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Enumeration of Chord Diagrams via
Topological Recursion and Quantum Curve Techniques

by Jørgen Ellegaard Andersen, Hiroyuki Fuji, Masahide Manabe,

Robert C. Penner, and Piotr Su lkowski1

Abstract

In this paper we consider the enumeration of orientable and non-orientable
chord diagrams. We show that this enumeration is encoded in appropriate
expectation values of the β-deformed Gaussian and RNA matrix models.
We evaluate these expectation values by means of the β-deformed topolog-
ical recursion, and – independently – using properties of quantum curves.
We show that both these methods provide efficient and systematic algo-
rithms for counting of chord diagrams with a given genus, number of back-
bones and number of chords.

1 Introduction

A chord diagram is a graph which can be realised in the plane as follows. It is
comprised of a collection of b line segments (called backbones) on the real axis
with k semi-circles (called chords) in the upper-half plane attached to the line
segments. All chords are attached at different points on the backbones. A chord
diagram comes from its realisation in the plane with a natural fatgraph structure,
namely, half edges incident to each trivalent vertex are endowed with a cyclic order
induced from the orientation of the plane. For a chord diagram c the fatgraph
structure allows us, in the usual way, to define a surface Σc, which is simply just a
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small tubular neighbourhood of the realisation of the chord diagram in the plane,
see left and middle diagrams in Figure 1. Let n be the number of boundary cycles,
and g be the genus of the skinny surface Σc. Then the Euler characteristic χ of
Σc is given by

χ = 2 − 2g = b− k + n.

c Σc

Figure 1: A chord diagram c, its skinny surface Σc, and the associated ribbon
surface Rc.

To present a chord diagram c more simply and efficiently, we collapse each
fattened backbone in Σc into a polyvalent fattened vertex, see the right side of
Figure 1. We call the resulting surface Rc and we refer to it as the Ribbon surface
associated to c. In order for c to be uniquely determined by the ribbon surface
Rc, at each vertex we attach a tail at the place corresponding to the beginning of
the backbone, see Figure 2.

Figure 2: Polyvalent fatten vertex with a tail

In this paper we consider the enumeration of chord diagrams with the topo-
logical filtration induced by the genus and the number of backbones, employing
matrix model techniques. Chord diagrams are widely used objects in pure and
applied mathematics, see e.g. [19, 64, 14, 15, 8, 29]. Furthermore, they are now
used also in the biological context for characterisation of secondary and pseu-
doknot structures of RNA molecules [77, 76, 75, 86, 85, 17, 80].2 In particular,
motivated by the study of RNA pseudoknot structures, a matrix model for the
enumeration of chord diagrams – which we refer to as the RNA-matrix model –
was constructed in [9, 10]. In this paper we study the β-deformed version of this
model and present how it encodes orientable and non-orientable chord diagrams.

2The combinatorial aspects of interacting RNA molecules with the associated genus filtration
are also discussed in [23, 78, 79, 87, 16, 17, 18, 4, 11, 12], and folding algorithms are studied in
[22, 13, 81]. The matrix model approach to the enumeration of possible RNA structures is also
studied in [20, 21, 47, 48, 49, 50, 51, 52, 53].
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1.1 The RNA matrix model for orientable chord diagrams

Let cg,b(k) denote the number of connected chord diagrams with genus g, b back-
bones, and k chords.3 We consider the following generating function

Cg,b(w) =
∞∑
k=0

cg,b(k)wk.(1.1)

In [17], the number cg,1(k) of chord diagrams with 1 backbone was studied. In
particular for the class of planar graphs which have genus g = 0, the number
c0,1(k) is shown to be equal to the Catalan number

Ck =
(2k)!

(k + 1)!k!
.

We present explicitly the tailed ribbon surfaces with 1 backbone for k = 1, 2, 3, 4
in Figure 3.

k = 3

k = 4

k = 1 k = 2

Figure 3: The planar ribbon surfaces with tails for k = 1, 2, 3, 4, whose counts
agree with the Catalan numbers 1, 2, 5, 14.

In [9] the following theorem was established.

Theorem 1.1 (RNA matrix model for orientable chord diagrams [9]). Let HN

be the space of rank N Hermitian matrices. We consider the matrix integral with

3Harer and Zagier found a remarkable formula for cg,1(k), referred to as the Harer-Zagier
formula, in their computation of the virtual Euler characteristic of Riemann moduli space for
punctured surfaces [58].



288 J. E. Andersen, H. Fuji, M. Manabe, R. C. Penner, and P. Su lkowski

the potential

(1.2) VRNA(x) =
x2

2
− stx

1 − tx
,

defined by

(1.3) ZN(s, t) =
1

VolN

∫
HN

dM e−
1
ℏTrVRNA(M),

where

VolN =

∫
HN

dM e−NTrM
2

2 = NN(N+1)/2Vol(HN).(1.4)

Under the ’t Hooft limit

(1.5) ℏ → 0, N → ∞, µ = ℏN,

with the ’t Hooft parameter µ kept finite, the logarithm of the above matrix integral
(called the free energy) FN(s, t) = logZN(s, t) has an asymptotic expansion

(1.6) FN(s, t) =
∞∑
g=0

ℏ2g−2Fg(s, t).

Moreover, this free energy encodes generating functions (1.1) for the numbers
cg,b(k) of chord diagrams

(1.7) µ2g−2Fg(s, t) =
∞∑
b=1

sb

µbb!
Cg,b(µt

2) − s

µ
δg,0.

By (1.7) we see that Fg(s, t) enumerates orientable chord diagrams with genus
g, and s and t2 are generating parameters respectively for the number of backbones
and chords.

1.2 RNA matrix model for non-oriented chord diagrams

As a natural generalization of the above enumerative problem, we consider the
non-oriented4 analogue of the enumeration of chord diagrams. A non-oriented
chord diagram c is a chord diagram, where a binary quantity, twisted or untwisted,
is assigned to each chord. There is a natural non-oriented fatgraph structure
associated with a non-oriented chord diagram and the corresponding non-oriented
surface Σc, where the binary quantity assigned to each chord determines if the
band along the chord for the associated ribbon surface is twisted or not, as depicted
in Figure 4.
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Figure 4: A band and a twisted band.

χ = 0

χ = 1χ = 2

non-orientableorientable

Figure 5: Non-oriented ribbon surfaces with 1 backbone for k = 1, 2.

The non-oriented analogue of the ribbon surface is again constructed by col-
lapsing the fattened backbones into polyvalent fattened vertices and, as before,
adding a tail for each fattened vertex. Some examples of non-oriented ribbon
surfaces are depicted in Figure 5 and in Appendix A.

Instead of the genus, for a surface Σc the cross-cap number (or the non-oriented
genus) h is well-defined, and the Euler characteristic is given by

χ = 2 − h = b− k + n.

Let crh,b(k) denote the number of non-oriented chord diagrams with the cross-
cap number h, b backbones, and k chords. In analogy to the oriented case, we
introduce the generating function Cr

h,b(w)

Cr
h,b(w) =

∞∑
k=0

crh,b(k)wk.(1.8)

As proven in [4], the non-oriented analogue of Theorem 1.1 is straightforwardly
obtained by replacing the integration over Hermitian matrices in (1.3) with the
integration over real symmetric matrices.

Theorem 1.2 (RNA matrix model for non-oriented chord diagrams). Let HN(R)
be the space of rank N real symmetric matrices. We consider the real symmetric
matrix integral with the potential (1.2) defined by

(1.9) Zr
N(s, t) =

1

VolN(R)

∫
HN (R)

dM e−
1
2ℏTrVRNA(M),

4Non-oriented is a shorthand for the union of orientable and non-orientable.
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where

VolN(R) =

∫
HN (R)

dM e−NTrM
2

4 = NN(N+1)/2Vol(HN(R)).(1.10)

Under the ’t Hooft limit

(1.11) ℏ → 0, N → ∞, µ = ℏN,

with the ’t Hooft parameter µ kept finite and fixed, the free energy F r
N(s, t) =

logZr
N(s, t) has an asymptotic expansion

(1.12) F r
N(s, t) =

1

2

∞∑
h=0

ℏh−2F r
h(s, t).

This free energy encodes generating functions (1.8) for the numbers crh,b(k) of
non-oriented chord diagrams

(1.13) µh−2F r
h(s, t) =

∞∑
b=1

sb

µbb!
Cr

h,b(µt
2) − s

µ
δg,0.

Note that matrix model techniques for the enumeration of non-oriented chord
diagrams are also considered in [55, 84, 83, 60, 73, 54].

