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The AJ-conjecture for the Teichmüller TQFT

Jørgen Ellegaard Andersen and Alessandro Malusà ∗

Abstract

We formulate the AJ-conjecture for the Teichmüller TQFT and we

prove it in the case of the figure-eight knot complement and the 52-knot

complement. This states that the level-N Andersen-Kashaev invariant,

J
(b,N)
M,K , is annihilated by the non-homogeneous Â-polynomial, evaluated at

appropriate q-commutative operators. These are obtained via geometric

quantisation on the moduli space of flat SL(2,C)-connections on a genus-1
surface. The construction depends on a parameter σ in the Teichmüller

space in a way measured by the Hitchin-Witten connection, and results in

Hitchin-Witten covariantly constant quantum operators for the holonomy

functions m and ℓ along the meridian and longitude. Their action on

J
(b,N)
M,K is then defined via a trivialisation of the Hitchin-Witten connection

and the Weil-Gel’Fand-Zak transform.
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1 Overview and summary of the results

In this paper we consider the level-N Andersen-Kashaev invariant J
(b,N)
M,K , which

is minor transform of the Teichmüller TQFT partition function for a knot K
sitting inside a closed, oriented 3-manifold M , where b is a unitary complex
quantum parameter. The level N = 1 Teichmüller TQFT was introduced by
Andersen and Kashaev in [AK14a], and then extended to arbitrary (odd) N
by Andersen and Kashaev in [AK14b] and further detailed in [AM16b]. This
is a combinatorial approach to quantum SL(2,C)-Chern-Simons theory, whose
version for SU(2) has been widely studied and understood via several, differ-
ent approaches over the past three decades. The theory was first considered
by Witten’s original paper [Wit89], where he used path-integral arguments to
interpret the coloured Jones polynomial as its partition function. This was
then formalised by Reshetikhin and Turaev [RT90, RT91], who incorporated
the invariant in a TQFT defined by means of combinatorics. Another ap-
proach to the theory uses geometric quantisation on moduli spaces of flat con-
nections [ADPW91, Hit90], whose result depends on a Teichmüller parameter to
an extent measured by the projectively flat Hitchin connection. This viewpoint
was later proved to be equivalent to the Reshetikhin-Turaev theory via a chain
of isomorphisms [Las98, AU07a, AU07b, AU12, AU15] involving also confor-
mal field theory. As for the SL(2,C) case, a formulation in terms of geometric
quantisation was first proposed by Witten in [Wit91] by means of a Teichmüller
space dependent real polarisation. Again, this results in a bundle of quantum
Hilbert spaces, equipped with the Hitchin-Witten projectively flat connection,
further studied from a purely mathematical viewpoint in a more general setting
in [AG14]. Little is known, as of now, about the relation to the combinatorial
viewpoint on the Teichmüller TQFT, and it would be of great interest to have
an identification of these two approached just as in the case of SU(2). In the
specific situation of a genus 1 surface, however, a specific identification between
the vector spaces coming from the two different approaches is provided by the
so called Weil-Gel’fand-Zak transform.

The invariant J
(b,N)
M,K consists of a complex-valued function on AN := R ⊕

Z/NZ having a natural meromorphic extension to AC

N := C ⊕ Z/NZ. Its def-
inition is based on a multiple integral involving the level-N quantum diloga-
rithm [AK14b], an extension of Faddeev’s function to AN satisfying an adapta-
tion of the same difference equation. In [AK14a, AM16b], the invariant was
conjectured to enjoy certain properties analogous to those expected for the
coloured Jones polynomial, thus making it into an SL(2,C) analogous of the
SU(2) invariant. The statement was checked for the first two hyperbolic knots
by explicit computation of the invariant, using the properties of the quantum
dilogarithm. The final expression was found to agree for N = 1 with the par-
tition function of the quantum SL(2,C)-Chern-Simons theory derived in the
literature [Hik01, Hik07, Dim13, DGLZ09, DFM11]. In some of the cited works,
Faddeev’s equation for the quantum dilogarithm is used for showing that said
partition function is annihilated by some version of the quantum Â-polynomial
from Garoufalidis’ original AJ-conjecture [Gar04].

In the present paper we address the problem of the quantisation of the
observables of the SL(2,C)-Chern-Simons theory in genus one, with a specific
interest for the A-polynomial of a knot. In analogy with [Gar04], we search for
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q-commutative quantum operators m̂x and ℓ̂x on functions on AN , associated to
the holonomy functions m and ℓ on the SL(2,C)-character variety of the surface.
To this end, we fix a level t = N + iS and run geometric quantisation on (a
double cover of) the moduli space of flat connection using a real polarisation
as in Witten’s work [Wit91]. For every value of the Teichmüller parameter
σ ∈ T , we find that the pre-quantum operators associated to the logarithmic
holonomy coordinates U and V preserve the polarisation. Therefore, they can
be promoted to quantum operators Ûσ and V̂σ, which moreover turn out to
be normal, thus admitting well-defined exponentials m̂σ and ℓ̂σ. Although the
resulting operators depend explicitly on σ, we establish the following result.

Theorem 1. The quantum operators Ûσ and V̂σ, and hence m̂σ and ℓ̂σ, are
covariantly constant with respect to the Hitchin-Witten connection.

In the case of genus one, the Hitchin-Witten connection admits an explicit
trivialisation, first proposed in Witten’s original work. Combining this with the
Weil-Gel’Fand-Zak transform, we obtain σ-independent operators m̂x and ℓ̂x on
functions on AC

N .

Theorem 2. Let t = N + iS be fixed, and put

b = −ie2rN , where e4rN = − t
t
.

Then the operators m̂ and ℓ̂ as above act on functions on AC

N via the Weil-
Gel’fand-Zak transform as

m̂x : f(x, n) 7→ e
−2π bx

√

N e2πi
n
N f(x, n) ,

ℓ̂x : f(x, n) 7→ f
(
x− ib√

N
,n+ 1

)
.

Moreover, the operators make a q-commutative pair, i.e.

ℓ̂xm̂x = qm̂xℓ̂x ,

with

q = exp

(
2πi

b2 + 1

N

)
= e4πi/t .

We then consider the algebra A generated by these operators, and sitting

inside this the left ideal I(J (b,N)
M,K ) annihilating the invariant. Following the

lines of [Gar04], we define the ÂC-polynomial as a preferred element of this
ideal. Using the explicit expression of the invariant for 41 and 52 inside S3, we
compute the ÂC-polynomial for these knots, and check the following conjecture
for these two cases.

Conjecture 1. Let K ⊆ M be a knot inside a closed, oriented 3-manifold,
with hyperbolic complement. Then the non-commutative polynomial ÂC

K agrees

with ÂK up to a right factor, linear in m̂x, and it reproduces the classical A-
polynomial in the sense of the original AJ-conjecture.

Besides its intrinsic interest in relation to the original AJ-conjecture, we
also find in this statement a further indication concerning the role of the Weil-
Gel’fand-Zak transform in connecting geometric quantisation and Teichmüller
TQFT in genus one.
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Theorem 3. Conjecture 1 holds true for the figure-eight knot 41, and 52.

We shall re-formulate the statements more precisely later in the discussion;
the proof of the result goes as follows. For either knot, the Andersen-Kashaev
invariant is a function on AN defined as an integral in dy of an appropriate
function of two variables x,y along AN . The integrand is obtained as a com-
bination of quantum dilogarithms and Gaussian functions, and it has a natural
meromorphic extension to the whole (AC

N )2. In order to understand the ideal,

we study first the polynomials in m̂x, m̂y, ℓ̂x and ℓ̂y annihilating the integrand.
We start by considering the convergence properties of the integral, so as to
ensure that it can be extended to the whole AC

N . For parameters a and ε in a
suitable domain, we find open regions Ra,ε on which the meromorphic extension
of the invariant is given by integration along appropriate contours Γa,ε. These
regions exhaust the whole AC

N as the parameters range in their domain, thus
giving explicit expressions for the invariant at every given point. Next, we use
Lemma 5 to express the action of ℓ̂x and ℓ̂y on the integrand in terms of m̂x and
m̂y, thus giving two operators with the desired property. With the help of a

computer, we run reduction in m̂y, and since the action of ℓ̂y inside an integral
is equivalent to a shift in the integration contour we can evaluate the resulting
polynomial at ℓ̂y = 1. Using some care, one can move the operator outside the

integral and finally find an element of Iloc(J
(b,N)
M,K ), which we then check to be

the desired generator ÂC

t,K .
This paper is organised as follows. In section 2 we overview the background

material we refer to throughout the the rest of the work. This includes gener-
alities on geometric quantisation and the Hitchin-Witten connection, the level-
N quantum dilogarithm and the Weil-Gel’fand-Zak transform, the Teichmüller
TQFT, and the original AJ-conjecture. In section 3 we define the precise struc-
ture to which we are going to apply geometric quantisation, and argue that it
provides a model for (a double cover of) the moduli space relevant for genus
one Chern-Simons theory. In section 4 we actually run the geometric quanti-
sation machinery to obtain the desired operators. First, we use the standard
definition of the pre-quantum operators to quantise the logarithmic holonomy
functions corresponding to the meridian and longitude on the torus. Next, we
check that the operators are compatible with the chosen polarisation, thus de-
scending to quantum operators which are Hitchin-Witten covariantly constant.
We then show that the operators can be consistently exponentiated, whence we
define quantum operators for the exponential holonomy eigenvalues, which in
fact generate the algebra of regular functions on the character variety. Finally,
we present the explicit trivialisation of the Hitchin-Witten connection and use
it to make the operators independent on the Teichmüller parameter. We con-
clude the section by determining the action of the operators on functions on AN

via by the Weil-Gel’fand-Zak transform. In section 5, we explicitly carry out
the procedure described above to determine the ÂC-polynomial for the first two
hyperbolic knots.
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2 Introduction

2.1 Geometric quantisation

By a pre-quantum line bundle on a symplectic manifold (M,ω) one means a
triple (L , h,∇) consisting of a complex line bundle onM , a Hermitian structure
and a compatible connection with curvature −iω. Given this data, geometric
pre-quantisation defines a pre-quantum Hilbert space consisting of the square-
summable sections of the bundle, and for every smooth real function f on M a
pre-quantum operator

f̂ = f − i∇Hf
, (1)

where f is identified with the multiplication by f , and Hf denotes its Hamilto-
nian vector field. This definition gives self-adjoint operators on the pre-quantum
Hilbert space and ensures the Dirac quantisation condition for the operators as-
sociated to functions f and g

[
f̂ , ĝ
]
= −i{̂f, g} .

The association of f̂ to f is R-linear, and one may extend it to complex-valued
functions by C-linearity thus (1) remains valid for complex f , but in this case,

however, f̂ need not be self-adjoint.
The full geometric quantisation also requires a polarisation on M , i.e. an

involutive Lagrangian distribution P in the complexified tangent bundle, such
that dim(P ∩P ) is constant. Unlike for pre-quantisation, the exact construction
of the quantum Hilbert space may depend on the specific situation and the
kind of polarisation at hand. The core idea, however, is that the quantum
states should correspond to polarised sections of the pre-quantum line bundle,
i.e. those which are covariantly constant along P , or an adaptation thereof.
It is important to stress that, in general, the pre-quantum operators do not
automatically descend to quantum operators on this space.

When P ⊆ TM is real, involutivity means that P is a Lagrangian foliation.
When this is the case, there exists a natural linear connection on each leaf,
which allows one to make sense of geodesics on the leaves, and hence geodesic
completeness. The connection turns out to be flat, and endows every simply
connected and complete leaf with the structure of an affine space. The restriction
of a function f on M is affine linear on every leaf if and only if the Poisson
bracket {f, g} is constant along P whenever g is. As it turns out, the pre-

quantum operator f̂ preserves the space of polarised sections of a pre-quantum
line bundle if and only if f is affine linear on the leaves.

