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The boundary length and point spectrum enumeration
of partial chord diagrams using cut and join recursion

by Jørgen Ellegaard Andersen, Hiroyuki Fuji,

Robert C. Penner, and Christian M. Reidys1

Abstract

We introduce the boundary length and point spectrum, as a joint gen-
eralization of the boundary length spectrum and boundary point spectrum
introduced by Alexeev, Andersen, Penner and Zograf. We establish by
cut-and-join methods that the number of partial chord diagrams filtered by
the boundary length and point spectrum satisfies a recursion relation, which
combined with an initial condition determines these numbers uniquely. This
recursion relation is equivalent to a second order, non-linear, algebraic par-
tial differential equation for the generating function of the numbers of par-
tial chord diagrams filtered by the boundary length and point spectrum.

1 Introduction

A partial chord diagram, is a special kind of graph, which can be specified as
follows. The graph consists of a number of line segments (which we will also
call backbones) arranged along the real line (hence they come with an ordering)
with a number of vertices on each. A number of semi-circles (called chords)
arranged in the upper half plan are attached at a subset of the vertices of the line
segments, in such a way that no two chords have endpoints on the line segments
in common. The vertices which are not attached to chord ends are called the
marked points. A chord diagram is by definition a partial chord diagram with no
marked points. Partial chord diagrams occur in many branches of mathematics,
including topology [12, 15], geometry [8, 9, 2] and representation theory [13].

1Keywords: chord diagram, fatgraph, cut and join equation
AMS Classification: 05A15, 92-08
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supported by the Grant-in-Aid for Research Activity Start-up [# 15H06453], Grant-in-Aid for
Scientific Research(C) [# 26400079], and Grant-in-Aid for Scientific Research(B) [# 16H03927]
from the Japan Ministry of Education, Culture, Sports, Science and Technology.



214 J. E. Andersen, H. Fuji, R. C. Penner, and C. M. Reidys

Furthermore, they play a very prominent role in macro molecular biology. Please
see the introduction of [6] for a short review of these applications.

As documented in [17, 25, 24, 11, 10, 7, 3, 4, 1, 23, 22, 5, 6], the notion of a
fatgraph [18, 19, 20, 21] is a useful concept when studying partial chord diagrams2.
A fatgraph is a graph together with a cyclic ordering on each collection of half-
edges incident on a common vertex. A partial linear chord diagram c has a natural
fatgraph structure induced from its presentation in the plane. The fatgraph c has
canonically a two dimensional surface with boundary Σc associated to it (e.g. see
Figure 1).

Figure 1: The partial chord diagram c and the surface Σc associated to
the fatgraph with marked points. This partial chord diagram has the type
{g, k, l; {bi}; {ni}; {ℓi}} = {1, 6, 2; {b6 = 1, b8 = 1}; {n0 = 2, n1 = 2}; {ℓ1 =
1, ℓ2 = 2, ℓ9 = 1}}. The boundary length-point spectra are {m(1) = 1,m(0,0) =
2,m(0,0,0,0,0,1,0,0,0) = 1}.

We now recall the basic definitions from [1] for a partial chord diagram c.

• The number of chords, the number of marked points, and the number of
backbones of c are denoted k, l, and b respectively.

• The Euler characteristic and the genus of Σc, are denoted χ and g respec-
tively. If n is the number of boundary components of Σc, we have that

χ = 2− 2g,(1.1)

and g obeys Euler’s relation

2− 2g = b− k + n.(1.2)

• The backbone spectrum bbb = (b0, b1, b2, . . .) are assigned to c, if it has bi back-
bones with precisely i ≥ 0 vertices (of degree either two or three);

• The boundary point spectrum nnn = (n0, n1, . . .) is assigned to c, if its bound-
ary contains ni connected components with i marked points;

2In [16, 14], the Schwinger-Dyson approach to the enumeration of chord diagrams is also
discussed.
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• The boundary length spectrum ℓ = (ℓ1, ℓ2, . . .) is assigned to c, if the bound-
ary cycles of the diagram consist of ℓK edge-paths of lengthK ≥ 1, where the
length of a boundary cycle is the number of chords it traverses counted with
multiplicity (as usual on the graph obtained from the diagram by collapsing
each backbone to a distinct point) plus the number of backbone undersides
it traverses (or in other words, the number of traversed connected compo-
nents obtained by removing all the chord endpoints from all the backbones).

We now introduce the combination of the boundary length spectrum and the
boundary point spectrum, namely our new boundary length and point spectrum.

• The boundary length and point spectrum mmm = (m(d1,...,dK)) is assigned to c,
if its boundary contains m(d1,...,dK) connected components of length K with
marked point spectrum (d1, . . . , dK), meaning that there cyclically around
the boundary components are d1 marked points, then a chord or a backbone
underside, then d2 marked points, then a chord or a backbone underside,
and so on all the way around the boundary component. In fact we will
not need to distinguish which way around the boundary we go. Hence it
is only the cyclic ordered tuple of the numbers d1, . . . , dK , which we need
and which we denote as dddK = (d1, . . . , dK). We remark that some of the dI
(1 ≤ I ≤ K) might be zero.