1.3 β-deformed RNA matrix model as a unified model

In the context of matrix models, it is known that their β-deformation implements
the enumeration of non-oriented chord diagrams [70], as we shall now recall5.

Definition 1.3 (β-deformed RNA matrix model). The β-deformed eigenvalue
integral with the potential (1.2) is defined by

(1.14) Zβ
N(s, t) =

1

VolβN

∫
RN

N∏
a=1

dza∆(z)2βe−
√

β
ℏ

∑N
a=1 VRNA(za),

where ∆(z) denotes the Vandermonde determinant

∆(z) =
∏
a<b

(za − zb),

and

VolβN =

∫
RN

N∏
a=1

dza∆(z)2βe−
√

β
2ℏ

∑N
a=1 z

2
a .(1.15)

5The β-deformed Dyson’s model is solved in various ways. See e.g. [61, 62, 63].
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In the cases of β = 1 and β = 1/2, the β-deformed eigenvalue integral (1.14)
reduces to the eigenvalue representation of the Hermitian matrix integral (1.3)
and the real symmetric matrix integral (1.9) upon the redefinition ℏ →

√
2ℏ,

respectively. Here za ∈ R (a = 1, · · · , N) correspond to the eigenvalues of the
matrix M in each matrix integral. The other special case is β = 2, for which the
eigenvalue integral (1.14) represents the quaternionic matrix integral. Under the
’t Hooft limit

(1.16) ℏ → 0, N → ∞, µ = β1/2ℏN,

with the fixed ’t Hooft parameter µ, the free energy F β
N(s, t) = logZβ

N(s, t) has
the asymptotic expansion

(1.17) F β
N(s, t) =

∞∑
g,ℓ=0

ℏ2g−2+ℓγℓFg,ℓ(s, t),

where
γ = β1/2 − β−1/2.

The free energies (1.6) for β = 1 and (1.12) for β = 1/2 satisfy

Fg(s, t) = Fg,0(s, t),

F r
h(s, t) =

∞∑
g,ℓ=0

2g+ℓ=h

2g(−1)ℓFg,ℓ(s, t).(1.18)

Combining (1.7) in Theorem 1.1 for β = 1 and (1.13) in Theorem 1.2 for
β = 1/2, we obtain the following proposition.

Proposition 1.4. Let C̃g,ℓ,b(w) be defined by

(1.19) (−µ)2g−2+ℓFg,ℓ(s, t) =
∞∑
b=1

sb

µbb!
C̃g,ℓ,b(µt

2) − s

µ
δg,0δℓ,0.

Then we have the following relations

Cg,b(w) = C̃g,0,b(w),

Cr
h,b(w) =

∞∑
g,ℓ=0

2g+ℓ=h

2gC̃g,ℓ,b(w).(1.20)

In the following sections, using β-deformed topological recursion and the the-
ory of quantum curves, we will develop the computational techniques of deter-
mining the functions Fg,ℓ.
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1.4 β-deformed topological recursion and Gaussian resol-
vents

In our first approach, we will employ an analytical method, referred to as the
β-deformed topological recursion [33, 28, 24, 68, 67]. β-deformed topological re-
cursion is a powerful machinery for analyzing the asymptotic expansion of a ma-
trix model free energy in the N → ∞ limit. Let Zβ

N({rn}) and F β
N({rn}) =

logZβ
N({rn}) denote the partition function and the free energy of the β-deformed

matrix model with a general potential

(1.21) V (x) =
K∑

n=0

rnx
n.

By the asymptotic expansion of the free energy F β
N({rn}) we mean the following

expansion in the ’t Hooft limit (1.16)

(1.22) F β
N({rn}) =

∞∑
g,ℓ=0

ℏ2g−2+ℓγℓFg,ℓ({rn}).

The β-deformed topological recursion in fact can be formulated more generally,
as a tool that assigns a series of multi-linear differentials to a given algebraic
curve. In the context of matrix models these multi-linear differentials are identified
with various matrix model correlators (and the topological recursion represents
Ward identities between these correlators), while the underlying algebraic curve
is identified with a spectral curve C (of the matrix model with β = 1)

C =
{

(x, ω) ∈ C2
∣∣ H(x, ω) = ω2 − 2V ′(x)ω − f(x) = 0

}
,

f(x) = lim
N→∞,ℏ→0

β→1

−4β1/2ℏ

⟨
N∑
a=1

V ′(x) − V ′(za)

x− za

⟩β

N

,
(1.23)

where ⟨O({za})⟩βN denotes the β-deformed eigenvalue integral

(1.24) ⟨O({za})⟩βN =
1

Zβ
N({rn})VolβN

∫
RN

N∏
a=1

dza∆(z)2βO({za})e−
√

β
ℏ

∑N
a=1 V (za).

In particular for the RNA matrix model presented in Definition 1.3, the spectral
curve takes the following form [9].

Example 1.5. For the potential VRNA(x) given in (1.2), the defining equation for
C in (1.23) takes form

(1.25) y2RNA = MRNA(x)2(x− a)(x− b), yRNA = V ′
RNA(x) − ω,
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where the branch points a < b are solutions of the equations

S =
D2 − 4µ

t(3D2 − 4µ)
,

4s2t4(3D2 − 4µ)6 = D2(D2 − 4µ)2
(
4D2 − t2(3D2 − 4µ)2

)3
,

and σ and δ are defined as

σ = St =
a+ b

2
t, δ = Dt =

a− b

2
t.

The function MRNA(x) is given by

MRNA(x) =
(2tx− 2 + σ)2 + η

8(tx− 1)2
, η :=

σ(4 − 4δ2 − 7σ + 3σ2)

σ − 1
.

The multi-linear differentials computed by the β-deformed topological recur-
sion are defined as follows [33].

Definition 1.6. The connected h-point symmetric multi-linear differential Wh ∈
M1(C×h)s is defined as

(1.26) Wh(x1, . . . , xh) = βh/2

⟨ h∏
i=1

N∑
a=1

dxi
xi − za

⟩(c)

N,β

,

where ⟨O⟩(c)N,β denotes the connected part [46] of ⟨O⟩βN introduced in (1.24). In
the ’t Hooft limit (1.16), h-point multi-linear differentials admit an asymptotic
expansion

(1.27) Wh(x1, . . . , xh) =
∞∑

g,ℓ=0

ℏ2g−2+h+ℓγℓW
(g,h)
ℓ (x1, . . . , xh).

For the class of genus 0 spectral curves of the form

y(x)2 = M(x)2σ(x),

σ(x) = (x− a)(x− b), M(x) = c

f∏
i=1

(x− αi)
mi ,

(1.28)

the 2-point multi-linear differential W
(0,2)
0 (x1, x2) takes form

(1.29) W
(0,2)
0 (x1, x2) = B(x1, x2) −

dx1dx2
(x1 − x2)2

,

where the Bergman kernel B(x1, x2) is a bilinear differential

(1.30) B(x1, x2) =
dx1dx2

2(x1 − x2)2

[
1 +

x1x2 − 1
2
(a+ b)(x1 + x2) + ab√
σ(x1)σ(x2)

]
.
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An exact formula for W
(0,1)
1 (x) is also known [32, 33, 28],

(1.31) W
(0,1)
1 (x) = −dy(x)

2y(x)
+

dx

2
√
σ(x)

[
1 +

f∑
i=1

mi

(
1 +

√
σ(αi)

x− αi

)]
.

All other differentials W
(g,h)
ℓ (x1, . . . , xh) in the asymptotic expansion (1.27) can

be determined recursively by means of the topological recursion, as stated in the
theorem below.

Theorem 1.7 ([33, 31, 28]). The differentials W
(g,h)
ℓ (xH) for (g, h, ℓ) ̸= (0, 1, 0),

(0, 2, 0), (0, 1, 1) in the asymptotic expansion (1.27) obey the β-deformed topolog-
ical recursion

W(0,1)
0 (x) = 0, W(0,2)

0 (x1, x2) = W
(0,2)
0 (x1, x2) +

dx1dx2
2(x1 − x2)2

,

W(g,h)
ℓ (xH) = W

(g,h)
ℓ (xH) for (g, h, ℓ) ̸= (0, 1, 0), (0, 2, 0),

W
(g,h+1)
ℓ (x, xH) =

∮
A

1

2πi

dS(x, z)

y(z)dz

[
W

(g−1,h+2)
ℓ (z, z, xH)

+

g∑
k=0

ℓ∑
n=0

∑
∅=J⊆H

W (g−k,|J |+1)
ℓ−n (z, xJ)W(k,|H|−|J |+1)

n (z, xH\J)

+ dz2
∂

∂z

W
(g,h+1)
ℓ−1 (z, xH)

dz

]
,

(1.32)

where H = {1, 2, . . . , h} ⊃ J = {i1, i2, . . . , ij}, H\J = {ij+1, ij+2, . . . , ih}, and A
is the counterclockwise contour around the branch cut [a, b]. Here dS(x1, x2) is
the third type differential, which for the genus 0 spectral curve (1.28) takes form

(1.33) dS(x1, x2) =

√
σ(x2)√
σ(x1)

dx1
x1 − x2

.