We shall consider the situation when P is real with simply connected and
complete leaves which intersect a given compact, symplectic subspaceMred ⊆M
at exactly one point. In this case, parallel transport along the leaves defines
a bijection between smooth polarised sections of L over M and all smooth
sections overMred. Although the L2 product of polarised sections onM diverges
in general, the pairing of their restrictions to Mred can always be performed.
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Using this as the inner product and taking completion defines the quantum
Hilbert

HP ≃ L2
(
Mred,L |Mred

)
.

We denote this as an isomorphism rather than an equality to stress the depen-
dence on P , which would otherwise disappear once restricting to Mred.

The setting described above is the one in Witten’s quantisation of Chern-
Simons theory on a Riemann surface Σ for a complex group GC in [Wit91],
which is our motivational example and main interest. The construction uses
as M and Mred the moduli spaces MC and M of flat GC- and G-connections,
where G ⊆ GC is a compact real form, and the line bundle L is the Chern-
Simons pre-quantum line bundle. We will give some of the details concerning
the construction for the case of a surface of genus 1 in paragraph 3.1. For
the time being, we only wish to stress that the data of the Riemann surface
structure σ on Σ is extrinsic for Chern-Simons theory. The choice of σ enters
the picture through the polarisation, and although all the resulting spaces Hσ

are explicitly isomorphic to a common model, this identification is in fact of no
physical relevance. For this reason, Witten arranges the quantum Hilbert spaces
to form an infinite-rank vector bundle over the Teichmüller space and defines
the appropriate connection for measuring the dependence on σ. This, called the
Hitchin-Witten connection, is based on the Kähler structure J induced by σ on
M, and once defined it allows to remove MC from the picture. As was argued
in Witten’s work, the most remarkable feature of the Hitchin-Witten connection
is that it is projectively flat. Since the Teichmüller space is contractible, this
allows us to identify the quantum Hilbert spaces coming from different values
of σ via holonomy, up to projective factors as the only ambiguity.

The Hitchin-Witten connection was considered and studied in a more general
and abstract context in [AG14], whose main definitions and constructions we
shall now summarise. Suppose that, as above, (M,ω) is a compact symplectic
manifold equipped with a pre-quantum line bundle (L , h,∇), and assume that
there exists an integer λ such that

c1(M,ω) = λ
[ ω
2π

]
∈ H2(M,Z) . (2)

Let T be a complex manifold, Jσ a Kähler structure on (M,ω) for every σ, in
the form of an almost complex structure. With J come operators ∂σ and ∂ and
a family of metrics gσ = ω ·Jσ, with their Levi-Civita connections, Riemann
and Ricci curvature tensors and Ricci form ρσ. As a general property of Kähler
manifolds, the first Chern class of (M,ω) is represented up to a factor 2π by
the Ricci form, so one the above condition means that ρσ − λω is a real, exact
2-form. By the global i∂∂-lemma, there exists a real function Fσ such that

2i∂σ∂σFσ = ρσ − λω .

With the constraint that it should average to 0, the function Fσ is uniquely
determined, and it is called the Ricci potential of the Kähler structure.

For every point p ∈M , the tensor Jσ(p) takes value in the finite-dimensional
vector space End(TpM), so one can make sense of point-wise differentiability
of J in σ. If J is differentiable along every vector V tangent to T , and if V [J ]σ
is a smooth tensor field, then J is called a smooth family of Kähler structures
parametrised by T . When this is the case, one may think of the variation of J
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as a 1-form on T taking values in tensor fields on M , and it is customary to
define a form G̃ by

V [J ] = G̃(V )·ω
If g = ω ·J is the metric associated to J , and g̃ its inverse bi-vector field, then
G̃ is the opposite of the variation of g̃. It can be checked that the (1, 1) part of
G̃(V ) vanishes for every vector V tangent to T , so one has a decomposition

G̃(V ) = G(V ) +G(V )

with G(V ) of type (2, 0) and G(V ) of type (0, 2), and both bi-vectors are sym-
metric. On the other hand, G̃ may also be decomposed into its (1, 0) and (0, 1)
parts as a form on T . When these two decompositions agree, J is called holo-
morphic, and rigid if for every V the tensor field G(V ) is holomorphic.

Suppose now that B is any (possibly complex) symmetric bi-vector field on
M , and let ψ be a smooth section of L . Using the connection on the bundle,
one may consider the covariant differential of ψ as an L -valued 1-form on M ,
and contract it with B. The result is a smooth section of TM ⊗L , which may
then be differentiated again using the Levi-Civita connection on the first factor.
We define ∆Bψ to be the result of the contraction of the two indices of this
object. In short, this can be written in either of the alternative forms

∆Bψ := ∇ ·
(
B ·∇ψ

)
= ∇µB

µν∇νψ = Bµν∇µ∇νψ − (δB)µ∇µψ .

As a differential operator, ∆B may be thought of as a Laplace operator with
coefficients given by B. For instance, it can be checked that for ∆ the usual
Laplace operator one has

∆g̃ = ∆ , ∆G̃(V ) = −V [∆] .

Definition 1. Let (M,ω) be a symplectic manifold with pre-quantum line bundle
(L , h,∇), and J a holomorphic and rigid family of Kähler structures on it
parametrised by a complex manifold T . For each t = k + is with k ∈ Z>0 and
s ∈ R, we denote by H(t) the trivial bundle of Hilbert spaces over T

H(t) := T × L2
(
M,L ⊗k

)
.

Consider the End(H)-valued 1-forms on T
b(V ) := ∆G(V ) + 2∇G(V )·dF − 2λV ′[F ] ,

b(V ) := ∆G(V ) + 2∇G(V )·dF − 2λV ′′[F ] .

Denoting the trivial connection on H by ∇Tr, the level t Hitchin-Witten con-
nection is defined as

∇̃V = ∇Tr

V +
1

2t
b(V )− 1

2t
b(V ) + V [F ] .

In the setting of [Wit91], this agrees indeed with the connection defined
there. One of the main results of [AG14] states that the Hitchin-Witten connec-
tion is projectively flat provided that b1(M) = 0 and that the bi-holomorphism
group of (M,Jσ) is discrete for every σ. These hypotheses are verified for the
moduli spaces considered by Witten when the underlying surface has genus
g ≥ 2. Although in genus 1 they are violated, it is not hard to check directly
that in that case the connection is in fact flat. This is the case we are going to
study.
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2.2 AN and the level-N quantum dilogarithm

Definition 2. For every positive integer N , let AN be the locally compact
Abelian group R ⊕ Z/NZ endowed with the nomalised Haar measure d(x, n)
defined by ∫

AN

f(x, n) d(x, n) :=
1√
N

N∑

n=1

∫

R

f(x, n) dx . (3)

We denote by S(AN ,C) the space of Schwartz class functions on AN , i.e. func-
tions f(x, n) on AN which restrict to Schwartz class functions on R for every
n. We shall denote C⊕ Z/NZ by AC

N .

Of course S(AN ,C) sits inside the space L2(AN ,C) of square-summable func-
tions, as a dense subspace. We shall often refer to a pair in AN with the first
entry in bold, e.g. x = (x, n); moreover, if λ ∈ C we shall write x + λ as a
short-hand for (x + λ, n).

As in [AK14b], we use the following notation for Fourier Kernels on AN

〈
(x, n), (y,m)

〉
= e2πixye−2πinm/N .

It is straightforward to check that

〈−x,y〉 = 〈x,y〉−1
= 〈x,−y〉 , 〈x,y〉 = 〈y,x〉 .

Also, the Gaussian function on AN is denoted by

〈
(x, n)

〉
= eπix

2

e−πin(n+N)/N .

Clearly, the Gaussian is symmetric, i.e. 〈x〉 = 〈−x〉.
Fix now b, a complex unitary parameter with Re(b) > 0 and Im(b) ≥ 0,

and introduce constants cb and q defined by

cb :=
i(b + b−1)

2
= iRe(b) , q

1
2 := −eπi b

2+1
N =

〈( ib√
N
,−1

)〉−1

.

We shall summarise here the fundamental properties of the level N quantum
dilogarithm which are relevant for this work. For the precise definition and fur-
ther details see for example [AK14b, AM16b]. For N a positive odd integer, the
quantum dilogarithm Db at level N and quantum parameter b is a meromorphic
function defined on AC

N . One of its fundamental properties is that it solves the
Faddeev difference equations

Db

(
x± ib√

N
,n± 1

)
=

(
1− e±

b2+1
N e

2π b
√

N
x
e2πi

n
N

)∓1

Db(x, n) ,

Db

(
x± ib√

N
,n∓ 1

)
=

(
1− e±

b2+1
N e

2π b
√

N
x
e−2πi n

N

)∓1

Db(x, n) .

It also satisfies the inversion relation

Db(x)Db(−x) = ζ−1
N,inv

〈x〉 , ζN,inv = eπi(N+2c2bN
−1)/6 .

The zeroes of this function are located at the points

(
−cb + iαb + iβb√

N
, β − α

)
for α, β ∈ Z≥0 .
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By the inversion relation, the poles occur at the opposites of these points.
The following lemma is particularly relevant for studying the convergence of

integrals involving the quantum dilogarithm.

Lemma 4. For n ∈ Z/NZ fixed, the quantum dilogarithm has the following
asymptotic behaviour for x→ ∞:

Db(x, n) ≈




1 on

∣∣arg(x)
∣∣ > π

2 + arg(b),

ζ−1
N,inv

〈x〉 on
∣∣arg(x)

∣∣ < π
2 − arg(b).

Furthermore, the dilogarithm enjoys the following unitarity property

Db(x, n)Db(x, n) = 1 .

It is convenient for the following discussion to change the notation according
to [AM16b]. We shall call

ϕb(x, n) := Db(x,−n) .

The zeroes and poles of ϕb occur at the points pα,β and −pα,β respectively, for
α, β ∈ Z≥0, where

pα,β :=
(
−cb + iαb + iβb√

N
, α− β

)

We shall often use T to refer to the infinite closed triangle

T =

{
x ∈ C : x lies below − cb√

N
+ iRb and − cb√

N
+ iRb

}
.

In particular, the zeroes and poles of ϕb(x, n) for n fixed occur only for x ∈ T
and x ∈ −T respectively. Lemma 4 holds unchanged for ϕb in place of Db.

Definition 3. If k ∈ Z>0 and µ : (AC

N )k → AC

N is a Z-linear function, let us
denote by m̂µ the operator acting on complex-valued functions on (AC

N )k as

m̂µf :=
〈
µ,
( ib√

N
,−1

)〉
f .

Moreover, ℓ̂x is the following operator acting on C-valued functions on AC

N by

ℓ̂xf(x, n) := f
(
x− ib√

N
,n+ 1

)
.

It is clear that the operator m̂µ always restricts to functions defined on Ak
N ,

and that in particular for µ = x one gets explicitly

m̂xf(x) = e
−2π bx

√

N e2πi
n
N f(x)

On the other hand, the condition for b to have positive real part implies that ib is
never real, so strictly speaking ℓ̂x is only defined for functions on AC

N . However,
every analytic function f : AN → C with infinite radius of convergence has a
unique holomorphic extension to AC

N . One can then make sense of the action of
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ℓ̂x by applying the shift to the extended function and then restricting back to
AN . The set of square-summable such functions is dense in L2(AN ), so ℓ̂x is a
densely defined operator on this space.