We have the following relations

b =
∑
i≥0

bi, n =
∑
i≥0

ni =
∑
K≥1

ℓK =
∑
K≥1

∑
dddK

mdddK ,

2k + l =
∑
i>0

ibi, l =
∑
i>0

ini =
∑
K≥1

∑
dddK

|dddK |mdddK

2k + b =
∑
K≥1

KℓK =
∑
K≥1

∑
dddK

KmdddK ,

where |dddK | =
∑K

I=1 dI . For all K and i, we also have that

ℓK =
∑
dddK

mdddK , ni =
∑
K≥1

∑
i=|dddK |

mdddK .

We define Mg,k,l(bbb,mmm) to be the number of connected partial chord diagrams
of type {g, k, l;bbb;mmm} taken to be zero if there is none of the specified type. In
[1], Ng,k,l(bbb,nnn,ppp) is defined as the number of distinct connected partial chord
diagrams of type {g, k, l;bbb;nnn;ppp}. We find the relation between these numbers by
the following formula

Ng,k,l(bbb, ℓ,nnn) =
∑

mmm∈M(ℓ,nnn)

Mg,k,l(bbb,mmm),
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where

M(ℓ,nnn) =
{
mmm
∣∣ ℓK =

∑
dddK

mdddK , ni =
∑
K≥1

∑
i=|dddK |

mdddK

}
.

In particular, the numbers Ng,k,l(bbb,nnn) and Ng,k,b(ℓ) are given by

Ng,k,l(bbb,nnn) =
∑
ℓ

Ng,k,l(bbb, ℓ,nnn), Ng,k,b(ℓ) =
∑
nnn

∑
∑

bi=b

Ng,k,l=0(bbb, ℓ,nnn),

For the index bbb = (bi), we consider the variable ttt = (ti) and denote

tttbbb =
∏
i≥0

tbii .

And for the index ddd = (dddK), we consider the variable uuu = (udddK ) and denote

uuummm =
∏
K≥1

∏
dddK

u
mdddK

dddK

for any mmm = (mmmdddK ). We define the orientable, multi-backbone, boundary length
and point spectrum generating function H(x, y; ttt;uuu) =

∑
b≥0 Fb(x, y; ttt;uuu), where

Hb(x, y; ttt;uuu) =
1

b!

∞∑
g=0

∞∑
k=2g+b−1

∑
∑

K

∑
dddK

mdddK

=k−2g−b+2

∑
∑

bi=b

Mg,k,l(bbb,mmm)x2gyktttbbbuuummm,(1.3)

For an element ppp = (p(d1,...dK)), where each p(d1,...dK) ∈ Z, we write

ppp = ppp+ − ppp−,

where ppp+ contains all the positive entries and ppp− the absolute value of all the
negative ones, which we assume to both be finite. We define the differential
operator

Dppp =
∏
ddd

u
ppp−
ddd

ddd

∏
ddd

(
∂

∂uddd

)ppp+
ddd

.

We now define sI,J,ℓ,m(dddK), sI,ℓ,m(dddK) and qI,J,ℓ,m(dddK , fffL) to be strings like ppp
given by the following formulae

sI,J,ℓ,m(dddK) = eeedddK − eee(d1,...,dI−1,dI−ℓ−1,m,dJ+1,...,dK) − eee(ℓ,dI+1,...,dJ−1,dJ−m−1),

sI,ℓ,m(dddK) = eeedddK − eee(d1,...,dI−1,ℓ,m,dI+1,...,dK) − eee(dI−ℓ−m−2),

qI,J,ℓ,m(dddK , fffL)

= eeedddK + eeefffL
− eee(d1,...,dI−1,dI−ℓ−1,m,fJ+1,...,fL,f1,...,fJ−1,fJ−m−1,ℓ,dI+1,...,dK).
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where eeedddK denotes the sequence (0, . . . , 0, 1, 0, . . .) where the component 1 appears
only at the entry indexed by dddK . We further define the index cI,J,ℓ,h(dddK , fffM) by
the formula

cI,J,ℓ,m(dddK , fffL)

= (d1, . . . , dI−1, dI − ℓ− 1,m, fJ+1, . . . , fL, f1, . . . , fJ−1, fJ −m− 1, ℓ, dI+1, . . . , dK),

which is identical to the index on the last term of the above assignments.

Theorem 1.1 (Enumeration of partial chord diagrams filtered by their boundary
length and point spectrum).