Our task in what follows is to determine generating functions of chord diagrams
encoded in the free energy of the RNA matrix model (1.19). To this end we take
advantage of the following trick [9]. The potential of the RNA matrix model
VRNA(x) can be separated into the Gaussian part VG(x) and the rational part
Vrat(x)

VRNA(x) = VG(x) + Vrat(x) + s, VG(x) =
1

2
x2, Vrat(x) = − t−1s

t−1 − x
.(1.34)

Adopting this separation into the definition of Zβ
N(s, t) in (1.14), we find that the

partition function of the RNA matrix model can be re-expressed as an expectation
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value in the β-deformed Gaussian model

Zβ
N(s, t) = e−

√
β
ℏ sN

⟨
exp

[
s
√
β

tℏ

N∑
a=1

1

t−1 − za

]⟩G

N,β

,

where ⟨O({za})⟩GN,β denotes ⟨O({za})⟩βN defined in (1.24) with the Gaussian po-
tential V (x) = VG(x). It follows that the right hand side of this equation is given
by a sum of h-point multi-linear differentials with xi = t−1 (i = 1, . . . , h) in the
Gaussian model.

Proposition 1.8. Let ωb(x1, . . . , xb) denote the connected b-resolvent in the β-
deformed Gaussian model, which we also refer to as the Gaussian b-resolvent,

(1.35) ωb(x1, . . . , xb) =
Wh(x1, . . . , xb)

dx1 · · · dxb
= βb/2

⟨ b∏
i=1

N∑
a=1

1

xi − za

⟩(c)

N,β

.

Then the free energy F β
N(s, t) of the β-deformed RNA matrix model is given by

(1.36) F β
N(s, t) = −

√
β

ℏ
sN +

∞∑
b=1

sb

b!tbℏb
ωb

(
t−1, . . . , t−1

)
.

Combining the above relation with the form of the free energy in (1.19), we
obtain the key theorem for our enumeration of chord diagrams.

Theorem 1.9. The coefficients C̃g,ℓ,b(w) in (1.19) are obtained directly from the
principal specialization of the Gaussian b-resolvents

(1.37) ωb(x, . . . , x) =
1

xb

∞∑
g=0,ℓ=0

(µ−1ℏ)2g−2+b+ℓ(−γ)ℓC̃g,ℓ,b(µx
−2).

On the basis of this theorem, one can compute the generating function C̃g,ℓ,b(w)
of the numbers of non-oriented chord diagrams using the β-deformed topological
recursion for the Gaussian model. We will present some details of such a compu-
tation in Section 2, and compare its results with other methods of enumeration.

Finally, in order to find the complete form of the asymptotic expansion, we
also need to consider the unstable part of the free energy, which is not determined
by the topological recursion and must be computed independently. The unstable
part consists of four terms: F0,0(s, t), F0,1(s, t), F0,2(s, t), and F1,0(s, t). The two
terms F0,0(s, t) and F1,0(s, t) are the same as the terms F0(s, t) and F1(s, t) in the
asymptotic expansion (1.6) of the Hermitian matrix model. On the other hand,
F0,1({rn}) and F0,2({rn}) can be computed using famous formulae, referred to
respectively as the Dyson’s formula and Wiegmann-Zabrodin formula, which for
the genus 0 spectral curve (1.28) take the following form.
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Theorem 1.10. For the class of genus 0 spectral curves (1.28) determined by the
general potential (1.21), the unstable parts F0,1({rn}) and F0,2({rn}) of the free
energy are given by

∂

∂µ
F0,1({rn}) = 1 + log |c| +

1

2
log
(a− b

4

)2
+

f∑
i=1

mi log

[
1

2

(
αi −

a+ b

2
+
√
σ(αi)

)]
,

(1.38)

F0,2({rn}) = −1

2

f∑
i=1

mi log
(
1 − s2i

)
− 1

2

f∑
i,j=1

mimj log
(
1 − sisj

)
+

1

24
log
∣∣M(a)M(b)(a− b)4

∣∣,(1.39)

where si, i = 1, . . . , f are defined as

αi(si) =
a+ b

2
− a− b

4
(si + s−1

i ), |si| < 1.

The formula (1.38) for F0,1({rn}) was found in [33, 31, 28]. On the other hand,
the formula (1.39) for F0,2({rn}) is proven in appendix B.

1.5 A recursion relation from the quantum curve

The main object that we consider in our second approach is the wave-function for
the matrix model. The wave-function is the 1-point function defined as follows.

Definition 1.11. Let ϵ1,2 denote the parameters

(1.40) ϵ1 = −β1/2gs, ϵ2 = β−1/2gs, gs = 2ℏ.

For the general type potential (1.21), the 1-point function Zα(x; {rn}) (α = 1, 2)

Zα(x; {rn}) =
1

VolβN

∫
RN

N∏
a=1

dza∆(z)2βψα(x)e−
√

β
ℏ

∑N
a=1 V (za),(1.41)

with the eigenvalue operator

ψα(x) =
N∏
a=1

(x− za)
ϵ1
ϵα ,

is referred to as the wave-function. For the RNA matrix model we denote the
wave-function by Zα(x; s, t).
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A prominent property of the wave-function [2, 1, 67, 34] is that it satisfies
a partial differential equation, which is called the quantum curve6 or the time-
dependent Schrödinger equation.

Proposition 1.12 ([1, 67]). The wave-function Zα(x; {rn}) satisfies the partial
differential equation[

−ϵ2α
∂2

∂x2
− 2ϵαV

′(x)
∂

∂x
+ f̂(x)

]
Zα(x; {rn}) = 0,(1.42)

where f̂(x) is the differential operator

f̂(x) = g2s

K∑
n=0

xn∂(n), ∂(n) =
K+2∑

k=n+2

krk
∂

∂rk−n−2

,

and we denoted ∂/∂r0 = −N/(2ϵ2).

As its name suggests, the partial differential equation (1.42) is interpreted as
the quantization of the spectral curve C of the matrix model. Promoting the
parameters (x, ω) in (1.23) to the non-commutative operators (x̂, p̂), such that

p̂ = ϵα
∂

∂x
, x̂ = x, [p̂, x̂] = ϵα,

the partial differential equation (1.42) can be written in the form

ÂZα(x; {rn}) = 0, Â ≡ A(x̂, p̂),

for an appropriate choice of A(x̂, p̂). The operator Â is interpreted as a quan-
tization of the spectral curve C, and the equation (1.42) reduces to the defining
equation of the spectral curve in the classical limit [1, 67].

Note that, more generally, to a given spectral curve one may associate an
infinite family of wave-functions and corresponding quantum curves, which take
form of Virasoro singular vectors [67, 34]. In particular the quantum curves in
(1.42), for both values of α = 1, 2, correspond to singular vectors at level 2. In
this work we do not consider quantum curves at levels higher than 2.

In what follows we use the partial differential equation (1.42) as a tool to
determine the partition function Zβ

N(s, t) of the β-deformed RNA matrix model.
The point is that the partition function Zβ

N({rn}) of the matrix model with the

6The name “quantum curve” is also used for the ordinary differential equation for the wave
function [36, 35, 59, 57, 88, 72, 71, 66, 41, 44, 39, 82, 37, 42, 74, 56, 43, 38, 26, 40, 25]. In this
article, we also use this name for a partial differential equation which arises from the conformal
field theoretical description of the matrix model [65].
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general type potential (1.21) appears as the leading order term in the expansion
of the wave-function Zα(x; {rn}) around x = ∞

Zα(x; {rn}) = xϵ1N/ϵα
(
Zβ

N({rn}) + O(x−1)
)
.

Therefore, from the expansion of the wave-function with α = 2 for the RNA
matrix model

Zα=2(x; s, t) = exp [S(x, s, t)] ,

S(x, s, t) = −2µ

ϵ2
log x+

∞∑
b=0

∞∑
p=0

Sb,p(t)s
bx−p,

the free energy F β
N(s, t) can be written as

F β
N(s, t) =

∞∑
b=0

Sb,p=0(t)s
b.

We use the partial differential equation (1.42) to determine each Sb,p(t). The main
result of this approach is summarized in the following theorem.