The following lemma is an immediate consequence of the definitions and
Faddeev’s difference equation.

Lemma 5. The operator ℓ̂x acts on the Gaussian as

ℓ̂x 〈x〉 = q−
1
2 m̂−1

x
〈x〉 ,

and on the quantum dilogarithm as

ℓ̂xϕb(x) =
(
1 + q−

1
2 m̂−1

x

)
ϕb(x) ,

ℓ̂−1
x
ϕb(x) =

(
1 + q

1
2 m̂−1

x

)−1

ϕb(x) .

Moreover, the following commutation relation holds

ℓ̂xm̂x = qm̂xℓ̂x .

2.3 Garoufalidis’s original AJ-conjceture

Following the notation of [Gar04], we consider the q-commutative algebra

A := Z[q±1]〈Q,E〉
/(
EQ− qQE

)
,

One can also make sense of inverting polynomials in Q, and embed the above
algebra into

Aloc :=





l∑

k=0

ak(q,Q)Ek : l ∈ Z≥0, ak ∈ Q(q,Q)



 (4)

with product given by

(
a(q,Q)Ek

)
·
(
b(q,Q)Eh

)
:= a(q,Q)b(q, qkQ)Ek+h .

In the above mentioned work, Garoufalidis considers the space

F =
{
f : N → Q(q)

}

and the action of A and Aloc determined by

Qf(n) = qnf(n) , Ef(n) = f(n+ 1) .

It is immediately checked that this defines indeed an algebra representation.
For a given element f ∈ F one can consider the sets of annihilators of f , which
are in fact left ideals:

Iloc(f) =
{
p(Q,E) ∈ Aloc : p(Q,E)f = 0

}
, I(f) = Iloc(f) ∩A .

Since every ideal in Aloc is principal, such a function defines uniquely a generator
Âq,f of Iloc(f) of minimal degree in E and co-prime coefficients in Z[q,Q]. The
AJ conjecture, as formulated in [Gar04], states then the following.
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Conjecture 2 (AJ Conjecture). Let K be a knot in S3 and JK : N → Z[q±1]

its coloured Jones function, and abbreviate Âq,JK
as Âq,K . Then, up to a left

factor, Âq,K(Q,E) returns the classical A-polynomial of K when evaluated at
q = 1, Q = m2 and E = ℓ.

Given f ∈ F one may also study the problem of finding p ∈ A such that

p(Q,E) ∈ Q(qn, q) ,

and define the non-homogeneous Ânh
q -polynomial of f as the minimal degree

solution with co-prime coefficients in Z[q,Q]. Clearly, if Ânh
q (f)f = B(qn, q),

then one can divide both sides on the left by B(Q, q) in Aloc to find an operator
sending f to a constant, so

(
E − 1)

(
1

B(Q, q)
Ânh

q (f)

)
f = 0 .

This can be used to retrieve the Âq-polynomial of f and state an AJ-conjecture

for the non-homogeneous Ânh
q -polynomial.

The problem of the non-homogeneous recursion is addressed in [GS10] for
the specific class of twist knots Kp. The figure-eight knot 41 and 52 correspond
to Kp for p = −1 and p = 2, respectively, and in the cited work the homogeneous

Ânh
q -polynomials for these knots are explicitly found to be

Ânh

q,41 = q2Q2
(
q2Q− 1

)(
qQ2 − 1

)
E2

−
(
qQ− 1

)(
q4Q4 − q3Q3 − q(q2 + 1)Q2 − qQ+ 1

)
E

+ q2Q2
(
Q− 1

)(
q3Q2 − 1) ,

(5)

Ânh

q,52 =
(
q3Q− 1

)(
qQ2 − 1

)(
q2Q2 − 1

)
E3

+ q
(
q2Q− 1

)(
qQ2 − 1

)(
q4Q2 − 1

)

·
(
q9Q5 − q7Q4 − q4(q3 − q2 − q + 1)Q3 + q2(q3 + 1)Q2 + 2q2Q − 1

)
E2

− q5Q2
(
qQ− 1

)(
q2Q2 − 1

)(
q5Q2 − 1

)

·
(
q6Q5 − 2q5Q4 − q2(q3 + 1)Q3 + q(q3 − q2 − q + 1)Q2 + qQ− 1

)
E

+ q9Q7
(
Q− 1

)(
q4Q2 − 1

)(
q5Q2 − 1

)
.

(6)

Notice how a factor (qjQ − 1) appears next to each Ej ; by the commutation
relation, each of these can be turned into (Q− 1) and taken to the right. These
non-commutative polynomials can be explicitly compared to their classical coun-
terparts

A41(m, ℓ) = m4ℓ2 −
(
m8 −m6 − 2m4 −m2 + 1

)
ℓ+m4 , (7)

A52(m, ℓ) = ℓ3 +
(
m10 −m8 + 2m4 + 2m2 − 1

)
ℓ2

−m4
(
m10 − 2m8 − 2m6 +m2 − 1

)
ℓ+m14 .

(8)

These polynomials are known to be irreducible [HS04].
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2.4 The Andersen-Kashaev theory

The Andersen-Kashaev theory defines an infinite-rank TQFT Z from quantum
Teichmüller theory, which in particular defines an invariant Z(M,K) for every
hyperbolic knot K inside a closed, oriented 3-manifold M . The following con-
jecture was stated first in [AK14a], and then generalised to the present form
in [AM16b].

Conjecture 3 ([AK14a, AM16b]). Let M be a closed oriented compact 3-
manifold. For any hyperbolic knot K ⊆M , there exists a two-parameter (b, N)

family of smooth functions J
(b,N)
M,K (x) on AN = R × Z/NZ which enjoys the

following properties:

1. For any fully balanced shaped ideal triangulation X of the complement of
K in M , there exist a gauge-invariant real linear combination of dihedral
angles λ, and a (gauge-dependent) real quadratic polynomial of dihedral
angles φ, such that

Z(N)
b (X) = eic

2
bφ

∫

AN

J
(b,N)
M,K (x)eiλcbx dx . (9)

2. For any vertex shaped H-triangulation Y of the pair (M,K), there exists
a real quadratic polynomial of dihedral angles ϕ such that

lim
ωY →τ

Db

(
cb
ωY (K)− π

π
√
N

, 0

)
Z(N)

b (Y ) = eic
2
bφ−iπN

12 J
(b,N)
M,K (0, 0) . (10)

3. The hyperbolic volume of the complement of K in M is recovered as the
limit

lim
b→0

2πb2N log
∣∣∣J (b,N)

M,K (0, 0)
∣∣∣ = −Vol(M \K) . (11)

In the same works, the conjecture is proven for the knots 41 and 52 in S3,

in which cases J
(b,N)
M,K is found to be

J
(b,N)
S3,41

(x) = e
4πi

cbx
√

N χ41(x) , χ41(x) =

∫

AN

ϕb(x− y)〈x− y〉−2

ϕb(y)〈y〉−2 dy ,

J
(b,N)
S3,52

(x) = e
2πi

cbx
√

N χ52(x) , χ52(x) =

∫

AN

〈y〉 〈x〉−1

ϕb(y + x)ϕb(y)ϕb(y − x)
dy .

Remark 6. The expressions above differ from those in [AK14a, AM16b] by an
exponential factor. Because λ is a linear combination of the dihedral angles,
which are constrained by a linear, non-homogeneous relation, this extra factor
can be re-absorbed into it. As is easily checked, this does not affect the asymptotic
properties of the invariant, nor the validity of Conjecture 3. The role of this
factor will be discussed further later on.

In the case of level N = 1, these expressions agree with those found in
the literature for the partition functions of Chern-Simons theory, obtained via
formal, perturbative methods [Hik01, Hik07, Dim13, DGLZ09, DFM11]. Said
function is expected to be annihilated by some version of the Â-polynomial; for
instance, in [Dim13] this is argued to be the case for the trefoil and figure-eight
knot in S3.
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3 Basic definitions and setting

The spaces and their symplectic structures. Throughout this paper, we
will write T2 to denote the real torus S1 × S1, and T2

C
for the 2-dimensional

complex torus C∗ × C∗ containing it. We shall use coordinates u, v ∈ R on T2

and U, V ∈ C on T2
C
, with

(u, v) 7→
(
e2πiu, e2πiv

)
∈ T2 , (U, V ) 7→

(
e2πiU , e2πiV

)
∈ T2

C .

We refer to these as the logarithmic coordinates, as opposed to the exponential
coordinates on T2

C

m = e2πiU , ℓ = e2πiV .

Moreover, u and v extend to (multivalued) functions on T2
C

as the real parts
of U and V respectively, and together with the imaginary parts they form a
coordinate system. This enables us to make sense of ∂

∂u and ∂
∂v as vector fields

on T2
C
.

On each space we shall consider a symplectic 2-form:

ω = −2π du ∧ dv ; ωC = −2π dU ∧ dV .

In spite of being closed and non-degenerate, ωC does not strictly speaking define
a symplectic structure since it is C-valued. However, its real part Re(ωC) is still
closed and non-degenerate as a real 2-form, thus defining a genuine symplectic
structure on T2

C
. Moreover, the restriction of ωC to T2 is ω.

For N a positive integer and S any real number, we call t = N + iS the level
of the theory, and define the level t (real) symplectic structure on T2

C
as

ωt =
1

2
Re
(
tωC

)
.

We stress that this restricts to the symplectic structure Nω on T2.

The pre-quantum line bundle. For every fixed level t we consider the com-
plex line bundle L (t) defined by the quasi-periodicity conditions

ψ(U + 1, V ) = e−πiRe(tV )ψ(U, V ) ,

ψ(U, V + 1) = eπiRe(tU)ψ(U, V ) .

Since these transformations are unitary, the usual Hermitian structure on C

descends to a Hermitian structure 〈·|·〉 on the bundle. Moreover, we consider
on L (t) the connection ∇(t) = d−iθ(t), where

θ
(t)
(U,V ) = πRe

(
t
(
V dU − U dV

))
.

It is immediate to check that this connection is compatible with the quasi-
periodicity conditions and with the Hermitian structure. Moreover, dθ(t) = ωt,
so the curvature of ∇(t) is −iωt, making the triple (L (t), 〈·|·〉 ,∇(t)) into a pre-
quantum line bundle for (T2

C
, ωt). The parameter s disappears in the restriction

to T2, which defines a pre-quantum line bundle (L (N), 〈·|·〉 ,∇(N)) for (T2, Nω).
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The quasi-periodicity conditions and the connection form for ∇(N) on L (N) read
explicitly as

ψ(u+ 1, v) = e−Nπivψ(u, v) ,

ψ(u, v + 1) = eNπiuψ(u, v) ,

θ
(N)
(u,v) = Nπ

(
v du− u dv

)
.

We refer to these as the Chern-Simons line bundles over T2
C

and T2 at the level
t respectively, and we shall often omit the superscript in the connection.

The family of complex structures and polarisations. Denote by T the
complex upper half-plane

T =
{
σ ∈ C : Im(σ) > 0

}
.

To every point of T one can associate an almost complex structure on T2 rep-
resented in the logarithmic coordinates by the constant matrix

J :=
i

σ − σ

(
−(σ + σ) 2σσ

−2 σ + σ

)
. (12)

Similarly, J can be extended to an almost complex structure on T2
C

by C-anti-
linearity. We shall also consider its C-linear extension J . The reason for this
seemingly misleading notation will be apparent momentarily. It is straightfor-
ward to check that J2 = −1. Moreover, consider the tensor g := ω ·J , which is
represented by the matrix

g =
2πi

σ − σ

(
−1

1

)(−(σ + σ) 2σσ

−2 σ + σ

)
=

2πi

σ − σ

(
2 −(σ + σ)

−(σ + σ) 2σσ

)
.