Define the first and second order linear differential operators

M0 =
∑
K≥1

∑
dddK

( ∑
1≤J<I≤K

dI−1∑
ℓ=0

dJ−1∑
m=0

DsI,J,ℓ,m(dddK) +
K∑
I=1

dI−1∑
ℓ,m=0

DsI,ℓ,m(dddK)

)
,(1.4)

M2 =
1

2

∑
K,L≥1

∑
dddK ,fffL

K∑
I=1

L∑
J=1

dI−1∑
ℓ=0

dJ−1∑
m=0

DqI,J,ℓ,h(dddK),(1.5)

and the quadratic differential operator

S(H) =
1

2

∑
K,L≥1

∑
dddK ,fffL

K∑
I=1

L∑
J=1

dI−1∑
ℓ=0

fL−1∑
m=0

ucI,J,ℓ,m(dddK ,fffL)DdddK (H)DfffL
(H) .(1.6)

Then the following partial differential equations hold

∂H1

∂y
= (M0 + x2M2)H1,

∂H

∂y
= (M0 + x2M2 + S)H.(1.7)

Together with the initial conditions

H1(x, y = 0; ttt = (t1);uuu) = u(0)t1, H(x, y = 0; ttt;uuu) =
∑
i≥1

u(i)ti,(1.8)

they determine the functions H1 and H uniquely.

In this article, we also consider the non-oriented analogue of partial chord
diagrams. The generalization of the above analysis is straightforward, as we will
now explain. A non-oriented partial chord diagrams, is a partial chord diagram
together with a decoration of a binary variable at each chord, which indicates if the
chord is twisted or not. When associating the surface Σc, to a non-oriented partial
chord diagram, a twisted band is associated along twisted chords as indicated
in Figure 2. By this construction, 2k orientable and non-orientable surfaces are
obtained from one partial chord diagram with k chords, when we vary over all
assignments of twisting or not to the k chords. In the non-oriented case, we have
the following definition of the Euler characteristic.
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• Euler characteristic χ.
The Euler characteristic of the two dimensional surface Σc is defined by the
formula

χ = 2− h,(1.9)

where h is the number of cross-caps and we have Euler’s relation

2− h = b− k + n.(1.10)

With this set-up, the enumeration of the non-oriented partial chord diagrams is
considered in parallel to the oriented case discussed above with a small change
for the boundary length and point spectrum mmm. In this non-oriented case, there
are now induced orientation on the boundaries of Σc and hence for an index
dddK = (d1, . . . , dK) corresponding some boundary component of Σc, we not only
need to consider this tuple up to cyclic permutation of the tuple, but also reversal
of the order

dddK = (d1, d2, . . . , dK) = (dK , . . . d2, d1).

Figure 2: The non-oriented surface constructed out of untwisted and twisted
chords.

Let M̃h,k,l(bbb,mmm) be the number of non-oriented partial chord diagrams of type

{h, k, l;bbb;mmm}. In [1], Ñh,k,l(bbb, ℓ,nnn) is defined as the number of non-oriented con-
nected partial chord diagrams of type {h, k, l;bbb; ℓ;nnn}. These numbers are related
by the following formula

Ñh,k,l(bbb, ℓ,nnn) =
∑

mmm∈M(ℓ,nnn)

M̃h,k,l(bbb,mmm),

and the numbers Ñh,k,l(bbb,nnn) and Ñh,k,b(ℓ) are given by

Ñh,k,l(bbb,nnn) =
∑
ℓ

Ñh,k,l(bbb, ℓ,nnn), Ñh,k,b(ℓ) =
∑
nnn

∑
∑

bi=b

Ñh,k,l=0(bbb, ℓ,nnn).
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We define the non-oriented generating function H̃(x, y; ttt;uuu) =
∑

b≥1 H̃b(x, y; ttt;uuu)
to be given by

H̃b(x, y; ttt;uuu) =
1

b!

∞∑
h=0

∞∑
k=h+b−1

∑
∑

K

∑
dddK

mdddK

=k−h−b+2

∑
∑

bi=b

M̃h,k,l(bbb,mmm)xhyktttbbbuuummm.(1.11)

We define s×I,J,ℓ,h(dddK), s
×
I,ℓ,h(dddK) and q×I,J,ℓ,h(dddK , fffL) to be by

s×I,J,ℓ,m(dddK) = eeedddK − eee(d1,...,dI−1,ℓ,m,dJ−1,...,dI+1,dJ−ℓ−1,dJ−m−1,dJ+1,...,dK),

s×I,ℓ,m(dddK) = eeedddK − eee(d1,...,dI−1,ℓ,dI−ℓ−m−2,m,dI+1,...,dK),

q×I,J,ℓ,m(dddK , fffL)

= eeedddK + eeefffM
− eee(f1,...,fJ−1,fJ−m−1,ℓ,dI−1,...,d1,dK ,...,dI+1,dI−ℓ−1,m,fJ+1,...,fL).

