HDL cholesterol (mmol/l) 1.46 (0.34) 1.52 (0.33) 1.47 (0.35) 1.39 (0.33) 1.41 (0.31)
Total:HDL cholesterol (ratio) 3.05 (0.80) 2.95 (0.70) 3.13 (0.87) 3.03 (0.79) 3.09 (0.80)
Triglyceride (mmol/l) 0.93 (0.51) 0.91 (0.51) 0.95 (0.51) 0.90 (0.48) 0.95 (0.56)
Glucose (mmol/l) 5.06 (0.47) 5.02 (0.45) 4.98 (0.50) 5.19 (0.43) 5.06 (0.46)
Insulin (pmol/l) 53.8 (42.9) 35.6 (21.0) 40.1 (29.9) 67.3 (50.0) 75.1 (50.6)
HOMA of insulin resistance (index) 2.06 (1.72) 1.35 (0.84) 1.51 (1.19) 2.63 (2.04) 2.85 (2.03)
Composite score (1 SD)* 0.00 (1.00) −0.01 (0.73) −0.09 (0.82) 0.13 (1.23) −0.01 (1.17)

HDL = high-density lipoprotein; HOMA = homeostasis model assessment; SD = standard deviation *The composite score includes waist circumference:height ratio,
systolic blood pressure, total:HDL ratio, triglycerides, and HOMA of insulin resistance.
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Since children's PA is characterized by sporadic and intermittent bursts
of activity most often lasting less than 10 s (Sanders et al., 2014;
Aadland et al., 2018b), summation of PA over longer periods (“epochs”)
misclassify and mask vigorous activities like running and jumping
(Aadland et al., 2019a). A recent study compared the PA signatures
associated with metabolic health in children derived from 1-, 10-, and
60-s epoch data and found that the strongest association were observed
for 7000–8000, 5500–6500, and 4000–5000 cpm, respectively
(Aadland et al., 2019a). Thus, when using longer as compared to
shorter epoch periods, association patterns were substantially biased
towards lower intensities. Interestingly, when using 60-s epochs, the
association patterns were similar in the previous (Aadland et al., 2019a)
and the present study. Unfortunately, the ICAD data is only available
with 60-s epochs. A similar misclassification could be a reality in much
of the prevailing literature, as epoch periods of 10–60 s are most
commonly used (Cain et al., 2013; Migueles et al., 2017). Consistent
with research on children and youth's activity patterns (Sanders et al.,

2014; Aadland et al., 2018b), we expect that most individuals do not
obtain their PA from brisk walking. Rather, the stronger associations for
higher intensities when using a short epoch probably show that the
health effect of PA is achieved during intermittent vigorous intensity
activities involving running and jumping.

Shifting the focus to the lower end of the intensity spectrum, we
observed a very weak association between SED (i.e., 0–99 cpm) and
metabolic health, which is consistent with current evidence (Ekelund
et al., 2012; Cliff et al., 2016; Aadland et al., 2018a; Hansen et al.,
2018). This finding seems to be consistent across epoch settings
(Aadland et al., 2019a). Similarly, and also consistent with previous
findings (Poitras et al., 2016; Aadland et al., 2018a; Aadland et al.,
2018b; Hansen et al., 2018), LPA intensities (i.e., ≈ 100–1999 cpm)
showed weak associations with metabolic health, especially considering
the biased association profile resulting from the 60-s epoch setting
(Aadland et al., 2019a). As shown previously (Aadland et al., 2019a), as
VPA is partly captured as MPA and MPA is partly captured as LPA when

Fig. 2. The multivariate physical activity signatures associated with metabolic health by sex and age. The composite score includes waist circumference to
height ratio, systolic blood pressure, homeostasis model assessment of insulin resistance, total to high-density lipoprotein cholesterol ratio, and triglyceride (a lower
score is more favorable). The PLS regression models are adjusted for age and sex and include two, one, four, and one components, respectively, for 6–12-year-old
boys, 12–18-year-old boys, 6–12-year-old girls, and 12–18-year-old girls. The selectivity ratio for each variable is the explained to total variance of the predictive
(target projected) component. A negative bar implies that increased physical activity is associated with better metabolic health. R2 = explained variance.
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using a 60- versus a 1-s epoch setting, the association for LPA shown
herein is likely overestimated by misclassification of MPA. Taken to-
gether, our findings show no meaningful associations for time spent in
SED and LPA with metabolic health in children and youth.

Our findings are generally consistent with previous studies from the
ICAD database suggesting that substituting time spent in SED and LPA
with time in MVPA are favorably associated with metabolic health
(Ekelund et al., 2012; Hansen et al., 2018; Wijndaele et al., 2019; Tarp
et al., 2018). The exception is the association for SBP: While we did not
find a predictive association pattern, consistent with a previous study
using similar methodology (Aadland et al., 2018a), weak significant
associations with MVPA have been observed in previous studies
(Ekelund et al., 2012; Wijndaele et al., 2019), but only in a subgroup of
adolescents (Hansen et al., 2018). This could be a result of our thorough
validation of regression models. Since the previous studies used pre-
defined intensity categories of SED, LPA, and MVPA (Ekelund et al.,
2012; Hansen et al., 2018; Wijndaele et al., 2019) or accumulated time
above 500, 1000, 2000, and 3000 cpm (Tarp et al., 2018), they do not
provide detailed knowledge of specific intensities' association with
metabolic health. While a more detailed intensity spectrum and PLS
regression can provide more nuanced information of association pat-
terns across the intensity spectrum, as shown herein, a direct inter-
pretation of our findings with respect to the number of minutes/day
children should spend in specific intensities for an improved metabolic
health is challenging (Aadland et al., 2019b). For this purpose, a tra-
ditional PA description and isotemporal substitution models may be
useful (Aadland et al., 2019b). For example, based on the ICAD data, it
is estimated that substituting 30 min/day of SED with MVPA is asso-
ciated with a 1.5 cm reduced WC (Wijndaele et al., 2019), and that this
association strengthens with increased age (Hansen et al., 2018). Im-
portantly, the PA do not need to be accumulated in prolonged bouts
(Aadland et al., 2018b; Tarp et al., 2018). Thus, the different metho-
dological approaches may complement each other in informing the
evidence base of PA epidemiology and PA guideline development.