Theorem 1.13. The partial differential equation for the phase function S(x, s, t)
for the RNA matrix model takes form

ϵ22

[
∂2

∂x2
S(x, s, t) +

(
∂

∂x
S(x, s, t)

)2
]

+ 2ϵ2

(
x− st

(1 − tx)2

)
∂

∂x
S(x, s, t)

+ 4µ

(
1 − st2(2 − tx)

(1 − tx)2

)
+
ϵ1ϵ2st

2(2 − tx)

(1 − tx)2
∂

∂s
S(x, s, t) +

ϵ1ϵ2t
3

1 − tx

∂

∂t
S(x, s, t) = 0.

(1.43)

This equation generates a hierarchy of differential equations for the coefficients
Sb,p(t) of the phase function, and the phase function is determined recursively
with respect to the backbone number b.

As an independent verification of this algorithm, we checked iterative compu-
tations for b = 1, 2, 3, 4, 5 up to O(t12), and confirmed that they agree with the
results of the β-deformed topological recursion from the first approach.

2 Enumeration of chord diagrams via the topo-

logical recursion

In the introduction, we extended the RNA matrix model proposed in [9] to the β-
deformed RNA matrix model given by (1.14), that enumerates both orientable and
non-orientable chord diagrams via Proposition 1.4. In this section we enumerate
orientable and non-orientable chord diagrams by the formalism of the β-deformed
topological recursion (1.32).
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2.1 Enumeration of chord diagrams via Gaussian resol-
vents

In principle, by applying the β-deformed topological recursion formalism to the
spectral curve (1.25) of the RNA matrix model, one can recursively compute
the asymptotic expansion (1.17) of the free energy F β

N(s, t). In [9], using the

topological recursion [5, 45, 46] for the β = 1 (which does not involve W
(g,h)
ℓ≥1 (xH)

terms) RNA matrix model (1.3), F2(s, t) = F2,0(s, t) and F3(s, t) = F3,0(s, t) were
explicitly computed. However, because of the complicated form of the curve (1.25),

an explicit computation of W
(g,h)
ℓ≥1 (xH) is not easy. In this section we consider

instead the β-deformed Gaussian matrix model with the Gaussian potential VG(x)
in (1.34).

Using Theorem 1.9, one can compute the coefficients C̃g,ℓ,b(w) in (1.19) of

the free energy F β
N(s, t) from the Gaussian b-resolvents (1.35). For the Gaussian

matrix model, the spectral curve takes form

(2.1) yG(x)2 = x2 − 4µ.

In order to apply the β-deformed topological recursion (1.32) to this Gaussian
curve, it is convenient to introduce the Zhukovsky variable z as

x(z) =
√
µ(z + z−1).

In this variable the branch points x = ±2
√
µ are mapped to z = ±1. To express

the β-deformed topological recursion (1.32) in this Zhukovsky variable, we define

ŷG(z)dz = yG(x(z))dx =
√
µ(z − z−1)dz,

dŜ(z1, z2) = dS(x1(z1), x2(z2)) =
dz1

z1 − z2
− dz1

z1 − z−1
2

,

Ŵ
(g,h)
ℓ (z1, . . . , zh) = W

(g,h)
ℓ (x1(z1), . . . , xh(zh)).

(2.2)

We then obtain the β-deformed topological recursion (1.32) for the Gaussian spec-
tral curve in the Zhukovsky variable. More generally, the β-deformed topological
recursion for genus 0 spectral curves (1.28) in the Zhukovsky is discussed in detail
in [68, 67].

Corollary 2.1. The differentials Ŵ
(g,h)
ℓ (zH) for (g, h, ℓ) ̸= (0, 1, 0), (0, 2, 0), (0, 1, 1)

obey the β-deformed topological recursion in the Zhukovsky variable

(2.3) Ŵ
(g,h+1)
ℓ (z, zH) =

∮
Ã

1

2πi

dŜ(z, ζ)

ŷG(ζ)dζ
Rec

(g,h+1)
ℓ (ζ, zH).

Here

Rec
(g,h+1)
ℓ (ζ, zH) = Ŵ

(g−1,h+2)
ℓ (ζ, ζ, zH)
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+

g∑
k=0

ℓ∑
n=0

∑
∅=J⊆H

Ŵ(g−k,|J |+1)
ℓ−n (ζ, zJ)Ŵ(k,|H|−|J |+1)

n (ζ, zH\J)

+ dζ2

[
∂

∂ζ
+
∂2ζ

∂w2

(
∂w

∂ζ

)2
]
Ŵ

(g,h+1)
ℓ−1 (ζ, zH)

dζ
,(2.4)

with w =
√
µ(ζ + ζ−1), |ζ| > 1, and

Ŵ (0,1)
0 (z) = 0, Ŵ(0,2)

0 (z1, z2) = Ŵ
(0,2)
0 (z1, z2) +

(z21 − 1)(z22 − 1)dz1dz2
2(z1 − z2)2(z1z2 − 1)2

,

Ŵ (g,h)
ℓ (zH) = Ŵ

(g,h)
ℓ (zH) for (g, h, ℓ) ̸= (0, 1, 0), (0, 2, 0),(2.5)

where Ã is the contour surrounding the unit disk |ζ| = 1. For the Gaussian model
the initial data of the recursion (1.30) and (1.31) takes form

Ŵ
(0,2)
0 (z1, z2) =

dz1dz2
(z1z2 − 1)2

,(2.6)

Ŵ
(0,1)
1 (z) =

(
1

z
− 1

2(z − 1)
− 1

2(z + 1)

)
dz.(2.7)

From Theorem 1.9 the coefficients C̃g,ℓ,b(w) of the free energy F β
N(s, t) can now

be computed. For example we find, for b = 1,

C̃0,0,1(w) =
1 −

√
1 − 4w

2w
, C̃0,1,1(w) =

1 −
√

1 − 4w

2(1 − 4w)
, C̃1,0,1(w) =

w2

(1 − 4w)5/2
,

C̃0,2,1(w) =
w
(
1 + w −

√
1 − 4w

)
(1 − 4w)5/2

, C̃1,1,1(w) =
w2
(
1 + 30w − (1 + 6w)

√
1 − 4w

)
2(1 − 4w)4

,

C̃0,3,1(w) =
5w2

(
1 + 2w − (1 + w)

√
1 − 4w

)
(1 − 4w)4

,

for b = 2,

C̃0,0,2(w) =
w

(1 − 4w)2
, C̃0,1,2(w) =

w
(
1 + 18w − (1 + 4w)

√
1 − 4w

)
2(1 − 4w)7/2

,

C̃1,0,2(w) =
w3(21 + 20w)

(1 − 4w)5
, C̃0,2,2(w) =

w2
(
8 + 98w + 38w2 − (8 + 45w)

√
1 − 4w

)
(1 − 4w)5

,

C̃1,1,2(w) =
w3
(
21 + 1462w + 2700w2 − (21 + 376w + 240w2)

√
1 − 4w

)
2(1 − 4w)13/2

,

C̃0,3,2(w) =
w3
(
117 + 1316w + 1182w2 − (117 + 854w + 292w2)

√
1 − 4w

)
(1 − 4w)13/2

,
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for b = 3,

C̃0,0,3(w) =
2w2(3 + 4w)

(1 − 4w)9/2
,

C̃0,1,3(w) =
w2
(
3 + 160w + 354w2 − (3 + 50w + 40w2)

√
1 − 4w

)
(1 − 4w)6

,

C̃1,0,3(w) =
12w4(45 + 207w + 68w2)

(1 − 4w)15/2
,

C̃0,2,3(w) =
2w3

(
58 + 1797w + 5232w2 + 1004w3 − (58 + 977w + 1416w2)

√
1 − 4w

)
(1 − 4w)15/2

.

Then, by (1.20) in Proposition 1.4, we obtain the generating functions Cg,b(w)
for orientable chord diagrams and Cr

h,b(w) for non-oriented chord diagrams. For
instance, we obtain

C0,1(w) = 1 + w + 2w2 + 5w3 + 14w4 + 42w5 + 132w6 + 429w7 + O(w8),

C1,1(w) = w2 + 10w3 + 70w4 + 420w5 + 2310w6 + 12012w7 + O(w8),

C0,2(w) = w + 8w2 + 48w3 + 256w4 + 1280w5 + 6144w6 + O(w7),

C1,2(w) = 21w3 + 440w4 + 5440w5 + 51840w6 + 421120w7 + O(w8),

C0,3(w) = 6w2 + 116w3 + 1332w4 + 11880w5 + 90948w6 + O(w7),

C1,3(w) = 540w4 + 18684w5 + 350736w6 + 4779720w7 + O(w8),

(2.8)

and

Cr
1,1(w) = w + 5w2 + 22w3 + 93w4 + 386w5 + 1586w6 + 6476w7 + O(w8),

Cr
2,1(w) = 5w2 + 52w3 + 374w4 + 2290w5 + 12798w6 + 67424w7 + O(w8),

Cr
1,2(w) = 8w2 + 117w3 + 1084w4 + 8119w5 + 53640w6 + O(w7),

Cr
2,2(w) = 111w3 + 2404w4 + 30442w5 + 295500w6 + O(w7),

Cr
1,3(w) = 116w3 + 3204w4 + 49248w5 + 561782w6 + O(w7),

Cr
2,3(w) = 2952w4 + 105300w5 + 2021396w6 + O(w7).