And we also define indices c×I,J,ℓ,h(dddK , fffM) by the formula

c×I,J,ℓ,h(dddK , fffL)

= (f1, . . . , fJ−1, fJ −m− 1, ℓ, dI−1, . . . , d1, dK , . . . , dI+1, dI − ℓ− 1,m, fJ+1, . . . , fL),

which again, we note is identical to the index on the last term of the above
assignments.

Theorem 1.2 (Enumeration of non-oriented partial chord diagrams filtered by
their boundary length and point spectrum).

Define the first and second order linear differential operators

M×
1 =

∑
K≥1

∑
dddK

( ∑
1≤J<I≤K

dI−1∑
ℓ=0

dJ−1∑
m=0

Ds×I,J,ℓ,m(dddK) +
K∑
I=1

dI−1∑
ℓ,m=0

Ds×I,ℓ,m(dddK)

)
,(1.12)

M×
2 =

1

2

∑
K,L≥1

∑
dddK ,fffL

K∑
I=1

L∑
J=1

dI−1∑
ℓ=0

dJ−1∑
m=0

Dq×I,J,ℓ,m(dddK),(1.13)

and the quadratic differential operator

S×(H) =
1

2

∑
K,L≥1

∑
dddK ,fffL

K∑
I=1

L∑
J=1

dI−1∑
ℓ=0

fL−1∑
m=0

uc×I,J,ℓ,m(dddK ,fffL)
DdddK (H)DfffL

(H) .(1.14)

Then the following partial differential equations hold

∂H̃1

∂y
= (M0 + xM×

1 + x2(M2 +M×
2 ))H̃1,

∂H̃

∂y
= (M0 + xM×

1 + x2(M2 +M×
2 ) + S + S×)H̃.(1.15)
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Together with the following initial conditions

H̃1(x, y = 0; ttt = (t1);uuu) = u(0)t1, H̃(x, y = 0; ttt;uuu) =
∑
i≥1

u(i)ti,(1.16)

determines H̃1 and H̃ uniquely.

This paper is organized as follows. Section 2 contains basic combinatorial
results on the boundary length and point spectra of partial chord diagrams and
derives the recursion relation of the number of diagrams (Proposition 2.1), by
the cut-and-join method. This cut-and-join equation is rewritten as a second
order, non-linear, algebraic partial differential equation for generating function
of the number of partial chord diagrams filtered by the boundary length and
point spectrum (Proposition 2.2). Section 3 extends these results to include the
non-oriented analogues of the partial chord diagrams. The cut-and-join equation
is extended to provide a recursion on the number of non-oriented partial chord
diagrams (Proposition 3.1), and is also rewritten as partial differential equation
(Proposition 3.2).

2 Combinatorial proof of the cut-and-join equa-

tion

In this section, we devote to prove Theorem 1.1. The partial differential equation
(1.7) is equivalent to the following recursion relation for the numbers of connected
partial chord diagrams.

Proposition 2.1. The numbers Mg,k,l(bbb,mmm) enumerating connected partial chord
diagrams of type {g, k, l;bbb,mmm} obey the following recursion relation

kMg,k,l(bbb,mmm)

=
∑
K≥1

∑
dddK

(mdddK + 1)

[ ∑
1≤I<J≤K

dI−1∑
ℓ=0

dJ−1∑
m=0

Mg,k−1,l+2 (bbb,mmm+ sI,J,ℓ,m(dddK))

+
K∑
I=1

dI−1∑
ℓ,m=0

ℓ+m≤dI−2

Mg,k−1,l+2 (bbb,mmm+ sI,ℓ,m(dddK))

]

+
1

2

∑
K≥1

∑
L≥1

∑
dddK

∑
fffL

(mdddK + 1)(mfffL
+ 1− δdddK ,fffL

)

×
K∑
I=1

L∑
J=1

dI−1∑
ℓ=0

fJ−1∑
m=0

Mg−1,k−1,l+2 (bbb,mmm+ qI,J,ℓ,m(dddK , fffL))
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+
1

2

∑
K≥1

∑
L≥1

∑
dddK

∑
fffL

∑
g1+g2=g

∑
k1+k2=k−1

∑
b(1)+b(2)=b

×
K∑
I=1

L∑
J=1

dI−1∑
ℓ=0

fJ−1∑
m=0

∑
mmm(1)+mmm(2)

=mmm+qI,J,ℓ,m(dddK ,fffL)

×m
(1)
dddK

m
(2)
fffL

b!

b(1)!b(2)!
Mg1,k1,l1

(
bbb(1),mmm(1)

)
Mg2,k2,l2

(
bbb(2),mmm(2)

)
.(2.1)

This recursion relation is referred to as the cut-and-join equation, since it
follows from a cut-and-join argument, which we shall now provide.