This matrix is symmetric, and it is immediately checked that det(g) = 4π2 > 0,
and as the diagonal entries of g are positive the matrix is positive definite.
Therefore, g defines a Riemannian metric on T2, and since it is represented by a
matrix with constant entries its Levi-Civita ∇ is the trivial connection in these
coordinates, and it is therefore flat. In particular, ∇J = 0, proving that J is
integrable and that the triple (ω, g, J) defines a Kähler structure on T2. Since
on T2

C
the structure J anti-commutes with the multiplication by i, a similar

argument also shows that in this case J defines a hyper-Kähler structure.
Consider the eigen-space distributions of J on T2

C
, as sub-bundles of the real

tangent bundle:

P = Pσ =
{
X ∈ TT2

C
: JX = −iX

}
, P = Pσ =

{
X ∈ TT2

C
: JX = iX

}
.

In spite of sitting inside the real tangent bundle TT2
C
, these distributions are

defined by the same formal equations as the holomorphic and anti-holomorphic
tangent bundles of a Kähler manifold. In particular, by analogous arguments
as in the previous situation, P and P are polarisations for ωC, and therefore for
ωt at every level t.
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It is convenient to realise these properties of the polarisations explicitly.
First of all, define vectors:

∂

∂w
:=

1+ iJ

2

∂

∂u
=

1

σ − σ

(
σ
∂

∂u
+

∂

∂v

)
∈ P ,

∂

∂w
:=

1− iJ

2

∂

∂u
= − 1

σ − σ

(
σ
∂

∂u
+

∂

∂v

)
∈ P .

(13)

Each distribution is spanned over C by the corresponding section, hence they
are Lagrangian (and dual). In logarithmic coordinates, the leaf of P through a
point (U, V ) is explicitly described as

(U, V ) + C

〈
1

σ − σ
(σ, 1)

〉
.

Because Im(σ) > 0, this leaf only intersects (U, V ) +R2 ⊆ C2 at (U, V ). There-
fore, the exponential map C2 → T2

C
is injective on each of these sets, so it defines

an explicit homeomorphism of each leaf of P with C.
Notice that the same formal relations as in (13), but thought of as in the

complexified tangent bundle, define a holomorphic and an anti-holomorphic
vector field on T2. It is convenient to write down the metric and symplectic
form on this space in the complex coordinates, for later reference. Because
they are both tensors of type (1, 1), they are completely determined by their
contraction with ∂

∂w and ∂
∂w . First we have

ω

(
∂

∂w
,
∂

∂w

)
=

1

4
ω

(
∂

∂u
− iJ

∂

∂u
,
∂

∂u
+ iJ

∂

∂u

)
=

=
i

2
ω

(
∂

∂u
, J

∂

∂u

)
= − 2π

σ − σ
,

(14)

which implies
[
∇w,∇w

]
=

2Nπi

σ − σ
.

Moreover,

g

(
∂

∂w
,
∂

∂w

)
= −iω

(
∂

∂w
,
∂

∂w

)
=

2πi

σ − σ
,

so one may write the inverse of the metric as

g̃ = −iσ − σ

2π

(
∂

∂w
⊗ ∂

∂w
+

∂

∂w
⊗ ∂

∂w

)
.

Therefore, the Laplace operator can be expressed in terms of w and w as

∆ = −iσ − σ

2π

(
∇w∇w +∇w∇w

)
.

Variation tensors and the Hitchin-Witten connection. We shall now
compute the variation tensors relevant for the Hitchin-Witten connection. The
variation of J is easily calculated by direct computation

∂

∂σ
J = − i

(σ − σ)2

(
−(σ + σ) 2σσ

−2 σ + σ =

)
+

i

σ − σ

(
−1 2σ

1

)

=
2i

(σ − σ)2

(
σ −σ2

1 −σ

)
.
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In a completely analogous way one finds that

∂

∂σ
J =

2i

(σ − σ)2

(
−σ σ2

−1 σ

)
.

The tensor G̃ can now be calculated as contraction of the variation of J with ω̃

G̃

(
∂

∂σ

)
=

(
∂

∂σ
J

)
·ω̃ =

2i

(σ − σ)2

(
σ −σ2

1 −σ

)
1

2π

(
1

−1

)
=

=
i

π(σ − σ)2

(
σ2 σ
σ 1

)

and

G̃

(
∂

∂σ

)
= − i

π(σ − σ)2

(
σ2 σ
σ 1

)
.

The coefficients in these matrices are easily compared to those in ∂w and ∂w, so
one obtains

G̃ =
i

π

(
∂

∂w
⊗ ∂

∂w
⊗ dσ − ∂

∂w
⊗ ∂

∂w
⊗ dσ

)
.

The splitting of G̃ into its various parts is very transparent in this expression,
and shows that J is holomorphic and rigid. In fact, G̃ has constant coefficients,
and since the Levi-Civita connection is trivial this implies that ∇G̃(V ) = 0
for very V ∈ TC T . As a consequence, denoting by ∇w and ∇w the covariant
derivative along ∂

∂w and ∂
∂w , one has

∆G(∂/∂σ) =
i

π
∇w∇w , ∆G(∂/∂σ) = − i

π
∇w∇w.

As was already mentioned, each of these Kähler metrics is flat, which means in
particular that the Ricci potential F vanishes. Putting everything together, we
obtain the desired expression for the Hitchin-Witten connection

∇̃V = ∇Tr

V +
iV ′

2πt
∇w∇w +

iV ′′

2πt
∇w∇w . (15)

3.1 Motivational example: the moduli spaces of flat con-

nections on a genus 1 surface

The surface and its moduli spaces. The setting described above includes
a model for the moduli spaces M and MC of flat G-connections on a surface of
genus 1, for G = SU(2) and SL(2,C) respectively. Indeed, call Σ the quotient of
R2 by the lattice 2πi·(Z×Z) with the reversed orientation, regarded as a smooth
surface, and use 1-periodic coordinates x and y. By the Riemann-Hilbert cor-
respondence, a gauge class of flat G-connections on Σ is completely determined
by the class of its holonomy in Hom(π1(Σ), G)/G. Any G-representation of
π1(Σ) takes values in a maximal torus, and is therefore conjugated to one in
diagonal matrices. The full quotient is obtained by further moding out by the
Weyl group, which acts on each matrix by exchanging its diagonal entries, or
equivalently by inverting them. Such matrices are identified by their first entry,
so that gauge classes are in bijection with pairs of unitary or invertible complex
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numbers as the case may be, modulo the relation (z1, z2) ∼ (z−1
1 , z−1

2 ). This
finally gives an identification

M ≃ T2/ ∼ , MC ≃ T2
C/ ∼ .

As is immediately checked, a pair (e2πiα, e2πiβ) is explicitly represented by the
connection form

αT dx+ βT dy ,

where

T =

(
2πi 0
0 −2πi

)
.

The Atiyah-Bott form. Each moduli space comes equipped with the Atiyah-
Bott symplectic form ωAB or ωAB

C
as the case may be, which is defined as follows.

By linearisation of the relations defining the moduli spaces, their tangent space
at a point [A] has a description as a certain cohomology group, whose classes are
represented by lie(G)-valued 1-forms. The wedge product of two such forms gives
a 2-form with values in lie(G)⊗2, and an ordinary 2-form can be obtained by
means of the Killing pairing. Integration of this does not depend on the choices
made, and defines the value of the Atiyah-Bott form up to a normalisation

ωAB

(C)([η1], [η2]) = 4π

∫

Σ

〈η1 ∧ η2〉 = − 1

2π

∫

Σ

tr(η1 ∧ η2) .

In the identification above, one has correspondences

∂

∂u
 T dx and

∂

∂v
 T dy .

The form is completely determined by the value on these two vectors fields

ωAB

(C)

(
∂

∂u
,
∂

∂v

)
=

1

2π

∫

Σ

(trT 2) dx ∧ dy = −4π .

Lifting the Atyah-Bott forms to T2 and T2
C
, it follows from this that

ωAB = −4πdu ∧ dv = 2ω , ωAB

C = −4πdU ∧ dV = 2ωC .

The Chern-Simons line bundle. Chern-Simons theory defines a level t =
k+ is pre-quantum line bundle L CS,(k+is) on MC for every k ∈ Z>0 and s ∈ R.
The construction is similar to the one for the case of compact groups, described
in great detail in [Fre95]. The bundle L

(k+is) is defined by considering first the
trivial Hermitian line bundle ASL(2,C) ×C on the space ASL(2,C) of all SL(2,C)-
connections. The Chern-Simons action induces a lift of the action of the gauge
group to the bundle and a connection ∇CS,(k+is) expressed by the form

θ
CS,(k+is)
A (η) = −2π

∫

Σ

Re
(
(k + is) 〈A ∧ η〉

)
=

1

4π

∫

Σ

Re
(
(k + is) tr(A ∧ η)

)
.

One may then restrict to the subspace FSL(2,C) ⊆ ASL(2,C) consisting of flat
connections and mod out by the gauge group.

For a description of this structure in coordinates, one can think of the uni-
versal cover of T2

C
as sitting inside FG for the relevant G. As it turns out, the
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stabiliser of T2
C

in the gauge group is generated by three elements, which act on
the bundle as

gU :
(
(U, V ), ψ

)
7→
(
(U + 1, V ), e−2πiRe

(
(k+is)V

)
ψ
)
,

gV :
(
(U, V ), ψ

)
7→
(
(U, V + 1), e2πiRe

(
k+is)U

)
ψ
)
,

g− :
(
(U, V ), ψ

)
7→
(
(−U,−V ), ψ

)
.

Moreover, a quick computation shows that the connection form reads explicitly

θ
CS,(k+is)
(U,V ) = 2πRe

(
(k + is)

(
V dU − U dV

))
= θ

(
2(k+is)

)
.

Of course this bundle restricts to one on M, which sits naturally inside MC.
It is apparent from this description that the bundle induced by the Chern-

Simons theory on M and MC lifts to the one described above on T2 and T2
C

for
t = 2(k + is).

Teichmüller space, complex structures and polarisations. For a com-
plex number σ in the upper half plane H ⊆ C consider the map zσ : R2 → C

sending (x, y) to x + σ−1y, which is orientation preserving in our convention.
The natural Kähler structure on C pulls back to one on R2 which is compatible
with the action of Z2, thus defining one on Σ with zσ = x+σ−1y as holomorphic
coordinate. This produces a bijection between H and the Teichmüller space T ,
whose complex structure makes this into a biholomorphism.

The volume coming from this structure equals the area of the parallelogram
spanned by 1 and σ−1 in C, which equals Imσ/|σ|2. It is convenient to rescale
the metric by this factor, so as to obtain a torus with volume 1. The resulting
metric µ, together with its inverse µ̃, can be explicitly expressed by the matrices

µ =
i

σ − σ

(
2σσ σ + σ

σ + σ 2

)
, µ̃ =

i

σ − σ

(
2 −(σ + σ)

−(σ + σ) 2σσ

)
.

By construction, the volume form is just − dx ∧ dy.
With µ comes the Hodge ∗ operator, defined by

ϕ1 ∧ ∗ϕ2 = −〈ϕ1|ϕ2〉dx ∧ dy .