(2.9)

We note that the generating function Cr
h,b(w) with an even cross-cap number h =

2g enumerates both orientable and non-orientable chord diagrams, and therefore
non-orientable chord diagrams are enumerated by

(2.10) Cr
2g,b(w) − Cg,b(w).

2.2 The unstable part of the free energy

For a matrix model with the general potential (1.21), the unstable coefficients
F0,0({rn}), F0,1({rn}), F1,0({rn}) and F0,2({rn}) in the asymptotic expansion (1.22)
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of the free energy F β
N({rn}) must be computed separately. For the general poten-

tial (1.21) and the genus 0 spectral curve (1.28), the coefficients F0,0({rn}) [27, 69]
and F1,0({rn}) [7, 6] (see [3, 30] for multi-cut solutions) are given by

F0,0({rn}) = −µ
∫
[a,b]

dzρ(z)V (z) + µ2

∫
[a,b]2

dzdz′ρ(z)ρ(z′) log |z − z′|,(2.11)

F1,0({rn}) = − 1

24
log
∣∣M(a)M(b)(a− b)4

∣∣,(2.12)

where ρ(z) = limN→∞
1
N

∑N
a=1 δ(z − za) is the eigenvalue density given by

ρ(z) =
1

2πiµ

(
W

(0,1)
0 (z − iϵ) −W

(0,1)
0 (z + iϵ)

)
=

1

2πiµ
y(z), z ∈ [a, b].

In [9], F0,0(s, t) and F1,0(s, t) for the RNA matrix model (1.3) were computed
using the above formulae.

Furthermore, the coefficients F0,1(s, t) and F0,2(s, t) for the genus 0 spectral
curve (1.28) can be computed using Theorem 1.10. In particular, by Proposition
1.4 the generating function Cr

2,b(w) − C1,b(w) for the numbers of chord diagrams
with the topology of the Klein bottle takes form

(2.13) F1,0({rn})+F0,2({rn}) = −1

2

f∑
i=1

mi log
(
1−s2i

)
−1

2

f∑
i,j=1

mimj log
(
1−sisj

)
.

Using the above formulae for the spectral curve (1.25) of the RNA matrix
model, we determined the generating functions C0,b(w), C1,b(w), Cr

1,b(w), and
Cr

2,b(w). We checked that the results coincide with the results obtained from the
Gaussian b-resolvents discussed in the previous subsection. Compared with the
method discussed in the previous subsection, the advantage of this method is that
we find all order generating functions for the backbone number b.

3 Enumeration of chord diagrams via quantum

curve techniques

In this section we consider a recursive computation of the numbers of chord dia-
grams, based on the quantum curve equation (1.42) for the wave-function of the
RNA matrix model defined in Definition 1.11. For the β-deformed RNA matrix
model the quantum curve equation reduces to a partial differential equation in
three parameters x, s, and t. We solve this partial differential equation recur-
sively and obtain the generating function for the numbers of chord diagrams as
the leading term in the expansion of the wave-function near x→ ∞.
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3.1 Differential equation for the wave-function from the
quantum curve

The quantum curve for the β-deformed RNA matrix model is the key equation
we take advantage of in this section.

Proposition 3.1. Let Zα(x; s, t) (α = 1, 2) denote the wave-function for the β-
deformed RNA matrix model

Zα(x; s, t) =
1

VolβN

∫
RN

N∏
a=1

dza∆(z)2βψα(x)e−
√

β
ℏ

∑N
a=1 VRNA(za),(3.1)

where ψα(x) =
∏N

a=1(x− za)
ϵ1
ϵα and the potential V (x) = VRNA(x) is chosen as in

equation (1.2). Then the partial differential equation (1.42) reduces to[
−
(
ϵα
∂

∂x

)2

− 2ϵα

(
x− st

(1 − tx)2

)
∂

∂x
− 4µ

(
1 − st2(2 − tx)

(1 − tx)2

)

− ϵ1ϵ2st
2(2 − tx)

(1 − tx)2
∂

∂s
− ϵ1ϵ2t

3

1 − tx

∂

∂t

]
Zα(x; s, t) = 0,

(3.2)

where µ denotes the ’t Hooft parameter µ = β1/2ℏN = −ϵ1N/2.

Proof. The RNA matrix model has the potential (1.2), with the coefficients rn in
(1.21) that take form

r0 = 0, r2 =
1

2
− st2, rn = −stn (n ̸= 0, 2).

Adopting this choice of coefficients, the action of f̂(x) in (1.42) on Zα(x; s, t) can
be rewritten solely in terms of derivatives with respect to s and t

f̂(x)Zα(x; s, t) = − 2

ϵ2
g2sNZα(x; s, t) + g2s

∞∑
n=0

xntn+3 ∂

∂t
Zα(x; s, t)

+ g2ss
∞∑
n=0

(n+ 2)xntn+2

(
2

ϵ2
N +

∂

∂s

)
Zα(x; s, t)

= g2s

[
− 2

ϵ2
N +

t3

1 − tx

∂

∂t
+ s

t2(2 − tx)

(1 − tx)2

(
2N

ϵ2
+

∂

∂s

)]
Zα(x; s, t).

Using the relation between N and µ stated in Proposition 3.1, one obtains the
partial differential equation (3.2).

For simplicity, in the following we choose α = 2 and consider the wave-function
Z2(x; s, t). On the basis of Proposition 3.1 we describe an algorithm to compute
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the free energy of the β-deformed RNA matrix model. To this end we consider
the wave-function in the two following limits.

The first limit we consider is such that x → ∞. By the definition of the
wave-function, the partition function Zβ

N(s, t) is encoded in this limit as follows

(3.3) Z2(x; s, t) = xϵ1N/ϵ2
(
Zβ

N(s, t) + O(x−1)
)
.

Equivalently, in the x → ∞ limit the free energy F β
N(x; s, t) = logZβ

N(x; s, t) is
found from the phase function

S(x, s, t) = logZ2(x; s, t).(3.4)

Taking advantage of Proposition 3.1, we find the nonlinear partial differential
equation (1.43) for the phase function S(x, s, t) in Theorem 1.13.

The second limit we consider is s → 0. In this limit the RNA matrix model
reduces to the Gaussian matrix model, and we denote by ZG

α (x) the corresponding
Gaussian wave-function

ZG
α (x) = lim

s→0
Zα(x; s, t) =

1

VolβN

∫
RN

N∏
a=1

dza∆(z)2βψα(x)e−
√

β
2ℏ

∑N
a=1 z

2
a .(3.5)

This Gaussian wave-function obeys an ordinary differential equation[
−
(
ϵα
∂

∂x

)2

− 2ϵαx
∂

∂x
− 4µ

]
ZG

α (x) = 0,(3.6)

which is obtained in the s→ 0 limit of equation (3.2). Here we denote the phase
function of the Gaussian wave-function for α = 2 by

S0(x) = logZG
2 (x).(3.7)

In order to determine the free energy F β
N(s, t) = logZβ

N(s, t), we consider now
the expansion of the phase function S(x, s, t). First, we consider the expansion of
the phase function with respect to the backbone parameter s

S(x, s, t) =
∞∑
b=0

Sb(x, t)s
b,(3.8)

which has the following properties:

• The phase function S0(x) agrees with that of the Gaussian model

S0(x) = S0(x, t).(3.9)
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• The expansion of the phase function Sb(x, t) around x = ∞ takes form

Sb(x, t) = −2µ

ϵ2
δb,0 log x+

∞∑
p=0

Sb,p(t)x
−p,(3.10)

where an additional log x term for b = 0 appears from the limit of ψα(x). In
particular S0,p ≡ S0,p(t) do not depend on t.