Proof. When one removes one chord from a partial chord diagram, there are
essentially three distinct possible outcomes. First of all the diagram can stay
connected and then there are two cases to consider. In the first one, the chord
that is removed is adjacent to two different boundary components and in the
second one it is adjacent to just one. The third case is when the chord diagram
becomes disconnected.

In the first case, the genus of the partial chord diagram is not changed, but
two boundary components join into one component. On the other hand, in the
second case, the genus decreases by one, and one boundary component splits into
two components.

Figure 3: Removal of a chord in case one. The chord is depicted as a band. After
the removal of this chord, two boundary components join into one component.
Left: The clusters of marked points (dI − ℓ− 1,m) and (dJ −m− 1, ℓ) join into
two clusters dI and dJ Right: The clusters of marked points (ℓ,m) and (dJ−m−1)
join into one cluster dI .

In the first case, and let us say that after removing this chord, the two adjacent
boundary components join into one component with the marked point spectrum
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dddK = (d1, . . . , dK). (See Figure 3.) Under this elimination, the numbers k and
n change to k − 1 and n − 1, the genus g is not changed (c.f. Euler’s relation
2 − 2g = b − k + n). The number of marked points l changes to l + 2, because
the chord ends of the chord which is removed become new marked points. There
are two distinct possible sub cases, namely either the chord ends belong to two
distinct clusters of marked points dI and dJ in the resulting chord diagram, or
chord ends belong to the same cluster of marked points dI .

We will consider the former kind of chord, and assume I < J without loss of
generality. Before we remove the chord, the two boundaries adjacent to the chord
needs to have the following two marked point spectra

(d1, . . . , dI−1, dI − ℓ− 1,m, dJ+1, . . . , dK), and (ℓ, dI+1, . . . , dJ−1, dJ −m− 1),

0 ≤ ℓ ≤ dI − 1, 0 ≤ m ≤ dJ − 1,

When removing the chord, we connect the clusters of marked points (dI−ℓ−1,m)
and (dJ−m−1, ℓ). If the original partial chord diagram has the boundary length-
point spectrum mmm, the resulting diagram has

mmm− eee(d1,...,dI−1,dI−ℓ−1,m,dJ+1,...,dK) − eee(ℓ,dI+1,...,dJ−1,dJ−m−1) + eeedddK
=mmm+ sI,J,ℓ,m(dddK).

For the latter kind, we must have two boundary components with the marked
point spectra

(d1, . . . , dI−1, ℓ,m, dI+1, . . . , dK), and (dI − ℓ−m− 2).

0 ≤ ℓ,m ≤ dI − 1, 0 ≤ ℓ+m ≤ dI − 2,

and removing the chord connects the clusters of marked points (ℓ,m) and (dJ −
m − 1). This manipulation changes the boundary length and point spectrum mmm
into

mmm− eee(d1,...,dI−1,ℓ,m,dI+1,...,dK) − eee(dI−ℓ−m−2) + eeedddK =mmm+ sI,ℓ,m(dddK).

For both of these two kinds of removal, there are mdddK+1 possibilities to choose
the boundary components in the partial chord diagram. Therefore, the number
of possibilities for the first way of removal is

∑
K≥1

∑
dddK

(mdddK + 1)

[ ∑
1≤I<J≤K

dI−1∑
ℓ=0

dJ−1∑
m=0

Mg,k−1,l+2 (bbb,mmm+ sI,J,ℓ,m(dddK))

+
K∑
I=1

dI−1∑
ℓ,m=0

ℓ+m≤dI−2

Mg,k−1,l+2 (bbb,mmm+ sI,ℓ,m(dddK))

]
.(2.2)
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In the second case (see Figure 4), the removal changes the numbers k and n
to k − 1 and n + 1 and the genus of the partial chord diagram decreases by one.
For partial chord diagram with a boundary with marked point spectrum

(d1, . . . , dI−1, dI − ℓ− 1,m, fJ+1, . . . , fL, f1, . . . , fJ−1, fJ −m− 1, ℓ, dI+1, . . . , dK),

0 ≤ ℓ ≤ dI − 1, 0 ≤ m ≤ fJ − 1,

we remove the chord which connects the two clusters (fJ −m−1, ℓ) and (dI − ℓ−
1,m) of marked points. The boundary component then splits into two boundary
components with marked point spectra dddK = (d1, . . . , dK) and fffL = (f1, . . . , fL).
If the original partial chord diagram has the boundary length and point spectrum
mmm, after removal of this chord, we find that

mmm− eee(d1,...,dI−1,dI−ℓ−1,m,fJ+1,...,fL,f1,...,fJ−1,fJ−m−1,ℓ,dI+1,...,dK) + eeedddK + eeefffL

=mmm+ qI,J,ℓ,m(dddK , fffL).

The number of possibilities of this removal is (mdddK +1)(mfffL
+1) for dddK ̸= fffL.