A straightforward check shows that

dx ∧ ∗ dx = − 2i

σ − σ
dx ∧ dy , dy ∧ ∗ dx =

i(σ + σ)

σ − σ
dx ∧ dy ,

dx ∧ ∗ dy =
i(σ + σ)

σ − σ
dx ∧ dy , dy ∧ ∗ dy = − 2iσσ

σ − σ
dx ∧ dy .

from which

∗ dx = −σ + σ

σ − σ
i dx− 2

σ − σ
i dy ,

∗ dy =
2σσ

σ − σ
i dx+

σ + σ

σ − σ
i dy .
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Hodge theory can be used to show that the cohomology group representing
T[A]M is isomorphic to the space of harmonic su(n)-valued forms. This space is
preserved by the Hodge star operator, which moreover satisfies ∗2 = −1. This
defines an almost complex structure Jσ (or simply J) by Jη = − ∗ η, which
is just ∗η on the representatives we are considering. In coordinates (u, v), the
corresponding matrix is

J =
i

σ − σ

(
−(σ + σ) 2σσ

−2 σ + σ

)
.

We stress that the lifts of these families of complex structures to T2 and T2
C

agree with those already considered in (12). In particular, the same conclusions
hold about integrability and flatness, and hence one finds the same variation
tensors.

Under the identification of vectors on M with harmonic su(2)-valued forms,
the complexified tangent spaces correspond to forms with values in su(2)⊗C ≃
sl(2,C). It can be shown, using the properties of the Hodge star-operator, that
vectors of type (1, 0) correspond to (0, 1)-forms and vice-versa. On the other
hand, harmonic sl(2,C)-valued forms correspond to real vectors on MC. In this
language, Witten uses the polarisation P consisting of holomorphic forms on Σ;
again, this agrees with the choice made above for T2

C
.

This concludes our argument that the structure described above encodes the
setting of SL(2,C) Chern-Simons theory for genus 1. In particular, the Hitchin-
Witten connection obtained here also agrees with the one considered in [Wit91].
However, this picture is more restrictive than that on T2 and T2

C
, as it requires

that N is even.

4 Operators from geometric quantisation on T2
C

4.1 The quantum operators on H(t)
σ

We shall now study the level-t pre-quantum operators associated to the logarith-
mic coordinates on T2

C
. Notice that, since U and V are multi-valued functions,

these operators are not well defined in principle, unless a fixed branch is speci-
fied.

We now fix the level t and σ ∈ T , and introduce coordinates adapted to the
polarisation. We consider on the leaf through each point (u, v) ∈ T2 the complex
coordinate ξ+ iη induced by its description as (u, v)+C 〈 ∂

∂w 〉. The coordinates
on T2, restricted to 0 ≤ u, v < 1, can be uniquely extended to real functions
uσ and vσ on T2

C
which are constant along Pσ. Although these functions are

non-continuous, their differential is well defined on the whole T2
C
, and hence so

is their Hamiltonian vector field. Together with ξ and η these form global real
coordinates on the complex torus, and it follows from the definitions that one
may write U and V as

U = uσ +
σ

σ − σ

(
ξ + iη

)
, V = vσ +

1

σ − σ

(
ξ + iη

)
.

Notice that uσ enters (U, V ) only through u = Re(U), so

∂

∂uσ
Im(U) =

∂

∂uσ
Re(V ) =

∂

∂uσ
Im(V ) = 0 .
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From this, and the corresponding argument for vσ, one can conclude that

∂

∂uσ
=

∂

∂u
,

∂

∂vσ
=

∂

∂v
.

In these coordinates, the complex symplectic form may be written as

ωC = −2π duσ ∧ dvσ − 2π

σ − σ
d
(
uσ + σvσ

)
∧ d
(
ξ + iη

)
.

It is clear from this that all the Poisson brackets of the coordinates with respect
to ωt are constant on T2

C
. Since every f ∈ C∞(T2

C
) constant on the leaves is a

function of uσ and vσ, this is enough to conclude that the bracket of any such
function with ξ or η is of the same kind. In conclusion, all four coordinates are
affine linear on the leaves, so their pre-quantum operators preserve the space of
polarised sections of L (t), and can be promoted to quantum operators.

Theorem 7. The quantum operators Ûσ and V̂σ act on the smooth sections of
L (N) over T2 as

Ûσ = u− iσ

πt
∇w , V̂σ = v − i

πt
∇w .

Proof. By linearity, Ûσ and V̂σ are determined once the quantum operators
associated to the coordinates uσ, vσ, ξ and η are known.

Recall that the pre-quantum operator of a smooth, real function f ∈ C∞(T2
C
)

is defined on sections of L (t) as

f̂ := f − i∇
H

(t)
f

,

where H
(t)
f , the Hamiltonian vector field of f relative to ωt, is characterised by

X [f ] = ωt

(
X,H

(t)
f

)
for every X ∈ TT2

C.

If a vector field H̃ satisfies this condition for everyX tangent to P , then H̃−H(t)
f

is orthogonal, hence tangent, to P . Therefore, the covariant derivatives along

H̃ and H
(t)
f act in the same way on polarised sections, so the quantum operator

f̂σ may as well be defined using H̃ in place of H
(t)
f . We shall look for such a H̃

as a linear combination of ∂
∂u and ∂

∂v for each of the coordinates.
Since uσ and vσ are constant along P , their Hamiltonian vector fields are

tangent to the polarisation. As a consequence, the first-order part of their
quantum operators vanish, leading to

ûσ = uσ , v̂σ = vσ .

For real functions α and β, and ξ, η ∈ R fixed, one can compute

ωt

(
(ξ + iη)

∂

∂w
, α

∂

∂u
+ β

∂

∂v

)
= 2πRe

(
t(ξ + iη)

α− σβ

σ − σ

)
=

= 2π

(
Re
(
t
α− σβ

σ − σ

)
ξ − Im

(
t
α− σβ

σ − σ

)
η

)
.
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In order to determine ξ̂σ, we look for real functions α and β so that the above
equals ξ for every ξ and η. This is equivalent to

2πt
α− σβ

σ − σ
= 1 .

A simple algebraic manipulation leads to

α = − 1

2π

(
σ

t
+
σ

t

)
, β = − 1

2π

(
1

t
+

1

t

)
.

Therefore we have that

ξ̂σ = ξ +
i

2πt

(
σ∇u +∇v

)
+

i

2πt

(
σ∇u +∇v

)
= ξ − i(σ − σ)

2πt
∇w +

i(σ − σ)

2πt
∇w .

The operator η̂σ is obtained in the same way: we look for α and β so that

2πt
ασβ

σ − σ
= −i ,

which gives

α =
i

2π

(
σ

t
− σ

t

)
β =

i

2π

(
1

t
− 1

t

)
.

From this we find that

η̂σ = η +
1

2πt

(
σ∇u +∇v

)
− 1

2πt

(
σ∇u +∇v

)
= η − σ − σ

2πt
∇w − σ − σ

2πt
∇w .

Putting everything together, the quantum operators Ûσ and V̂σ act on po-
larised sections as

Ûσ = U − iσ

πt
∇w , V̂σ = V − i

πt
∇w .

The action on sections on T2 is obtained by restricting U and V to u and
v. Since ∇w is a linear combination of ∇u and ∇v, and since ∂

∂u and ∂
∂v are

tangent to T2, this operator is unchanged under the restriction. This concludes
the proof.

Having established this, it is no longer necessary to consider T2
C
, and we may

focus our attention to the picture on T2 instead.
We now wish to define quantum operators for the exponential coordinates

m and ℓ, to which end we rely on the spectral theorem for normal operators,
see e.g. [Con94]. A densely defined operator N on a separable Hilbert space is
called normal if it is closed and NN † = N †N , where N † denotes the adjoint of
N and the identity includes the equality of the domains. For instance, if X is
a measured space of σ-finite measure, f a complex-valued measurable function
on X , then the multiplication by f defines a normal operator on L2(X,C). As
a matter of fact, the theorem states that every normal operator is unitarily
equivalent to one of this kind. One remarkable consequence of this is that the
exponential series of a normal operator is strongly convergent on a suitable
dense subspace.

Lemma 8. The quantum operators Ûσ, V̂σ ∈ H(t)
σ are normal.
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Proof. It follows form general, standard arguments that covariant derivatives are
operators on L2(T2,L (N)) defined on the same dense domains as their adjoints.
On the other hand, in our convention the functions u and v range through [0, 1),
so their multiplication operators on L2(T2,L (N)) are everywhere defined and

bounded. From this it follows hat Ûσ and V̂σ are also closed, and have the same
dense domain as ∇w. Moreover, it is immediate to check that Ûσ and V̂σ also
have the same image as their adjoints, so

dom
(
ÛσÛ

†
σ

)
= dom

(
Û †
σÛσ

)
, dom

(
V̂σ V̂

†
σ

)
= dom

(
V̂ †
σ V̂σ

)
.

We now proceed to checking the commutation relation for Ûσ and Û †
σ by

direct computation
[
Ûσ, Û

†
σ

]
=
[
u− iσ

πt
∇w, u− iσ

πt
∇w

]
=

=
iσ

πt
· σ

σ − σ
+
iσ

πt
· σ

σ − σ
− σσ

π2tt
· 2Nπi
σ − σ

= 0 .

Analogously we find that
[
V̂σ, V̂

†
σ

]
=
[
v − i

πt
∇w, v −

i

πt
∇w

]
=

=
i

πt
· σ

σ − σ
+

i

πt
· σ

σ − σ
− 1

π2tt
· 2Nπi
σ − σ

= 0 .

It is easily seen that for every λ ∈ C and every normal operator N on a
Hilbert space λN is also normal. The lemma ensures then that the following is
well posed.

Definition 4. We define quantum operators associated to m and ℓ on H(t)
σ as

m̂σ = exp
(
2πiÛσ

)
, ℓ̂σ = exp

(
2πiV̂σ

)
.

The next result shows that the quantum operators found above are compat-
ible with the identification of the various Hilbert space via parallel transport.

Proof of Theorem 1. We need to show that Ûσ and V̂σ are covariantly constant
with respect to the connection ∇̃

End induced on End(H(t)) by ∇̃. The covariant
derivative of an endomorphisms E of H along a direction V on T is given by its
commutator with ∇̃V

∇̃
End
V (E) =

[
∇̃V , E

]
.

It is a consequence of (14) that the commutator of the covariant derivatives
along ∂w and ∂w is

[
∇w,∇w

]
= −iNω

(
∂

∂w
,
∂

∂w

)
=

2Nπi

σ − σ
.

We start with the Hitchin-Witten derivatives of the multiplication by u

∇̃
End
σ u =

∂

∂σ
u+

i

2πt

[
∇w∇w, u

]
= − iσ

πt(σ − σ)
∇w ,

∇̃
End
σ u =

∂

∂σ
u+

i

2πt̄

[
∇w∇w, u

]
=

iσ

πt̄(σ − σ)
∇w .
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Analogously for v

∇̃
End
σ v =

∂

∂σ
v +

i

2πt

[
∇w∇w, v

]
= − i

πt(σ − σ)
∇w ,

∇̃
End
σ v =

∂

∂σ
v +

i

2πt̄

[
∇w∇w, v

]
=

i

πt̄(σ − σ)
∇w .

Consider next the variation of ∇w in σ

∇̃
End
σ (∇w) =

∂

∂σ
(∇w) +

i

2πt

[
∇w∇w,∇w

]
= − ∂

∂σ

(
σ∇u +∇v

σ − σ

)
=

=
σ∇u +∇v

(σ − σ)2
= − 1

σ − σ
∇w .

The variation in σ is more involved

∇̃
End
σ (∇w) =

∂

∂σ
(∇w) +

i

2πt̄

[
∇w∇w,∇w

]
=

= − ∂

∂σ

(
σ∇u +∇v

σ − σ

)
+

i

πt̄

[
∇w,∇w

]
∇w =

= − σ∇u +∇v

(σ − σ)2
− 1

σ − σ
∇u +

2N

t̄(σ − σ)
∇w =

= − 1

t̄(σ − σ)

(
t̄
σ∇u +∇v

σ − σ
− 2N∇w

)
=

t

t̄(σ − σ)
∇w .