• The free energy F β
N(s, t) is obtained as the generating function of Sb,0(t)

F β
N(s, t) =

∞∑
b=1

Sb,0(t)s
b.(3.11)

Applying the expansion (3.8) to the nonlinear partial differential equation
(1.43), one finds a hierarchy of differential equations that determine the functions
Sb,p(t) recursively. Although our main task is to determine the functions Sb,0(t)
in (3.11), we need the extra data of the higher order terms Sb,p≥1(t) to determine
Sb,0(t).

7 In the following we solve the equation (1.43) systematically in four steps.

3.2 Solving the recursion relations in four steps

Now we solve the recursion relation for Sb,p(t) in the following steps.

Step 1 Determine the hierarchy of differential equations by expanding the equa-
tion (1.43) in the parameter s.

Step 2 Solve the ordinary differential equation (3.6) for the Gaussian wave-
function.

Step 3 Determine S1(x, t) iteratively by solving the differential equation to order
O(s1) in Step 1, with the initial data S0(x) obtained in Step 2.

Step 4 Repeat the same analysis for Sb(x, t), by adopting the Sb′(≤b−1)(x, t) as
an input data.

Step 1: Hierarchy of differential equations for the phase function. We
determine the form of the hierarchy of differential equations by substituting the
expansion (3.8) in the differential equation (1.43). Picking up coefficients of s0, s1,
and sb (b ≥ 2) respectively, we obtain nonlinear partial differential equations for
Sb(x, t)

ϵ22
∂2

∂x2
S0(x) + ϵ22

(
∂

∂x
S0(x)

)2

+ 2ϵ2x
∂

∂x
S0(x) + 4µ = 0,

(3.12)

7It is not easy to reduce this recursion relation between Sb,p(t) to a simple recursion relation
involving Sb,0(t) only.
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ϵ22
∂2

∂x2
S1(x, t) + 2ϵ22

∂

∂x
S0(x)

∂

∂x
S1(x, t) + 2ϵ2x

∂

∂x
S1(x, t) −

2ϵ2t

(1 − tx)2
∂

∂x
S0(x)

− 4µt2(2 − tx)

(1 − tx)2
+
ϵ1ϵ2t

2(2 − tx)

(1 − tx)2
S1(x, t) +

ϵ1ϵ2t
3

1 − tx

∂

∂t
S1(x, t) = 0,

(3.13)

and

ϵ22
∂2

∂x2
Sb(x, t) + ϵ22

b∑
a=0

∂

∂x
Sa(x, t)

∂

∂x
Sb−a(x, t) + 2ϵ2x

∂

∂x
Sb(x, t)

− 2ϵ2t

(1 − tx)2
∂

∂x
Sb−1(x, t) +

bϵ1ϵ2t
2(2 − tx)

(1 − tx)2
Sb(x, t) +

ϵ1ϵ2t
3

1 − tx

∂

∂t
Sb(x, t) = 0.

(3.14)

The first differential equation (3.12) for S0(x) is equivalent to the quantum curve
equation (3.6) for the Gaussian model, and we find that (3.12)–(3.14) can be
solved successively for Sb(x, t) (b = 1, 2, 3, . . .).

Step 2: The Gaussian phase function. The Gaussian part of the wave-
function is necessary as an input data in order to solve the equation (3.13).8

Substituting the expansion (3.10) for S0(x) in the differential equation (3.12),
we obtain the recursion relation for the t-independent (as follows from the t-
independence of S0(x)) coefficients S0,p ≡ S0,p(t).

Proposition 3.2. The coefficients S0,p in the 1/x expansion of the Gaussian phase
function S0(x) obey the recursion relation

S0,2p−3 = 0, S0,2 =
µ

2ϵ2
(2µ+ ϵ2),

S0,2p =
1

2p

{
ϵ2(p− 1)(2p− 1)S0,2p−2 − 4µ(p− 1)S0,2p−2

+ 2ϵ2

p−2∑
q=1

q(p− q − 1)S0,2qS0,2p−2q−2

}
,

(3.15)

where p is a positive integer with p ≥ 2.

Solving this recursion relation iteratively, one finds the expansion

S0(x) = − 2µ

ϵ2
log x+

µ

2ϵ2x2
(2µ+ ϵ2) +

µ

8ϵ2x4
(4µ+ 3ϵ2)(2µ+ ϵ2)

+
µ

24ϵ2x6
(2µ+ ϵ2)(15ϵ22 + 34µϵ2 + 20µ2)

8Any solution of the ordinary differential equation (3.6) can be expressed in terms of Hermite
polynomials.
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+
µ

64ϵ2x8
(2µ+ ϵ2)(105ϵ32 + 310µϵ22 + 316µ2ϵ2 + 112µ3)

+
µ

160ϵ2x10
(2µ+ ϵ2)(945ϵ42 + 3288µϵ32 + 4424µ2ϵ22 + 2752µ3ϵ2 + 672µ4)

+ O(x−12).(3.16)

Step 3: The 1-backbone phase function S1(x, t).
In this step we continue our analysis of the 1-backbone phase function S1(x, t).

For this purpose, we expand equation (3.13) with respect to x−1 and consider
differential equations obtained for the coefficients of x1, x0, x−1, and x−p (p ≥ 2).

Corollary 3.3. The coefficients S1,p(t) (p = 0, 1, . . .) obey the following differen-
tial equations in the parameter t:

2S1,1(t) + ϵ1t(Θt + 1)S1,0(t) −
4µt

ϵ2
= 0,(3.17)

4tS1,2(t) − 4S1,1(t) + ϵ1t
2(Θt + 1)S1,1(t) − ϵ1t(Θt + 2)S1,0(t) +

8µt

ϵ2
= 0,(3.18)

6t2S1,3(t) − 8tS1,2(t) + ϵ1t
3(Θt + 1)S1,2(t) − ϵ1t

2(Θt + 2)S1,1(t)

− 2ϵ2t
2S1,1(t) − 4µt2S1,1(t) + 2S1,1(t) −

4µt

ϵ2
= 0,(3.19)

and

2(p+ 2)t2S1,p+2(t) − 4(p+ 1)tS1,p+1(t) + ϵ1t
3(Θt + 1)S1,p+1(t)

− ϵ1t
2(Θt + 2)S1,p(t) − p(p+ 1)ϵ2t

2S1,p(t) − 4pµt2S1,p(t) + 2pS1,p(t)

+ 2(p− 1)pϵ2tS1,p−1(t) + 8(p− 1)µtS1,p−1(t) − (p− 2)(p− 1)ϵ2S1,p−2(t)

− 4(p− 2)µS1,p−2(t) − 2(p− 1)tS0,p−1 − 2ϵ2t
2

p−1∑
q=2

q(p− q)S0,qS1,p−q(t)

+ 4ϵ2t

p−1∑
q=3

(q − 1)(p− q)S0,q−1S1,p−q(t) − 2ϵ2

p−1∑
q=4

(q − 2)(p− q)S0,q−2S1,p−q(t) = 0,

(3.20)

where Θt = t∂/∂t, and S0,p are solutions of the recursion relation (3.15).

In Step 2, S0,p have been already determined iteratively. Therefore, substitut-
ing the solution (3.16) in equations (3.17)–(3.20), we obtain differential equations
for S1,p(t). Furthermore, the following condition follows from the recursive struc-
ture

S1,p(t) =
∞∑
k=1

S1,p,kt
k, S1,p,k = 0 for p+ k odd,
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whose implementation accelerates the iteration. We have implemented this iter-
ation on a computer and found iteratively solutions for S1,p(t) (p = 0, 1, 2, . . .),
which are summarized in appendix C.
Step 4: The multi-backbone phase functions Sb(x, t) (b ≥ 2).

To extend our analysis to the multi-backbone phase functions Sb(x, t) (b ≥ 2)
we expand the differential equation (3.14) with respect to the parameter x, in the
same way as in the previous steps.

Corollary 3.4. The coefficients Sb,p(t) of the multi-backbone phase function Sb(x, t)
obey

2(p+ 2)t2Sb,p+2(t) − 4(p+ 1)tSb,p+1(t) + ϵ1t
3(Θt + b)Sb,p+1(t) − ϵ1t

2(Θt + 2b)Sb,p(t)

− p(p+ 1)ϵ2t
2Sb,p(t) − 4pµt2Sb,p(t) + 2pSb,p(t) + 2(p− 1)pϵ2tSb,p−1(t)

+ 8(p− 1)µtSb,p−1(t) − (p− 2)(p− 1)ϵ2Sb,p−2(t) − 4(p− 2)µSb,p−2(t)

− 2(p− 1)tSb−1,p−1(t) − ϵ2t
2

b∑
a=0

p−1∑
q=1

q(p− q)Sa,q(t)Sb−a,p−q(t)

+ 2ϵ2t
b∑

a=0

p−1∑
q=2

(q − 1)(p− q)Sa,q−1(t)Sb−a,p−q(t)

− ϵ2

b∑
a=0

p−1∑
q=3

(q − 2)(p− q)Sa,q−2(t)Sb−a,p−q(t) = 0,

(3.21)

where Sb,p(t) = 0 for p ≤ −1.