If dddK = fffL, the number of possibilities becomes mdddK (mdddK + 1)/2. In total, the
number of possibilities for the second way of elimination is

1

2

∞∑
K=1

∞∑
L=1

∑
dddK

∑
fffL

(mdddK + 1)(mfffL
+ 1− δdddK ,fffL

)

×
K∑
I=1

L∑
J=1

dI−1∑
ℓ=0

fJ−1∑
h=0

Mg−1,k−1,l+2 (bbb,mmm+ qI,J,ℓ,h(dddK , fffL)) .(2.3)

The factor 1/2 in front of the sum takes care of the over counting in the cases
dddK ̸= fffL.

In the third case, the partial chord diagram split into two connected compo-
nents. We consider the case that the original diagram has the type {g, k, l;bbb,mmm}
and the resulting two connected components have types {g1, k1, l1;bbb(1),mmm(1)} and
{g2, k2, l2;bbb(2),mmm(2)}. These types are related such that

g = g1 + g2, k − 1 = k1 + k2, bbb = bbb(1) + bbb(2).

Since a boundary component also split into two components, the boundary length
and point spectrum changes in the same manner as in the second case.

mmm+ qI,J,ℓ,m(dddK , fffL) =mmm(1) +mmm(2).

There are m
(1)
dddK

m
(2)
fffL

ways to choose the boundary components which are to be
fused under the inverse operation of chord removal. And the number of different
ordered splittings of a b-backbone diagram is b!

b(1)!b(2)!
where b(a) =

∑
i b

(a)
i (a =

1, 2). Therefore, the total number of possibilities of this case is

1

2

∞∑
I=1

∞∑
J=1

∑
dddK

∑
fffL

∑
g1+g2=g

∑
k1+k2=k−1

∑
b(1)+b(2)=b
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Figure 4: The second and third way of elimination of a chord. After the elim-
ination of this chord, a boundary component split into two different boundary
components.

×
K∑
I=1

L∑
J=1

dI−1∑
ℓ=0

fJ−1∑
m=0

∑
mmm(1)+mmm(2)

=mmm+qI,J,ℓ,m(dddK ,fffL)

×m
(1)
dddK

m
(2)
fffL

b!

b(1)!b(2)!
Mg1,k1,l1

(
bbb(1),mmm(1)

)
Mg2,k2,l2

(
bbb(2),mmm(2)

)
.(2.4)

The factor 1/2 corrects for the over counting due to the ordering of the two
connected components.

The sum of the contributions (2.2), (2.3), and (2.4) from the three different
cases of chord removals equals kMg,k,l(bbb,mmm), because there are k possibilities
for the choice of the chord to be removed. This gives the cut-and-join equation
(2.1).

Proposition 2.2. The generating function H(x, y; ttt, ;uuu) is uniquely determined
by the differential equation

∂H

∂y
= (M + S)H,

where M = M0 + x2M2. The generating function Z(x, y; ttt, ;uuu) = exp[H] of the
number of connected and disconnected partial chord diagrams satisfies

∂Z

∂y
= MZ,(2.5)

and is as such determined by the initial conditions

H(x, y = 0; ttt;uuu) =
∑
i≥1

tiu(i), Z(x, y = 0; ttt, ;uuu) = e
∑

i≥1 tiu(i) .
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Proof. It is straightforward to check that the differential equation ∂H
∂y

= (M+S)H

is equivalent to the cut-and-join equation (2.1). The actions in the quadratic
differential S on H can be rewritten by following relation

DdddK (H)DfffL
(H) +DdddKDfffL

H =
1

Z
DdddKDfffL

Z.

The derivatives on the right hand side are contained in M2, and the differential
equation ∂Z

∂y
= MZ follows from that of H.

On the initial condition, every partial chord diagram of type {g, k, l;bbb;mmm} can
be obtained from the disjoint collection of type {0, 0, i;eeei, eee(i)} with multiplicity
bi by connecting them with k chords. This implies H(x, y = 0; ttt;uuu) =

∑
i≥1 tiu(i).

Since this is the first order differential equation of y, the coefficient of yk is deter-
mined uniquely using this initial condition.

3 Non-oriented analogue of the cut-and-join equa-

tion

In this section, we will prove Theorem 1.2. We first establish the following propo-
sition.

