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Partial Chord Diagrams and Matrix Models

by Jørgen Ellegaard Andersen, Hiroyuki Fuji, Masahide Manabe,

Robert C. Penner, and Piotr Su lkowski1

Abstract

In this article, the enumeration of partial chord diagrams is discussed
via matrix model techniques. In addition to the basic data such as the
number of backbones and chords, we also consider the Euler characteristic,
the backbone spectrum, the boundary point spectrum, and the boundary
length spectrum. Furthermore, we consider the boundary length and point
spectrum that unifies the last two types of spectra. We introduce matrix
models that encode generating functions of partial chord diagrams filtered
by each of these spectra. Using these matrix models, we derive partial
differential equations – obtained independently by cut-and-join arguments
in an earlier work – for the corresponding generating functions.

1 Introduction

A partial chord diagram is a special kind of graph, which is specified as follows.
The graph consists of a number of line segments (which are called backbones)
arranged along the real line (hence they come with an ordering), with a number
of vertices on each. A number of semi-circles (called chords) arranged in the upper
half plane is attached at a subset of the vertices of the line segments, in such a
way that no two chords have endpoints at the same vertex. The vertices which are
not attached to chord ends are called the marked points. A chord diagram is by
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definition a partial chord diagram with no marked points. Partial chord diagrams
occur in many branches of mathematics, including topology [14, 30], geometry
[9, 10, 3] and representation theory [16].

To each partial chord diagram c one can associate canonically a two dimen-
sional surface with boundary Σc, see Figure 1. Moreover, as discussed in [56, 12,
2, 7], the notion of a fatgraph [42, 43, 44, 45] is a useful concept when studying
partial chord diagrams. A fatgraph is a graph together with a cyclic ordering on
each collection of half-edges incident on a common vertex. A partial linear chord
diagram c has a natural fatgraph structure induced from its presentation in the
plane.

c Σc

Figure 1: The partial chord diagram (with marked points) c and the corresponding
surface Σc. The type of this partial chord diagram reads {g, k, l; {bi}; {ni}; {pi}} =
{1, 6, 2; {b6 = 1, b8 = 1}; {n0 = 2, n1 = 2}; {p1 = 1, p2 = 2, p9 = 1}}. The
boundary length and point spectrum is {n(1) = 1, n(0,0) = 2, n(0,0,0,0,0,1,0,0,0) = 1}.

The partial chord diagram c is characterized by various topological data, and
we will consider the following five types of data, introduced in [2] and [7].

• The number of chords k in c and the number of backbones b in c.

• Euler characteristic χ and genus g.
Let χ and g denote respectively the Euler characteristic and genus of Σc,
which are related as follows

χ = 2 − 2g.

Denoting by n the number of boundary components of Σc, the Euler relation
can be written as

2 − 2g = b− k + n.(1.1)

• Backbone spectrum (b0, b1, . . .).
Let bi denote the number of backbones with i trivalent (i.e. chord ends) or
bivalent (i.e. marked points) vertices. The total number of backbones b is
then

b =
∑
i≥0

bi,(1.2)
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and the total number m of trivalent (i.e. chord ends) and bivalent (i.e.
marked points) vertices of the partial chord diagram c is

m =
∑
i≥1

ibi.(1.3)

• Boundary point spectrum (n0, n1, . . .).
Let ni denote the number of boundary components containing i ≥ 0 marked
points of Σc. The total number n of boundary components is

n =
∑
i≥0

ni,(1.4)

and the total number l of marked points is

l =
∑
i≥1

ini.(1.5)

These three numbers m, k and l satisfies

m = 2k + l.(1.6)

• Boundary length spectrum (p1, p2, . . .).
Define the length of a boundary component to be the sum of the number of
chords and the number of backbone undersides traversed by the boundary
cycle. Let pi be the number of boundary cycles with length i ≥ 1. By
definition, the following two relations hold

n =
∑
i≥1

pi,(1.7)

2k + b =
∑
i≥1

ipi.(1.8)

The data {g, k, l; {bi}; {ni}; {pi}} is called the type of a partial chord diagram c.
As a unification of the boundary length spectrum and the boundary point

spectrum, we consider the boundary length and point spectrum introduced in [7].
Let us here recall its definition.

• Boundary length and point spectrum.
We associate a K-tuple of numbers iii = (i1, . . . , iK) with a boundary compo-
nent of length K, where iL (L = 1, . . . , K) is the number of marked points
between the L’th and (L+1)’th (taken modulo K) either chord or underpass
of a backbone component (in either order) along the boundary.
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Let niii be the number of boundary components labeled in this way by iii. The
total number l of marked points is

l =
∑
K≥1

∑
iii

K∑
L=1

iLn(i1,...,iK),(1.9)

and the total number n of boundary cycles is

n =
∑
iii

niii.(1.10)

The data {g, k, l; {bi}, {niii}} stores more detailed information on the distribution
of marked points on each boundary component. One can determine the previous
two kinds of spectra from the boundary length and point spectrum by forgetting
the partitions of marked points on the boundary cycles.