The following conditions that follow from (3.21) again accelerate the iteration

Sb,p(t) =
∞∑
k=b

Sb,p,kt
k, Sb,0,k = 0 for b ≥ 2, k ≤ 2b− 3,

Sb,p,k = 0 for p+ k odd.

Programming this recursion on a computer, we determined the multi-backbone
phase function Sb(x, t) iteratively. Computational results for Sb,p(t) b = 2, 3 are
summarized in appendix C.

3.3 The free energy

Finally, we collect all Sb,0(t) obtained in the above four steps together, and substi-
tute them into the equation (3.11). Rewriting ϵα (α = 1, 2) in (1.40) in terms of
the parameters ℏ and γ = β1/2−β−1/2, we obtain the free energy of the β-deformed
RNA matrix model

F β
N(s, t) =

∞∑
ℓ=0

sbFb(µ, ℏ, γ; t),
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F1(µ, ℏ, γ; t) =

(
µ2

ℏ2
− µ

ℏ
γ

)
t2 +

(
2µ3

ℏ2
− 5µ2

ℏ
γ +

(
3γ2 + 1

)
µ

)
t4

+

(
5µ4

ℏ2
− 22µ3

ℏ
γ +

(
32γ2 + 10

)
µ2 −

(
15γ3 + 13γ

)
µℏ
)
t6

+

(
14µ5

ℏ2
− 93µ4

ℏ
γ +

(
234γ2 + 70

)
µ3 +

(
52γ3 + 43γ

)
µ2ℏ

+
(
105γ4 + 160γ2 + 1

)
µℏ2
)
t8 + O(t10),

F2(µ, ℏ, γ; t) =
µ

2ℏ2
t2 +

(
4µ2

ℏ2
− 4µ

ℏ
γ

)
t4

+

(
24µ3

ℏ2
− 117µ2

2ℏ
γ +

µ

2

(
69γ2 + 21

))
t6

+

(
128µ4

ℏ2
− 542µ3

ℏ
γ + µ2

(
762γ2 + 220

)
− µℏ

(
348γ3 + 282γ

))
t8

+ O(t10),

F3(µ, ℏ, γ; t) =
µ

ℏ2
t4 +

(
58µ2

3ℏ2
− 58µ

3
γ

)
t6

+

(
222µ3

ℏ2
− 534µ2

ℏ
γ + µ

(
312γ2 + 90

))
t8 + O(t10).

From (1.17) and (1.19) we obtain the coefficients C̃g,ℓ,b(w) in Fb(µ, ℏ, γ; t) via the
formula

Fb(µ, ℏ, γ; t) =
∞∑

g,ℓ=0

(−γ)ℓℏ2g−2+ℓ

µb−2+2g+ℓb!
C̃g,ℓ,b(µt

2) − µℏ−2δb,1.(3.22)

Taking into account the relations (1.20) for Cg,b(w) and Cr
h,b(w)

Cg,b(w) = C̃g,0,b(w), Cr
h,b(w) =

∞∑
g,ℓ=0

2g+ℓ=h

2gC̃g,ℓ,b(w),

we find complete agreement with the computational results (2.8) and (2.9) ob-
tained from the β-deformed topological recursion via Gaussian resolvents.

A Enumeration of non-orientable fatgraphs with

k = 3

For the case of one backbone (i.e. one vertex) and k = 3 chords, we list the
non-oriented fatgraphs with χ = 1 in Figure 6 and χ = 0 in Figure 7.
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Figure 6: Non-oriented tailed fatgraphs with b = 1, k = 3 and χ = 1. The total
number of graphs is 22.

Both of these numbers of graphs agree with the number computed from the
cut-and-join method and the time-dependent Schrödinger equation.

B The free energy F0,2 in 1-cut β-deformed mod-

els

In this appendix, we determine the unstable term F0,2({rn}) in the free energy
(1.22) for the β-deformed eigenvalue integral (1.14) with the general potential
(1.21)

(B.1) F0,2({rn}) = F I
0,2({rn}) + FA

0,2({rn}).

We consider genus s− 1 spectral curves of the form

y(x)2 = M(x)2σ(x),

σ(x) =
2s∏
i=1

(x− qi), M(x) = c

f∏
i=1

(x− αi)
mi ,

(B.2)

whose form is determined by the choice of the potential. The terms F I
0,2({rn})

and FA
0,2({rn}) are given by [33, 31]

F I
0,2({rn}) = − 1

8π2

∮
A

dy(z′)

y(z′)

∫
D

dS(z, z′) log |y(z)|,(B.3)

FA
0,2({rn}) = − 1

12
log

∣∣∣∣ 2s∏
i=1

M(qi) ·
∏

1≤i<j≤2s

(qi − qj)

∣∣∣∣,(B.4)

where A =
∪s

i=1Ai is the contour around the branch cut D =
∪s

i=1Di, Di =
[q2i−1, q2i]. Then dS(x1, x2) is the third type differential, which is a 1-form in x1
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Figure 7: Non-oriented tailed fatgraphs with b = 1, k = 3 and χ = 0. The total
number of graphs is 42.

and a multivalued function of x2, determined by the conditions

• dS(x1, x2) ∼
x1→x2

dx1
x1 − x2

+ reg., • dS(x1, x2) ∼
x1→x2

− dx1
x1 − x2

+ reg.,

•
∮
x2∈Ai

dS(x1, x2) = 0, i = 1, . . . , s− 1.(B.5)

Here x is the conjugate point of a point x on the spectral curve (B.2), such that

(B.6)
√
σ(x) = −

√
σ(x), M(x) = M(x).

In the following we consider the s = 1 case in (B.2)

(B.7) σ(x) = (x− a)(x− b), a < b,

and by applying the method used to derive the unstable term F0,2({rn}) in a 1-cut
matrix model with a hard edge [24], we prove the formula (1.39).

Proposition B.1. For the above genus 0 spectral curve, the unstable term F0,2({rn})
takes form

F0,2({rn}) = −1

2

f∑
i=1

mi log
(
1 − s2i

)
− 1

2

f∑
i,j=1

mimj log
(
1 − sisj

)
+

1

24
log
∣∣M(a)M(b)(a− b)4

∣∣,(B.8)
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where si, i = 1, . . . , f are defined by

(B.9) αi(si) =
a+ b

2
− a− b

4
(si + s−1

i ), |si| < 1.

Proof. In the above genus 0 case the third type differential dS(x1, x2) is given by

(B.10) dS(x1, x2) =

√
σ(x2)√
σ(x1)

dx1
x1 − x2

.

We introduce the Zhukovsky variable z by

(B.11) x(z) =
a+ b

2
− a− b

4
(z + z−1).

Then the branch points x = a, b are mapped to z = −1,+1, and the first and
second sheet of the spectral curve are mapped to the regions |z| ≥ 1 and |z| ≤ 1,
respectively. Under this map we obtain

√
σ(x) =

b− a

4
(z − z−1),

dx√
σ(x)

=
dz

z
,

√
σ(x2)

x1 − x2
=

z1
z1 − z2

− z1

z1 − z−1
2

,

and the third type differential (B.10) is rewritten as

(B.12) dS(x1, x2) =
dz1

z1 − z2
− dz1

z1 − z−1
2

.

Under the map (B.11), the zeros or poles αi of the moment function M(x) on the
spectral curve (B.2) are mapped to 2f points s±1

i , i = 1, . . . , f ,

αi(si) =
a+ b

2
− a− b

4
(si + s−1

i ),

and we obtain

x− αi =
b− a

4

(z − si)(z − s−1
i )

z
.

Without loss of generality, in this proof we can assume

|si| > 1.