Altogether, this shows the covariant derivative of Ûσ with respect to σ is

∇̃
End
σ (Ûσ) = ∇̃

End
σ

(
u− iσ

πt
∇w

)
=

= ∇̃
End
σ (u)− i

πt
∇w − iσ

πt
∇̃

End
σ (∇w) =

= − i

πt

(
σ

σ − σ
+ 1− σ

σ − σ

)
∇w = 0 .

In σ we have that

∇̃
End
σ (Ûσ) = ∇̃

End
σ (u)− iσ

πt
∇̃

End
σ (∇w) =

=
iσ

πt(σ − σ)
∇w − iσ

πt

t

t(σ − σ)
∇w = 0 .

The derivatives of V̂σ are completely analogous.

4.2 Trivialisation of the Hitchin-Witten connection and

σ-independent operators

It was established in the previous paragraph that the quantum operators found
there are independent on the Teichmüller parameter in the sense of the Hitchin-
Witten connection. Our next goal is to remove the dependence on σ explicitly.
To this end, we shall use the following trivialisation of the Hitchin-Witten con-
nection, based on Witten’s proposal in [Wit91].
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Theorem 9. The Hitchin-Witten connection for T2 is unitarily gauge-equivalent
to the trivial connection, and the equivalence is realised as

exp
(
r∆
)
∇̃ exp

(
−r∆

)
= ∇Tr ,

where r ∈ C is such that

e4rN = − t
t
. (16)

Proof. Since
∣∣t/t
∣∣ = 1, r is purely imaginary. That the gauge transformation

exp(r∆) is unitary follows from this and that ∆ is a self-adjoint operator.
In order to prove the statement it is enough to show that

exp (−r∆)
∂

∂σ

[
exp (r∆)

]
=

1

2t
b
( ∂

∂σ

)
,

exp (−r∆)
∂

∂σ

[
exp (r∆)

]
= − 1

2t̄
b̄
( ∂

∂σ

)
.

We now proceed by deriving the exponential series of r∆ term-wise along
∂
∂σ . Recall that the derivative of ∆ is given by −∆G̃, so

∂

∂σ
∆ = −∆

G̃
(

∂
∂σ

) = − i

π
∇w∇w = −b

( ∂

∂σ

)
.

It is useful to compute the commutator
[
∂

∂σ
∆,∆

]
= − σ − σ

2π2

[
∇w∇w,∇w∇w +∇w∇w

]
=

= − 2
σ − σ

π2

[
∇w,∇w

]
∇w∇w = −4Ni

π
∇w∇w = 4N

∂

∂σ
∆ ,

and it is checked by induction that furthermore

[
∂

∂σ
∆,∆n

]
=

n∑

l=1

(
n

l

)
(4N)l∆n−l ∂

∂σ
∆ .

This can be used to compute the derivative of ∆n:

∂

∂σ

(
∆n
)
=

n∑

j=1

∆n−j ∂∆

∂σ
∆j−1 =

= n∆n−1 ∂∆

∂σ
+

n∑

j=1

j−1∑

l=1

(
j − 1

l

)
(4N)l∆n−l−1 ∂∆

∂σ
.

One can now exchange the sums and use the identity

n∑

j=l+1

(
j − 1

l

)
=

(
n

l + 1

)
,

and after incorporating the single term on the left one finds

∂

∂σ

(
∆n
)
=

n−1∑

l=0

(
n

l + 1

)
(4N)l∆n−l−1 ∂∆

∂σ
.
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We now apply this to the derivative of the exponential series

∂

∂σ
exp
(
r∆
)
=

∞∑

n=1

n−1∑

l=0

(
n

l + 1

)
(4N)lrn

n!
∆n−l−1 ∂∆

∂σ
.

We now change l with n− l− 1, switch the integrals and further change n with
n+ l to find

∂

∂σ
exp
(
r∆
)
=

∞∑

l=0

∞∑

n=1

1

n!

1

l!
(4N)n−1rn+l∆l ∂∆

∂σ
=

=

(
1

2N

∞∑

n=1

(4Nr)n

n!

) ∞∑

l=0

(r∆)l

l!

∂∆

∂σ
.

The sum on the left is the exponential series at 4Nr, but starting at n = 1, so
it gives

e4Nr − 1

4N
= − 1

4N

(
t

t
+ 1

)
= − 1

2t

Finally, this gives

∂

∂σ
exp
(
r∆
)
= − 1

2t
exp
(
r∆
)∂∆
∂σ

=
1

2t
exp
(
r∆
)
b
( ∂

∂σ

)
.

This concludes the proof for ∂
∂σ . The argument for ∂

∂σ is analogous.

Definition 5. We define the σ-independent quantum operators associated to U ,
V , m and ℓ to be

Û = exp
(
r∆
)
Ûσ

(
−r∆

)
, V̂ = exp

(
r∆
)
V̂σ
(
−r∆

)
,

m̂ = exp
(
r∆
)
m̂σ

(
−r∆

)
, ℓ̂ = exp

(
r∆
)
ℓ̂σ
(
−r∆

)
.

Theorem 10. The σ-independent operators are expressed by

Û = u− i
e2rN − 1

2Nπ
∇v V̂ = v + i

e2rN − 1

2Nπ
∇u ,

m̂ = exp
(
2πiÛ

)
= e2πiu exp

(
e2rN − 1

N
∇v

)
,

ℓ̂ = exp
(
2πiV̂

)
= e2πiv exp

(
−e

2rN − 1

N
∇u

)
.

We wish to stress how these operators are manifestly independent of the
Teichmüller parameter.

Proof. We shall make use of the following formula:

Adexp(r∆) = exp
(
r ad∆

)
.

According to this, in order to conjugate the operators by exp(r∆) it is enough
to understand their commutator with ∆.
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We start by computing the commutator of ∆ with u

[
∆, u

]
= −iσ − σ

π

(
σ

σ − σ
∇w − σ

σ − σ
∇w

)
= − i

π

(
σ∇w − σ∇w

)
.

Similarly we have

[
∆, v

]
= −iσ − σ

π

(
1

σ − σ
∇w − 1

σ − σ
∇w

)
= − i

π

(
∇w −∇w

)
.

The action of adn∆ on u and v is then determined by that on ∇w and ∇w. This
is easily determined by the following relations

[
∆,∇w

]
= −σ − σ

π

2Nπ

σ − σ
∇w = −2N∇w ,

[
∆,∇w

]
=
σ − σ

π

2Nπ

σ − σ
∇w = 2N∇w .

Given this, we can move on to computing the conjugation of the operators.
For the multiplication by u we find

exp
(
r∆
)
u exp

(
−r∆

)
=

∞∑

n=0

rn

n!
adn∆(u) =

= u− i

π

∞∑

n=1

rn

n!
adn∆

(
σ∇w − σ∇w

)
=

= u+
iσ
(
e−2rN − 1

)

2Nπ
∇w +

iσ
(
e2rN − 1

)

2Nπ
∇w .

Similarly, the multiplication by v becomes

exp
(
r∆
)
v exp

(
−r∆

)
=

∞∑

n=0

rn

n!
adn∆(v) =

= v − i

π

∞∑

n=1

rn

n!
adn∆

(
∇w −∇w

)
=

= v +
i
(
e−2rN − 1

)

2Nπ
∇w +

i
(
e2rN − 1

)

2Nπ
∇w .

Since ∇w is a (−2N)-eigenvector for ad∆, we simply have

exp
(
r∆
)
∇w exp

(
−r∆

)
= e−2rN∇w .

Putting the pieces together we finally find

Û = u+
iσ
(
e−2rN − 1

)

2Nπ
∇w +

iσ
(
e2rN − 1

)

2Nπ
∇w − iσe−2rN

πt
∇w =

= u− iσ
(
te−2rN + t

)

2Ntπ
∇w +

iσ
(
e2rN − 1

)

2Nπ
∇w =

= u+
iσ
(
e2rN − 1

)

2Nπ
∇w +

iσ
(
e2rN − 1

)

2Nπ
∇w = u− i

e2rN − 1

2Nπ
∇v .
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Here we used the relation defining r, and that

σ∇w + σ∇w =
1

σ − σ

(
−σσ∇u − σ∇v + σσ∇u + σ∇v

)
= −∇v .

In complete analogy one has

V̂ = v +
i
(
e−2rN − 1

)

2Nπ
∇w +

i
(
e2rN − 1

)

2Nπ
∇w − ie−2rN

πt
∇w =

= v − i
(
te−2rN + t

)

2Ntπ
∇w +

i
(
e2rN − 1

)

2Nπ
∇w =

= v +
i
(
e2rN − 1

)

2Nπ
∇w +

i
(
e2rN − 1

)

2Nπ
∇w = v + i

e2rN − 1

2Nπ
∇u .

In the last step we used that

∇w +∇w =
1

σ − σ

(
−σ∇u −∇v + σ∇u +∇v

)
= ∇u .

The relation for m̂ and ℓ̂ follow from the fact that taking the exponential of
an operator commutes with conjugating it by a unitary map. The splitting is
a consequence of the Baker-Campbell-Hausdorff formula, which can be applied
here since u commutes with ∇v, and v with ∇u.

4.3 The Weil-Gel’fand-Zak transform

Lemma 11. The spaces C∞(T2,LN ) and S(AN ,C) are isometric via the trans-
formation W (N) : S(AN ,C) → C∞(T2,LN ) expressed by

f(x, n) 7→ s(u, v) = eiπNuv
∑

m∈Z

f
(√

Nu+
m√
N
,−m

)
e2πimv .

Since this is an isometry, it extends in a natural way to the L2-completions of
the two spaces.

The above map is called the Weil-Gel’fand-Zak transform. We shall now
study the conjugation of the quantum operators on H(t) by the Weil-Gel’fand-
Zak transform.

Lemma 12. The following relations hold for every f ∈ S(AN ,C)

∇uW
(N)
(
f(x)

)
=W (N)

(√
Nf ′(x)

)
,

∇vW
(N)
(
f(x)

)
=W (N)

(
2πi

√
Nxf(x)

)
,

e2πiuW (N)
(
f(x)

)
=W (N)

(
e
2πi x

√

N e2πi
n
N f(x)

)
,

e2πivW (N)
(
f(x)

)
=W (N)

(
f
(
x− 1√

N
,n+ 1

))
.

Proof. This follows directly from computations, by applying the definitions.
Notice that the derivatives commute with the infinite sum due to the properties
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of Schwartz class functions

∇uW
(N)
(
f(x)

)
=

∂

∂u
W (N)

(
f(x)

)
− iπNvW (N)

(
f(x)

)
=

= eiπNuv
∑

m∈Z

∂

∂u
f
(√

Nu+
m√
N
,−m

)
e2πimv+

+ iπNvW (N)
(
f
)
− iπNvW (N)

(
f
)
=

= eiπNuv
∑

m∈Z

√
Nf ′

(√
Nu+

m√
N
,−m

)
e2πimv .

The second computation is similar

∇vW
(N)
(
f(x)

)
=

∂

∂v
W (N)

(
f(x)

)
+NπiuW (N)

(
f(x)

)
=

= NπiueNπiuv
∑

m∈Z

f
(√

Nu+
m√
N
,−m

)
e2πimv+

2mπieNπiuv
∑

m∈Z

f
(√

Nu+
m√
N
,−m

)
e2πimv+

+NπiuW (N)
(
f(x, n)

)
=

= 2πi
√
NeNπiuv

∑

m∈Z

(√
Nu+

m√
N

)
f
(√

Nu+
m√
N
,−m

)
e2πimv .