It is known that the enumeration of chord diagrams is intimately related to
matrix models and cut-and-join equations [4, 5, 6, 20, 38]. In this paper, the
enumeration of partial chord diagrams labeled by the boundary length and point
spectrum with the genus filtration is studied using matrix model techniques. Let
Ng,k,l({bi}, {niii}) denote the number of connected chord diagrams labeled by the
set of parameters (g, k, l; {bi}; {niii}). We define the generating function of these
numbers

F(x, y; {si}; {uiii}) =
∑
b≥1

Fb(x, y; {si}; {uiii}),

Fb(x, y; {si}; {uiii}) =
1

b!

∑
∑

i bi=b

∑
{niii}

Ng,k,l({bi}, {niii})x2g−2yk
∏
i≥0

sbii
∏
K≥1

∏
{iL}KL=1

uniii
iii .

(1.11)

Generating functions of disconnected and connected diagrams are related via the
exponential relation

Z(x, y; {si}; {uiii}) = exp [F(x, y; {si}; {uiii})] .(1.12)

To analyze this enumeration further, we write the above generating function as
a certain Hermitian matrix integral. Let ZN(y; {si}; {uiii}) be the matrix integral
over rank N Hermitian matrices HN

ZN(y; {si}; {uiii}) =

=
1

VolN

∫
HN

dM exp

[
−NTr

(
M2

2
−
∑
i≥0

si(y
1/2Λ−1

L M + ΛP)iΛ−1
L

)]
,

(1.13)

where ΛP and ΛL are external matrices [29] of rank N , and the normalization
factor VolN is defined in (2.4). In this matrix integral representation, the counting
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parameter u(i1,...,iK) is identified with the trace of the corresponding product of
external matrices

u(i1,...,iK) =
1

N
Tr

(
Λi1

PΛ−1
L Λi2

PΛ−1
L · · ·ΛiK

P Λ−1
L

)
.(1.14)

In Theorem 2.13 we show that

ZN(y; {si}; {uiii}) = Z(N−1, y; {si}; {uiii}).(1.15)

Figure 2: The cut-and-join manipulations on chord diagrams.

This matrix integral representation provides a new, matrix model proof of
the cut-and-join equation found by combinatorial means in [7]. The cut-and-join
equation can be written as

∂

∂y
Z(x, y; {si}; {uiii}) = MZN(x, y; {si}; {uiii}),(1.16)

where M is the second order partial differential operator in variables uiii (see
Theorem 3.11 for details). This cut-and-join equation can be regarded as the
evolution equation in the variable y, and its formal solution reads

Z(x, y; {si}; {uiii}) = eyMZ(x, 0; {si}; {uiii}),

Z(x, 0; {si}; {uiii}) = eN
2
∑

i≥0 siu(i) .
(1.17)

Expanding the operator eyM around y = 0, one determines the number of
connected partial chord diagrams Ng,k,l({bi}, {niii}) iteratively from this formal
solution. The cut-and-join equation is a powerful method to systematically count
partial chord diagrams of a given length and point spectrum.

In this work we also generalize the above analysis to non-oriented analogues of
partial chord diagrams. By non-oriented partial chord diagrams we mean diagrams
with all chords decorated by a binary variable, which indicates if they are twisted
or not. When associating the surface Σc to a non-oriented partial chord diagram,
twisted bands are associated along the twisted chords as indicated in Figure 3.
This construction leads to 2k orientable or non-orientable surfaces associated to
one particular partial chord diagram with k chords, if we consider all possible
assignments of twisting or untwisting of k bands. In the non-oriented case the
Euler characteristic is defined as follows.
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• Euler characteristic χ.
The Euler characteristic of the two dimensional surface Σc is defined by the
formula

χ = 2 − h,

where h is the number of cross-caps. The Euler relation holds

2 − h = b− k + n.(1.18)

With this setup, the enumeration of non-oriented partial chord diagrams can be
considered analogously to the orientable case.

Figure 3: A non-oriented surface Σc associated to a non-oriented partial chord
diagram c.

Let Ñh,k,l({bi}, {niii}) denote the number of connected non-oriented partial
chord diagrams with the cross-cap number h, k chords, the backbone spectrum
{bi}, l marked points, and the boundary length and point spectrum niii. The

generating function F̃(x, y; {si}; {uiii}) is defined by

F̃(x, y; {si}; {uiii}) =
∑
b≥1

F̃b(x, y; {si}; {uiii}),

F̃b(x, y; {si}; {uiii}) =
1

b!