First, let us consider (B.3). Since the variable z of the integrand is on the
branch cut D = [a, b], we can put z = eiθ in the Zhukovsky variable, and by
(B.12)

dS(z, z′) = −idθ
[

z

z′
1

1 − z
z′

+
1

1 − 1
zz′

]
= −idθ

[
1 +

∞∑
k=1

2

z′k
cos kθ

]



Enumeration of Chord Diagrams 313

is obtained, where we have used |z′| > |z| = 1. Then we obtain

F̂ I
0,2(z

′) :=

∫
D

dS(z, z′) log |y(z)|

=

∫ π

0

idθ

[
1 +

∞∑
k=1

2

z′k
cos kθ

][
log

∣∣∣∣cb− a

4

f∏
i=1

(b− a

4

)mi

∣∣∣∣+ log(2 sin θ)

+ log

f∏
i=1

|eiθ − si|mi|eiθ − s−1
i |mi

]

= iπ log

∣∣∣∣cb− a

4

f∏
i=1

(b− a

4

)mi

∣∣∣∣− iπ

∞∑
k=1

1

kz2k2

+ i

f∑
i=1

mi

∫ π

0

dθ

[
1 +

∞∑
k=1

2

zk2
cos kθ

]
log |eiθ − si||eiθ − s−1

i |,(B.13)

where we have used that∫ π

0

dθ log(2 sin θ) = 0,∫ π

0

dθ cos kθ log sin θ =

{
−π

k
if k is a nonzero even integer,

0 if k is an odd integer.

By

log |eiθ − si| = log |si| −
1

2

∞∑
k=1

1

k

( 1

ski
+

1

ski

)
cos kθ − i

2

∞∑
k=1

1

k

( 1

ski
− 1

ski

)
sin kθ,

log |eiθ − s−1
i | = −1

2

∞∑
k=1

1

k

( 1

ski
+

1

ski

)
cos kθ +

i

2

∞∑
k=1

1

k

( 1

ski
− 1

ski

)
sin kθ,

(B.13) is written as

(B.14) F̂ I
0,2(z) = iπ

[
log

∣∣∣∣cb− a

4

f∏
i=1

(b− a

4
si

)mi

∣∣∣∣− ∞∑
k=1

1

kz2k
−

f∑
i=1

mi

∞∑
k=1

2

kzkski

]
.

Here we have used ∫ π

0

dθ cos kθ cos ℓθ =
π

2
δk,ℓ,

and the fact that for an arbitrary si, there exists an sj such that si = sj. By

dy(z)

y(z)
=

[
1

z − 1
+

1

z + 1
− 1

z
+

f∑
i=1

mi

( 1

z − si
+

1

z − s−1
i

− 1

z

)]
dz,



314 J. E. Andersen, H. Fuji, M. Manabe, R. C. Penner, and P. Su lkowski

and by (B.14), (B.3) is rewritten as

F I
0,2({rn}) =

1

4

∮
Ã

dz

2πi

[
1

z − 1
+

1

z + 1
− 1

z
+

f∑
i=1

mi

( 1

z − si
+

1

z − s−1
i

− 1

z

)]

×
[

log

∣∣∣∣cb− a

4

f∏
i=1

(b− a

4
si

)mi

∣∣∣∣− ∞∑
k=1

1

kz2k
−

f∑
i=1

mi

∞∑
k=1

2

kzkski

]
,

where Ã is the contour around the unit disk |z| = 1. This contour can be changed
as ∮

Ã
−→ −

f∑
i=1

∮
Ãi

−
∮
Ã∞

,

where Ãi and Ã∞ are the contours around si and infinity, respectively. Then by

∞∑
k=1

uk

k
= − log(1 − u), |u| < 1,

we obtain

F I
0,2({rn}) = −1

2

f∑
i=1

mi log
(

1 − 1

s2i

)
− 1

2

f∑
i,j=1

mimj log
(

1 − 1

sisj

)
+

1

8
log

∣∣∣∣M(a)M(b)
(a− b

4

)2∣∣∣∣,
(B.15)

where we used

log

∣∣∣∣c f∏
i=1

(b− a

4
si

)mi

∣∣∣∣ = −
f∑

i=1

mi log
(

1 − 1

s2i

)
+

1

2
log
∣∣M(a)M(b)

∣∣.
With (B.4) for the genus 0 case, after changing si to s−1

i , we finally obtain the
formula (B.8), where we ignored the constant term − log

√
2.

C An iterative solution using the quantum curve

The 1-backbone phase function S1(x, t)
The solutions S1,p(t) (p = 0, 1, 2) of the equations (3.17) – (3.20) are found suc-
cessively as follows

S1,0(t) = −t32µ(2µ+ ϵ1 + ϵ2)

ϵ2ϵ2
− t4

µ

ϵ1ϵ2

(
5ϵ1ϵ2 + 8µ2 + 10µ(ϵ1 + ϵ2) + 3(ϵ21 + ϵ22)

)
− t6

µ

2ϵ1ϵ2

(
40µ3 + 88µ2(ϵ1 + ϵ2) + 64µ(ϵ21 + ϵ22) + 108µϵ1ϵ2 + 15(ϵ31 + ϵ32)
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+ 32ϵ1ϵ2(ϵ1 + ϵ1)
)

− t8
µ

4ϵ1ϵ2

(
224µ4 + 744µ3(ϵ1 + ϵ2) + 936µ2(ϵ21 + ϵ22) + 1592µ2ϵ1ϵ2

+ 520µ(ϵ31 + ϵ32) + 1130µϵ1ϵ2(ϵ1 + ϵ2) + 260ϵ1ϵ1(ϵ
2
1 + ϵ22)

+ 331ϵ21ϵ
2
2 + 105(ϵ41 + ϵ42)

)
+ O(t10),

S1,1(t) = t
2µ

ϵ2
+ t3

3µ(2µ+ ϵ1 + ϵ2)

ϵ2
+ t5

5µ

2ϵ2

(
8µ2 + 10µ(ϵ1 + ϵ2) + 3(ϵ21 + ϵ22) + 5ϵ1ϵ2

)
+ t7

7µ

4ϵ2

(
40µ3 + 88µ2(ϵ1 + ϵ2) + 64µ(ϵ21 + ϵ22) + 108µϵ1ϵ2 + 15(ϵ31 + ϵ32)

+ 32ϵ1ϵ2(ϵ1 + ϵ2)
)

+ O(t9),

S1,2(t) = t2
µ(2µ+ ϵ2)

ϵ2
+ t4

µ(2µ+ ϵ2)(4µ+ 2ϵ1 + 3ϵ2)

ϵ2

+ t6
3µ(2µ+ ϵ2)

(
20µ2 + 2µ(12ϵ1 + 17ϵ2) + 7ϵ21 + 15ϵ22 + 17ϵ1ϵ2

)
4ϵ2

+ O(t8).

The 2-backbone phase function S2(x, t)
The solutions S2,p(t) (p = 0, 1, 2) of equation (3.21) take form

S2,0(t) = −t2 2µ

ϵ1ϵ2
− t4

8µ(2µ+ ϵ1 + ϵ2)

ϵ1ϵ2

− t6
3µ

2ϵ1ϵ2

(
64µ2 + 78µ(ϵ1 + ϵ2) + 23(ϵ21 + ϵ2)

2 + 39ϵ1ϵ2
)

− t8
µ

ϵ1ϵ2

(
512µ3 + 1084µ2(ϵ1 + ϵ2) + 762µ(ϵ21 + ϵ22) + 1304µϵ1ϵ2

+ 174(ϵ31 + ϵ32) + 381ϵ1ϵ2(ϵ1 + ϵ2)
)

+ O(t10),

S2,1(t) = t3
4µ

ϵ2
+ t5

24µ(2µ+ ϵ1 + ϵ2)

ϵ2

+ t7
6µ

ϵ2

(
64µ2 + 78µ(ϵ1 + ϵ2) + 23(ϵ21 + ϵ22) + 39ϵ1ϵ2

)
+ O(t9),

S2,2(t) = t2
µ

ϵ2
+ t4

µ(16µ+ 3ϵ1 + 8ϵ2)

ϵ2

+ t6
3µ

4ϵ2

(
192µ2 + 2µ(61ϵ1 + 117ϵ2) + 13ϵ21 + 69ϵ22 + 61ϵ1ϵ2

)
+ O(t8).

The 3-backbone phase function S3(x, t)
The solutions S3,p(t) (p = 0, 1, 2) of equation (3.21) take form

S3,0(t) = −t4 4µ

ϵ1ϵ2
− t6

116µ(2µ+ ϵ1 + ϵ2)

3ϵ1ϵ2



316 J. E. Andersen, H. Fuji, M. Manabe, R. C. Penner, and P. Su lkowski

− t8
6µ

ϵ1ϵ2

(
148µ2 + 178µ(ϵ1 + ϵ2) + 52(ϵ21 + ϵ22) + 89ϵ1ϵ2

)
+ O(t10),

S3,1(t) = t5
14µ

ϵ2
+ t7

174µ(2µ+ ϵ1 + ϵ2)

ϵ2
+ O(t9),

S3,2(t) = t4
4µ

ϵ2
+ t6

2µ(58µ+ 15ϵ1 + 29ϵ2)

ϵ2
+ O(t8).
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