The crucial passage in the other two computations is a change of variable in
the sums

e2πiuW (N)
(
f(x)

)
= eiπNuv

∑

m∈Z

e2πiuf
(√

Nu+
m√
N
,−m

)
e2πimv =

= eiπNuv
∑

m∈Z

e2πi(u+
m
N

)e−2πim
N f
(√

Nu+
m√
N
,−m

)
e2πimv .

For the last relation we have that

e2πivW (N)
(
f(x)

)
= eiπNuv

∑

m∈Z

f
(√

Nu+
m√
N
,−m

)
e2πi(m+1)v =

= eNπiuv
∑

m∈Z

f
(√

Nu+
m− 1√
N

,−m+ 1
)
e−2πimv .

This concludes the proof.

Proof of Theorem 2. We need to check that, for the given values of the quantum
parameters, the Weil-Gel’fand-Zak transform induced the correspondence

m̂ 7−→ m̂x , ℓ̂ 7−→ ℓ̂x .
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We proceed again by direct computation

m̂W (N)
(
f(x)

)
= e2πiu exp

(
e2Nr − 1

N
∇v

)
W (N)

(
f(x)

)
=

= e2πiuW (N)


exp

(
2πi

e2Nr − 1√
N

x

)
f(x)


 =

=W (N)


exp

(
2πi

e2Nr

√
N
x

)
e2πi

n
N f(x)


 .

For the next computation we shall use the fact that, if λ is a complex parameter,
the exponential of λ d

dx in L2(R,C) is the shift by λ, as discussed immediately
after Definition 3

ℓ̂W (N)
(
f(x)

)
= e2πiv exp

(
−e

2Nr − 1

N
∇u

)
W (N)

(
f(x)

)
=

= e2πivW (N)


f

(
x− e2Nr − 1√

N
,n

)
 =

=W (N)


f

(
x− e2Nr

√
N
,n+ 1

)
 .

As for the q-commutativity, the following relation can easily be checked
directly from the expression of the operators, or deduced from Dirac’s relation

[
Û , V̂

]
= −i{U, V } = −i · −1

πt
=

i

πt
.

The result follows from this and the Baker-Campbell-Hausdorff formula.

5 Operators annihilating the Andersen-Kashaev

invariant

Throughout this section we will always assume that N is an odd positive integer.
For a fixed level t = N + iS and b and q as above there is an action of the

algebra Aloc from (4) on the space of meromorphic functions on AC

N by

Q 7→ m̂x , E 7→ ℓ̂x .

As before, if f is a meromorphic function it makes sense to consider its annihi-
lating left ideals I(f) and Iloc(f) in Aloc and A, respectively:

Iloc(f) =
{
p ∈ Aloc : p(m̂x, ℓ̂x)f = 0

}
, I(f) = Iloc(f) ∩A .

Notice moreover that, if p1 is a polynomial in m̂x alone and j a non-negative
integer, then

p1ℓ̂
j
x
p2 ∈ I(f) =⇒ p2 ∈ I(f) . (17)

We extend the notation to the case of a function f on AN having a unique
meromorphic extension to AC

N .
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Definition 6. Suppose that f = J
(b,N)
M,K for a hyperbolic knot K in a closed,

oriented compact 3-manifold M , for which Conjecture 3 holds. We define the

non-commutative polynomial ÂC

t,(M,K) as the unique element of Iloc(J
(b,N)
M,K ) of

lowest degree in ℓ̂x with integral and co-prime coefficients.

We are now ready to rephrase Theorem 3 more precisely.

Theorem 13. For K ⊆ S3 the figure-eight knot 41 or 52, we have

ÂC

t,K(m̂x, ℓ̂x) ·
(
m̂x − 1

)
= Âq,K(m̂x, ℓ̂x) .

In the semi-classical limit t→ ∞, we have that

(
m4 − 1

)
· ÂC

∞,K(m2, ℓ) = AK(m, ℓ) .

We shall dedicate the rest of the paper to the proof of this statement.

5.1 The figure-eight knot 41

5.1.1 The invariant and its holomorphic extension

Recall the formula for χ
(b,N)
41

(x) for x ∈ AN ⊆ C× Z/NZ (see e.g. [AM16b])

χ
(b,N)
41

(x) :=

∫

AN

ϕb(x − y)〈x− y〉−2

ϕb(y)〈y〉−2 dy . (18)

We shall often omit the superscript (b, N). It follows from lemma 4 that, for x

and y real, the integrand has constant absolute value 1, so the integral is not
absolutely convergent. However, suppose y = η + iε b√

N
for real η and ε. One

may write

∣∣〈y〉
∣∣ = e−π Im(y2) = eε

2 Im(b2)
N e

−2πηεRe(b)
√

N

∣∣〈x− y〉
∣∣ = e−π Im((x−y)2) = eε

2 Im(b2)
N e

−2π(η−x)εRe(b)
√

N

Then the same lemma shows that, for appropriate smooth functions C− and C+

of x and ε alone, one has

∣∣∣∣∣
ϕb(x− y) 〈x− y〉−2

ϕb(y) 〈y〉−2

∣∣∣∣∣ ≈





∣∣∣∣∣
〈x− y〉−1

〈y〉−2

∣∣∣∣∣ = C−(x, ε)e
−2πηεRe(b)

√

N η → −∞ ,

∣∣∣∣∣
〈x− y〉−2

〈y〉−1

∣∣∣∣∣ = C+(x, ε)e
4πηεRe(b)

√

N η → +∞ .

Therefore, the integrand decays exponentially in η for every fixed ε < 0, and
the integral converges absolutely on AN + iεb/

√
N , provided that this contour

does not cross any poles.
Recall that the zeroes of ϕb(y) only occur for y in the lower infinite triangle

T , and similarly the poles of ϕb(x−y) have y−x ∈ T , or equivalently y ∈ T +x.
Therefore, since cb = iRe(b), the integral over the contour AN + iεb/

√
N is

absolutely convergent for −1 < ε < 0. Moreover, given the exponential decay
of the integrand at infinity, the residue theorem and dominated convergence
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R

iR

b

−cb

x

x+ T T

(a) For fixed (x, n) and m, the poles of
the integrand occur inside the infinite
triangles.

R

iR

b

−cb

a

γε,aγε,a

Rε,a

(b) The integrand decays exponentially
for x in the strip, and the poles lie below
γε,a if −cb and x do.

Figure 1: The distribution of the poles of the integrand and the contour are
illustrated for N = 1. The situation is analogous for higher N , up to rescaling
cb by

√
N and replicating the picture N times.

together show that, in the limit for ε → 0, one recovers the improper integral
over AN . In fact, the same value is obtained for each x if the contour is pushed
up within a compact region of C × Z/NZ. In other words, one may use any
contour Γ which goes along AN + iεb/

√
N near ∞, provided that

• ε < 0,

• all the poles of the integrand lie below Γ.

In order to study the action of the operators on χ41 , and in particular the
shift, we need to understand its holomorphic extension to C × Z/NZ. To this
end, we shall fix a contour Γ as above and determine for which values of x

the integral converges absolutely. If x = ξ + iλb/
√
N and y = η + iε/

√
N for

ξ, η, ε, λ ∈ R, then one has

∣∣〈x− y〉
∣∣ = e−π Im((x−y)2) = e(λ−ε)2 Im(b2)e

−2π(η−ξ)(ε−λ)
Re(b)
√

N .

The behaviour of the integrand at infinity is then given by

∣∣∣∣∣
ϕb(x− y) 〈x− y〉−2

ϕb(y) 〈y〉−2

∣∣∣∣∣ ≈





〈x− y〉−1

〈y〉−2 = C−(x, ε)e
−2πη(ε+λ)Re(b)

√

N η → −∞ ,

〈x− y〉−2

〈y〉−1 = C+(x, ε)e
2πη(ε−2λ)Re(b)

√

N η → +∞ .

Therefore, the convergence condition near ∞ is equivalent to

ε

2
< λ < −ε .

Fix now ε < 0 and a ∈ −2cb/
√
N −T , and consider the contour γε,a in C which

deviates from R + iεb/
√
N along a + iRb and a + iRb. The condition on a

ensures that the tip of T , and hence the whole triangle, lies below this contour.
Similarly, γε,a avoids T +x if and only if it stays above its tip x−N1/2cb, which
is the case if e.g. x ∈ T + a. If Γ is chosen to be γε,a in each component of
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C×Z/NZ, the integral converges absolutely and defines a holomorphic function
at least on the region Rε,a × Z/NZ, where

Rε,a :=

{
x = ξ + iλ

b√
N

∈ T + a ,
ε

2
< λ < −ε

}
.

The resulting function agrees with the one defined by the improper integral over
AN on Rε,a∩R, which is non-empty since it always contains a neighbourhood of
0. Also, as ε and a vary on the allowed domains, these regions cover the whole
complex plane, thus giving the full holomorphic extension of χ41 to C×Z/NZ.

5.1.2 Operators annihilating the integrand

We now approach the problem of studying the operators annihilating the inte-
grand of (18). Following the plan illustrated above, we use Lemma 5 to see how

ℓ̂x acts on it

(
1 + q−

1
2 m̂−1

x
m̂y

)
qm̂2

x
m̂−2

y

ϕb(x− y)〈x− y〉−2

ϕb(y)〈y〉−2 .

A simple manipulation translates this into

(
m̂2

y
ℓ̂x − q

1
2

(
q

1
2 m̂x + m̂y

)
m̂x

)
ϕb(x− y)〈x− y〉−2

ϕb(y)〈y〉−2 = 0 .

Similarly, the action of ℓ̂y gives

(
1 + q

1
2 m̂−1

x
m̂y

)−1(
1 + q−

1
2 m̂−1

y

)−1

m̂−2
x

ϕb(x− y)〈x− y〉−2

ϕb(y)〈y〉−2 ,

hence

((
m̂x + q

1
2 m̂y

)(
q

1
2 m̂y + 1

)
m̂xℓ̂y − q

1
2 m̂y

)
ϕb(x− y)〈x− y〉−2

ϕb(y)〈y〉−2 = 0 .

We can then start elimination in m̂y on

g1 = ℓ̂xm̂
2
y
− q

1
2 m̂xm̂y − qm̂2

x
,

g2 = ℓ̂ym̂xm̂
2
y
+ q

1
2

(
ℓ̂ym̂

2
x
+ ℓ̂ym̂x − q

)
m̂y + qℓ̂ym̂

2
x
.