Proposition 3.1. The number M̃g,k,l(bbb,mmm) of connected non-oriented partial
chord diagrams of type {g, k, l;bbb,mmm} obeys the following recursion relation

kM̃g,k,l(bbb,mmm)

=
∑
K≥1

∑
dddK

(mdddK + 1)

×

[∑
I<J

dI−1∑
ℓ=0

dJ−1∑
m=0

{
M̃h,k−1,l+2 (bbb,mmm+ sI,J,ℓ,m(mmm)) + M̃h−1,k−1,l+2

(
bbb,mmm+ s×I,J,ℓ,m(mmm)

)}
+

K∑
I=1

∑
ℓ+m≤dI−2

{
M̃h,k−1,l+2 (bbb,mmm+ sI,ℓ,m(mmm)) + M̃h−1,k−1,l+2

(
bbb,mmm+ s×I,ℓ,m(mmm)

)}]
+

1

2

∑
K≥1

∑
L≥1

∑
dddK

∑
fffL

(mdddK + 1)(mfffL
+ 1− δdddK ,fffL

)

×
K∑
I=1

L∑
J=1

dI−1∑
ℓ=0

fJ−1∑
m=0

{
M̃h−2,k−1,l+2 (bbb,mmm+ qI,J,ℓ,m(dddK , fffL))

+ M̃h−2,k−1,l+2

(
bbb,mmm+ q×I,J,ℓ,m(dddK , fffL)

)}
+

1

2

∑
K≥1

∑
L≥1

∑
dddK

∑
fffL

∑
h1+h2=h

∑
k1+k2=k−1

∑
b(1)+b(2)=b
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×
K∑
I=1

L∑
J=1

dI−1∑
ℓ=0

fJ−1∑
m=0

 ∑
mmm(1)+mmm(2)

=mmm+qI,J,ℓ,m(dddK ,fffL)

+
∑

mmm(1)+mmm(2)

=mmm+q×I,J,ℓ,m(dddK ,fffL)

m
(1)
dddK

m
(2)
fffL

× b!

b(1)!b(2)!
M̃h1,k1,l1

(
bbb(1),mmm(1)

)
M̃h2,k2,l2

(
bbb(2),mmm(2)

)
.

(3.1)

Proof. If we remove a non-twisted chord, then we find the same recursive structure
as for the numbers (2.2), (2.3), and (2.4) for M̃h,k,l

(
bbb,mmm

)
in the oriented case. As

we did in the proof of proposition 2.1, we also consider three cases, organised the
same way, when removing a twisted chord.

In the first case (see Figure 5), there are again two possibilities, namely the
twisted chord ends belong to two different or the same clusters of marked points
on the boundary component in the resulting diagram after removal. Contrary to
the case of non-twisted chords, the boundary cycle does not split, but the marked
point spectrum changes due to the recombination of the boundary component.
For both of these two cases, the numbers k and n change to k− 1 and n, and the
cross-cap number h decreases by one under this elimination (c.f. Euler’s relation
2− h = b− k+ n). The chord ends become marked points and l changes to l+2.

Figure 5: Removal of a twisted chord from a non-oriented partial chord diagram.
The chord is depicted as a twisted band. After the elimination of this chord, the
boundary component is reconnected into one component with different marked
point spectrum. Left: The clusters of marked points (dI − ℓ − 1,m) and (dJ −
m − 1, ℓ) join into two clusters dI and dJ . Right: The clusters of marked points
(ℓ,m) and (dJ −m− 1) join into one cluster dI .

In the former situation, we must have a boundary component with the marked
point spectrum

(d1, . . . , dI−1, ℓ,m, dJ−1, dJ−2 . . . , dI+1, dI − ℓ− 1, dJ −m− 1, dJ+1, . . . , dK)
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I < J, 0 ≤ ℓ ≤ dI − 1, 0 ≤ m ≤ dJ − 1,

from which we remove one twisted chord with one end between the two clusters
(ℓ,m) and the other between (dI − ℓ−1, dJ −m−1). Then the removal will result
in a boundary component with the marked point spectrum dddK and the boundary
length and point spectrum mmm is changed as follows

mmm− eee(d1,...,dI−1,ℓ,m,dJ−1,...,dJ+1,dJ−ℓ−1,dJ−m−1,dJ+1,...,dK) + eeedddK
=mmm+ s×I,J,ℓ,m(dddK).

The possible number of choices for this kind of removal is mdddK + 1, and the total
number of diagrams which can be obtained in this way is

∑
K≥1

∑
dddK

(mdddK + 1)
∑
I<J

dI−1∑
ℓ=0

dJ−1∑
m=0

M̃h−1,k−1,l+2

(
bbb,mmm+ s×I,J,ℓ,m(mmm)

)
.(3.2)

For the removal of the latter kind of twisted chords, we must start with a
diagram with a boundary component with the marked point spectrum

(d1, . . . , dI−1, ℓ, dI − ℓ−m− 2,m, dI+1, . . . , dK),

0 ≤ ℓ,m ≤ dI , ℓ+m ≤ dI − 2.

from which we remove one twisted chords with one end between the two clusters
(ℓ, dI − ℓ−m− 2) and the other one between the two clusters (dI − ℓ−m− 2,m).
After removal, we obtain a boundary component with the marked point spectrum
dddK . Thus, the boundary length and point spectrum mmm is changed to

mmm− eee(d1,...,dI−1,ℓ,dI−ℓ−m−2,m,dI+1,...,dK) + eeedddK =mmm+ s×I,ℓ,m(dddK).