Compared to previous studies that have modelled the associations
between the whole intensity spectrum and metabolic health in children
(Aadland et al., 2018a; Aadland et al., 2019a), the explained variance
was considerably lower in the present study (4.2 versus 10.8, 13.4, and
17.0% explained variance for 60-, 10-, and 1-s datasets, respectively).
One possible explanation for the further weakening of the association
(R2 = 4.2 versus 10.8% using 60-s epoch) may be the lack of aerobic
fitness in the composite score in the present study. Among the six single
risk factors included by Aadland et al. (Aadland et al., 2018a; Aadland
et al., 2019a), aerobic fitness was strongest associated with PA. Another
possible reason for the attenuation could be measurement error due to
the application of different measures and protocols across studies.
However, this factor does not seem to be important as accounting for
cohort in our analysis did not improve model fit. Furthermore, most of
the cohorts included in the ICAD have applied older ActiGraph models,
more specifically the AM7164, which is more prone to drift and break-
down from wear and tear, compared to newer generations, for example
the GT3X+, used in our previous studies (Aadland et al., 2018a;
Aadland et al., 2019a).

Fig. 3. The multivariate physical activity signatures associated with dif-
ferent indices of metabolic health. The PLS regression models are adjusted
for age and sex. WC:height ratio = waist circumference to height ratio (seven
components); HOMA = homeostasis model assessment of insulin resistance
(two components); TC:HDL ratio = total to high-density lipoprotein cholesterol
ratio (five component); TG = triglyceride (six component). The SR for each
variable is calculated as the ratio of explained to residual variance on the
predictive (target projected) component. A negative bar implies that increased
physical activity is associated with better metabolic health. R2 = explained
variance.
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4.1. Strengths and limitations

The main strength of the present study was the use of multivariate
pattern analysis to handle the dependency among the PA variables
across the intensity spectrum. This method is a novel and promising
alternative to ordinary least squares regression, because it can handle
multicollinear data sets (Wold et al., 1984; Aadland et al., 2019c;
Rajalahti and Kvalheim, 2011). Importantly, this approach does not
require pre-defined accelerometer cut points and therefore provide a
solution to the cut point conundrum, which confuse the field and
hamper comparison across studies. Furthermore, with regard to gen-
eralizability, the inclusion of a large and diverse sample of children
from the ICAD database is an important strength of this study over
previous studies using similar methodology (Aadland et al., 2018a;
Aadland et al., 2019a; Aadland et al., 2018b).

Accelerometers do not provide “true” PA levels, as behavior changes
over time, some activities might be poorly captured by accelerometry,
and several analytic choices, for example epoch length (Aadland et al.,
2019a), can affect data considerably. Measurement error attenuates
associations and increases the chance of type II errors (Hutcheon et al.,
2010). As it is well known that frequency filtering (Brage et al., 2003;
John et al., 2012) causes a leveling-off of ActiGraph counts for running
at higher speed, the attenuated associations for the highest PA in-
tensities (≥ 5000 cpm) is likely a spurious finding caused by under-
estimation of these activities.

We only included adjustment of age and sex in our primary ana-
lyses, and additionally adjusted for cohort and removed WC:height
ratio from the metabolic health composite score to remove the influ-
ence of adiposity in sensitivity analyses. As expected, this adjustment
reduced the explained variance of the models, whereas association
patterns were robust. Further adjustment for maturation and parents'
education level did not change any findings (results not shown). We
argue these findings show that our association patterns are stable,
though residual confounding by, for example, diet, could influence the
results.

Because our results are derived from a cross-sectional analysis,
causality could not be inferred from our findings. However, as argued
previously (Aadland et al., 2018a), PA guidelines are largely based on
population studies of free-living total PA, whereas experimental studies
investigate effects of PA added to everyday activities. Moreover, due to
the rigorous design, exercise prescription and supervision, and the large
number of groups and participants required, it would be very complex
to obtain experimental evidence informing the field like the present
paper. Finally, it is biologically plausible that PA affect the metabolic
risk factors, whereas it is less likely that metabolic risk factors affect PA
levels, except for overweight and obesity. Therefore, we argue the re-
sults presented herein have implications for children's PA guidelines
when it comes to metabolic health.

5. Conclusion

When incorporating the entire PA intensity spectrum in the analysis
of associations with metabolic health, our findings suggest the strongest
associations are found for VPA, whereas associations for SED are weak.
Though our results are cross-sectional, our findings suggest that PA
guidelines, as well as future surveillance and intervention studies,
should increase their focus on VPA and reduce their focus on SED to
target the strongest PA markers of childhood metabolic health. We re-
commend that future studies apply shorter epochs during measurement
of PA and a multivariate analytic approach to develop future under-
standing in the field of PA epidemiology.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ypmed.2020.106266.
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