We run the operation on a computer, and find

q
9
2 m̂2

x
Â = qa1g1 − a2g2 ,

where a1 is given by

ℓ̂ym̂x

((
qℓ̂ym̂

2
x
− 1
)(
q3ℓ̂ym̂

2
x
+ qℓ̂ym̂x − 1

)
ℓ̂x + q2ℓ̂y

(
q3ℓ̂ym̂

2
x
− 1
)
m̂2

x

)
m̂y

+q
1
2

(
qℓ̂ym̂

2
x
− 1
)

·
(
q5ℓ̂2

y
m̂4

x
+ q3ℓ̂2

y
m̂3

x
+ qℓ̂2

y
m̂2

x
− q2(q + 1)ℓ̂ym̂

2
x
− (q + 1)ℓ̂ym̂x + 1

)
ℓ̂x

+q
5
2 ℓ̂y
(
ℓ̂ym̂x − q

)(
q3ℓ̂ym̂

2
x
− 1
)
m̂2

x
,
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and a2 is

((
qℓ̂ym̂

2
x
− 1
)(
q3ℓ̂ym̂

2
x
+ qℓ̂ym̂x − 1

)
ℓ̂2
x
+ q3ℓ̂y

(
q3ℓ̂ym̂

2
x
− 1
)
m̂2

x
ℓ̂x

)
m̂y

−q 5
2 ℓ̂y
(
qℓ̂ym̂

2
x
− 1
)
m̂2

x
ℓ̂2
x

−q 3
2

(
q4(q + 1)ℓ̂2

y
m̂4

x
+ q2ℓ̂2

y
m̂3

x
− q(q2 + q + 1)ℓ̂ym̂

2
x
− qℓ̂ym̂x + 1

)
m̂xℓ̂x

−q 7
2 ℓ̂y
(
q3ℓ̂ym̂

2
x
− 1
)
m̂3

x

where

Â = q3ℓ̂2
y

(
qℓ̂ym̂

2
x
− 1)m̂2

x
ℓ̂2
x

−
(
q2ℓ̂ym̂

2
x
− 1
)(
q4ℓ̂2

y
m̂4

x
− q3ℓ̂2

y
m̂3

x
− q(q2 + 1)ℓ̂ym̂

2
x
− qℓ̂ym̂x + 1

)
ℓ̂x

+ qℓ̂y
(
q3ℓ̂ym̂

2
x
− 1
)
m̂2

x
.

(19)
It is apparent from this, (5) and (7) that this non-commutative polynomial,

evaluated at ℓ̂y = 1, verifies the statement of Theorem 13 up to rescaling ℓ̂x by
q, and an overall factor q.

Theorem 14. The complex non-commutative ÂC-polynomial for the figure-eight
knot is given by the evaluation

ÂC

t,41(m̂x, ℓ̂x) = q−1Â(m̂x, q
−1ℓ̂x, ℓ̂y = 1) .

Proof. Since q
9
2 m̂2

x
Â is a left combination of g1 and g2, it annihilates the in-

tegrand defining χ41 , hence so does Â itself. For ε and a as usual, ρ < ε a
non-negative integer, call

Γ(ρ)
ε,a := Γε,a − iρb/

√
N = Γε−ρ,a−i ρb

√

N

.

Of course m̂x and ℓ̂x commute with taking integrals in dy, so for any λ, µ and
every x ∈ AC

N one may write

∫

Γε,a

ℓ̂ρ
y
m̂µ

x
ℓ̂λ
x

ϕb(x− y)〈x− y〉−2

ϕb(y)〈y〉−2 dy = m̂µ
x
ℓ̂λ
x

∫

Γ
(ρ)
ε,a

ϕb(x− y)〈x− y〉−2

ϕb(y)〈y〉−2 dy .

The right-hand side gives m̂µ
x
ℓ̂λ
x
χ41(x) for

x ∈ Rε−ρ,a−i ρb
√

N

+

(
i
λb√
N
,−1

)
.

If ε and |a| are big enough, the intersection of these domains as 0 ≤ ρ ≤ 3 and
0 ≤ λ ≤ 2 is non-empty, and in fact these sets cover all AC

N for ε and a going to

∞. Applying this point-wise in x and monomial by monomial in Â, this shows
that this polynomial, evaluated at ℓ̂y = 1, annihilates χ41 .

On the other hand, recall that

J
(b,N)
S3,41

(x) = e
4πi

cbx
√

N χ41(x) .
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As is easily checked, this implies that Â(m̂x, q
−1ℓ̂x, 1) belongs to Iloc(41), so

there exists p ∈ Aloc such that

Â(m̂x, q
−1ℓ̂x, 1) = p(m̂x, ℓ̂x) · ÂC

t,41(m̂x, ℓ̂x) .

However, for q = 1 the left-hand side gives (m4 − 1)A41 , so the expression on
the right-hand side gives a factorisation of this polynomial. On the other hand,
the classical A-polynomial is irreducible, which implies that either p or ÂC

t,41 is

a polynomial in m̂x alone. If this were the case for ÂC
t,41 , this would mean that

χ41 = 0, which is not the case as, for instance, this would contradict its known

asymptotic properties. This means that q−1Â(m̂x, q
−1ℓ̂x, 1) is proportional to

ÂC
t,41 , and since its coefficients satisfy the required conditions the conclusion

follows.

This completes the argument for the figure-eight knot.

5.2 The knot 52

For the knot 52, the function χ
(N)
52

= χ52 on AN is given by the integral

χ52(x) :=

∫

AN

〈y〉 〈x〉−1

ϕb(y + x)ϕb(y)ϕb(y − x)
dy . (20)

As in the case of the figure-eight knot, we need first of all to discuss the con-
vergence of the integral. Calling Φ(x,y) the integrand, for x fixed and y of the
usual form we have the following asymptotic behaviour:

∣∣Φ(x,y)
∣∣ ≈





∣∣∣〈y〉 〈x〉−1
∣∣∣ = C−(x, ε)e

−2πηεRe(b)
√

N η → −∞ ,
∣∣∣∣

1

〈y + x〉 〈y − x〉

∣∣∣∣ =
∣∣∣∣∣

1

〈x〉2 〈y〉2

∣∣∣∣∣ = C+(x, ε)e
4πηεRe(b)

√

N η → +∞ .

Independently on x, the integrand decays exponentially as η → ∞ as long as ε
is positive. Moreover, for fixed x the poles of Φ lie inside of the region

T ∪ (T + x) ∪ (T − x) .

Using Γε,a as above, the integral is absolutely convergent if e.g. both x and −x

lie below the contour, which is to say that x lies below Γε,a and above −Γε,a.
This defines a holomorphic function in the region Ra delimited by the four lines
±a+ iRb and ±a+ iRb

Ra :=

{
(x, n) : x ∈

(
a+

cb√
N

+ T
)
∩
(
−a− cb√

N
− T

) }

Again, by a combination of the residue theorem and dominated convergence,
the result is independent on the choice of the path, and the limit ε → 0 with
a = 0 gives the improper integral along AN for x real. This proves that χ52

can be extended to a holomorphic function over the whole C×Z/NZ. We want
to stress that, since Ra depends on a alone, the specific choice of ε < 0 has no
influence on the region of convergence of the integral.
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5.2.1 Operators annihilating the integrand

Following the lines of the case of the figure-eight knot, we use Lemma 5 to
determine the action of ℓ̂x and ℓ̂y on the integrand. The first operator acts as

q
1
2 m̂x

(
1 + q−

1
2 m̂−1

x
m̂−1

y

)−1(
1 + q

1
2 m̂xm̂

−1
y

)
,

while the second gives

q−
1
2 m̂−1

y

(
1 + q−

1
2 m̂−1

x
m̂−1

y

)−1(
1 + q−

1
2 m̂−1

y

)−1(
1 + q−

1
2 m̂−1

y
m̂x

)−1
.

From this we get the operators

g1 = q
1
2

(
m̂xℓ̂x − q

1
2 m̂2

x

)
m̂y + ℓ̂x − q

3
2 m̂3

x
,

g2 = ℓ̂ym̂xm̂
3
y
+ q

1
2

(
ℓ̂ym̂

2
x
+ ℓ̂ym̂x − q2m̂x + ℓ̂y

)
m̂2

y

+ qℓ̂y

(
m̂2

x
+ m̂x + 1

)
m̂y + q

3
2 ℓ̂ym̂x .

Again, running elimination in m̂y returns

Â = a1g1 + m̂xg2 ,

where a1 is expressed by

(
−q 1

2 ℓ̂ym̂x

(
qm̂2

x
− 1
)(
q2m̂2

x
− 1
)
ℓ̂2
x
+ q2(q + 1)ℓ̂ym̂

2
x

(
qm̂2

x
− 1
)(
q5m̂2

x
− 1
)
ℓ̂x

− q
7
2 ℓ̂ym̂

3
x

(
q4m̂2

x
− 1
)(
q5m̂2

x
− 1
))
m̂2

y

+

(
−qm̂x

(
qm̂2

x
− 1
)(
q2m̂x − 1

)(
q3ℓ̂ym̂x + ℓ̂y − q2

)
ℓ̂2
x

+ q
5
2 m̂x

(
qm̂2

x
− 1
)(
q5m̂2

x
− 1
)(
q3ℓ̂ym̂

2
x
+ (q + 1)ℓ̂ym̂x − q2(q + 1)m̂x + ℓ̂y

)
ℓ̂x

− q8m̂2
x

(
q4m̂2

x
− 1
)(
q5m̂2

x
− 1
)(
ℓ̂ym̂x − q2m̂x + ℓ̂y

))
m̂y

− q
1
2

(
qm̂2

x
− 1
)(
q2m̂2

x
− 1
)(
q4ℓ̂ym̂

2
x
+ 1
)
ℓ̂2
x
− q
(
qm̂2

x
− 1
)(
q5m̂2

x
− 1
)

·
(
q6ℓ̂ym̂

4
x
− q5ℓ̂ym̂

3
x
− q5m̂3

x
− q2(q2 + 1)ℓ̂ym̂

2
x
− q2ℓ̂ym̂x − q2m̂x + ℓ̂y

)
ℓ̂x

− q
9
2 m̂2

x

(
q2m̂2

x
+ ℓ̂y

)(
q4m̂2

x
− 1
)(
q5m̂2

x
− 1
)
,

and a2 is

(
qm̂2

x
− 1
)(
q2m̂2

x
− 1
)
ℓ̂3
x
− q

3
2 m̂x

(
q2 + q + 1

)(
qm̂2

x
− 1
)(
q4m̂2

x
− 1
)
ℓ̂2
x

+ q3m̂2
x

(
q2 + q + 1

)(
q2m̂2

x
− 1
)(
q5m̂2

x
− 1
)
ℓ̂x

− q
9
2 m̂3

x

(
q4m̂2

x
− 1
)(
q5m̂2

x
− 1
)
,
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where

Â = − q
1
2

(
qm̂2

x
− 1
)(
q2m̂2

x
− 1
)
ℓ̂3
x

+ q
(
qm̂2

x
− 1
)(
q4m̂2

x
− 1
)(
q9ℓ̂ym̂

5
x
− q7ℓ̂ym̂

4
x
− q4(q3 + 1)ℓ̂ym̂

3
x

+ q5(q + 1)m̂3
x
+ q2(q3 + 1)ℓ̂ym̂

2
x
+ q2(ℓ̂y + 1)m̂x − ℓ̂y

)
ℓ̂2
x

+ q
9
2 m̂2

x

(
q2m̂2

x
− 1
)(
q5m̂2

x
− 1
)(
q6ℓ̂ym̂

5
x
− q5(ℓ̂y + 1)m̂4

x

− q2(q3 + 1)ℓ̂ym̂
3
x
+ q(q3ℓ̂y − q2 − q + ℓ̂y)ℓ̂ym̂

2
x
+ qℓ̂ym̂x − ℓ̂y

)
ℓ̂x

+ q8m̂7
x

(
q4m̂2

x
− 1
)(
q5m̂2

x
− 1
)
.

As for the figure-eight knot, the evaluation at ℓ̂y = 1 yields a non-commutative

polynomial in m̂x and ℓ̂x which, up to a global factor in q and a rescaling of ℓ̂x
by −q 1

2 , verifies Theorem 13. With few slight adaptations, the same argument
as for the previous case finally shows the following.

Theorem 15. The complex non-commutative ÂC-polynomial for the knot 52 is
given by the evaluation

ÂC

t,41(m̂x, ℓ̂x) = q−1Â(m̂x,−q−
1
2 ℓ̂x, ℓ̂y = 1) .
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