The number of such chords to be removed is mdddK + 1, and the total number of
partial chord diagrams obtained in this way is

∑
K≥1

∑
dddK

(mdddK + 1)
K∑
I=1

∑
ℓ+m≤dI−2

M̃h−1,k−1,l+2

(
bbb,mmm+ s×I,ℓ,m(mmm)

)
.(3.3)

Next, we consider the second case (see Figure 6), where we must start with a
non-oriented partial chord diagram with a boundary component with the marked
point spectrum

(f1, . . . , fJ−1, fJ −m− 1, ℓ, dI−1, . . . , d1, dK , . . . , dI+1, dI − ℓ− 1,m, fJ+1, . . . , fL),

0 ≤ ℓ ≤ dI − 1, 0 ≤ m ≤ fJ − 1,

from which we remove a twisted chord with one end between the two clusters
(fJ −m− 1, ℓ) and the other end between the two clusters (dI − ℓ− 1,m). After
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removal of this chord, the boundary component has been split into two components
with spectra dddK and fffL, and the cross-cap number h decreases by two. Then, the
boundary length and point spectrum mmm changes to

mmm− eee(f1,...,fJ−1,fJ−m−1,ℓ,dI−1,...,d1,dK ,...,dI+1,dI−ℓ−1,m,fJ+1,...,fL) + eeedddK + eeefffL

=mmm+ q×I,J,ℓ,m(dddK , fffL).

The number of choices for the chord to be removed is (mdddK + 1)(mfffL
+ 1) for

dddK ̸= fffL and mdddK (mdddK +1)/2 for dddK = fffL, and the total number of partial chord
diagrams obtained this way is

1

2

∑
K≥1

∑
L≥1

∑
dddK

∑
fffL

(mdddK + 1)(mfffL
+ 1− δdddK ,fffL

)

×
K∑
I=1

L∑
J=1

dI−1∑
ℓ=0

fJ−1∑
m=0

M̃h−2,k−1,l+2

(
bbb,mmm+ q×I,J,ℓ,m(dddK , fffL)

)
.(3.4)

Figure 6: The second case of a twisted chord removal. After the removal of this
chord, the boundary component split into two distinct boundary components.

In case three partial chord diagram split into two connected components when
we remove the chord. Assume that the original diagram has the type {h, k, l;bbb,mmm}
and the resulting two connected components have types {h1, k1, l1;bbb

(1),mmm(1)} and
{h2, k2, l2;bbb

(2),mmm(2)}. Then these types are related by

h = h1 + h2, k − 1 = k1 + k2, bbb = bbb(1) + bbb(2).

The marked point spectrum changes in the same way as the second case

mmm+ q×I,J,ℓ,m(dddK , fffL) =mmm(1) +mmm(2).
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The total number of resulting diagrams is

1

2

∑
K≥1

∑
L≥1

∑
dddK

∑
fffL

∑
h1+h2=h

∑
k1+k2=k−1

∑
b(1)+b(2)=b

×
K∑
I=1

L∑
J=1

dI−1∑
ℓ=0

fJ−1∑
m=0

∑
mmm(1)+mmm(2)

=mmm+q×I,J,ℓ,m(dddK ,fffL)

×m
(1)
dddK

m
(2)
fffL

b!

b(1)!b(2)!
M̃h1,k1,l1

(
bbb(1),mmm(1)

)
M̃h2,k2,l2

(
bbb(2),mmm(2)

)
.(3.5)

Therefore, in total, the number of possible partial chord diagrams obtained by
removing a twisted or a non-twisted chord is the sum of (3.2) – (3.5) and of (2.2)

– (2.4) for M̃h,k,l

(
bbb,mmm

)
. This number gives the right hand side of equation (3.1),

which we have just argued also gives the left side of equation (3.1).

Along the same line of arguments as the ones which proved Proposition 2.2,
we obtain the proposition below.

Proposition 3.2. The generating function H̃(x, y; ttt, ;uuu) is uniquely determined
by the differential equation

∂H̃

∂y
= (M̃ + S̃)H̃,

where M̃ = M0+xM×
1 +x2(M2+M×

2 ) and S̃ = S+S×. The generating function

Z̃(x, y; ttt, ;uuu) = exp[H̃] of the number of connected and disconnected partial chord
diagrams filtered by the boundary length and point spectrum satisfies

∂Z̃

∂y
= M̃Z̃.(3.6)

As such they are uniquely determined by the initial conditions

H̃(x, y = 0; ttt;uuu) =
∑
i≥1

tiu(i), Z̃(x, y = 0; ttt, ;uuu) = e
∑

i≥1 tiu(i) .
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