∑
∑

i bi=b

∑
{niii}

Ñh,k,l({bi}, {niii})xh−2yk
∏
i≥0

sbii
∏
K≥1

∏
{iL}KL=1

uniii
iii .

(1.19)

We also define the generating function of the numbers of connected and discon-
nected non-oriented partial chord diagrams

Z̃(x, y; {si}; {uiii}) = exp
[
F̃(x, y; {si}; {uiii})

]
.(1.20)

In Theorem 4.5 we show that this generating function can be expressed as a real
symmetric matrix integral with two external symmetric matrices ΩP and ΩL

Z̃(N−1, y; {si}; {uiii}) = Z̃N(y; {si}; {uiii}),

(1.21)
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Z̃N(y; {si}; {uiii}) =

=
1

VolN(R)

∫
HN (R)

dM exp

[
−NTr

(
M2

4
−
∑
i≥0

si(y
1/2Ω−1

L M + ΩP)iΩ−1
L

)]
,

(1.22)

where the normalization factor VolN(R) is defined in (4.8), and HN(R) is the
space of real symmetric matrices of rank N . The parameter u(i1,...,iK) is identified
with a trace of the external matrices via the formula

u(i1,...,iK) =
1

N
Tr

(
Ωi1

PΩ−1
L Ωi2

PΩ−1
L · · ·ΩiK

P Ω−1
L

)
.(1.23)

Using this matrix integral representation of the generating function, one can
again prove the cut-and-join equation, established independently by combinatorial
arguments in [7]

∂

∂y
Z̃N(y; {si}; {uiii}) = M̃Z̃N(y; {si}; {uiii}),(1.24)

where M̃ is a second order partial differential operator in the variables uiii. The
details of the differential operator M̃ and the matrix model derivation of the
cut-and-join equation are presented in Theorem 4.10.

1.1 Motivation: RNA chains

One important motivation to study partial chord diagrams in this and the preced-
ing work [2, 7] is a complicated problem of RNA structure prediction in molecular
biology, which we now shortly review.

An RNA molecule is a linear polymer, referred to as the backbone, that con-
sists of four types of nucleotides: adenine, cytosine, guanine, and uracil, denoted
respectively A, C, G, and U. The backbone is endowed with an orientation
from 5’-end to 3’-end, and the primary sequence is the sequence of nucleotides
read with respect to this orientation. Between nucleotides hydrogen bonds are
formed, resulting in the so-called Watson-Click pairs involving A−U or G−C
nucleotides; in addition Wobble pairs U−G can be formed. The set of base pairs
formed by such hydrogen bonds is referred to as the secondary structure.2 Pre-
diction of the secondary structure from the primary sequence is an outstanding
problem that was initiated by the pioneering work of Michael Waterman [57] and
has been studied intensively for last three decades.

Topologically, we can represent the base pairings for a given RNA structure
by a partial chord diagram as follows. The backbone is represented as a disjoint
union of horizontal straight line segments (arranged along the real line in the

2There are other types of interactions in RNA secondary structure, which are however less
common and we ignore them in this discussion.
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H type Kissing hairpin

Figure 4: Pseudoknot structures in RNA. The long curved line, blobs (i.e. marked
points), and short lines represent the backbone, nucleotides, and base pairs, re-
spectively.

plane), one for each backbone component, and each nucleotide is represented as
a marked point on this union of line segments. The base pairs are represented by
chords in the upper-half plane attached at two marked points corresponding to
the bonded pair of nucleotides.

Note that a partial chord diagram has genus zero if no two of its chords cross
each other. If however such crossings exist, then the structure is referred to as a
pseudoknot, and its genus is non-zero. Considerable number of pseudoknot struc-
tures have been observed, e.g. tRNAs, RNAseP [31], telomerase RNA [53] and
ribosomal RNAs [28]. According to the online database “RNA-strand” half of the
known structures form pseudoknots [13]. There are various kinds of pseudoknots
classified by the topology of the RNA [12], referred to as e.g. H-type [1], kissing
hairpin [17, 51], etc.

In recent years, a combinatorial description of RNA structures in terms of
linear chord diagrams has been developed in a series of works [41, 56, 55, 12, 11,
8, 4, 5, 2, 49, 46]. However, a large class of reasonable energy-based models that
predict the secondary structure including pseudoknots are NP complete [32, 1],
and a fully satisfactory energy model for RNA, including pseudoknot structures,
has not been established yet.

In the search of a realistic energy function for RNA structures with pseudo-
knots, the boundary length and point spectrum should provide a useful tool that
includes more detailed information about the location of marked points. In stan-
dard algorithms developed by Waterman [58], Nussinov et al. [40], Zucker and
Stiegler [61], etc., dynamic programming (DP) has been used to predict most
likely secondary structures. Indeed, in famous algorithms such as [60, 25], the
(loop-based) energy in each configuration of RNA is considered. In these algo-
rithms, the most probable secondary structure is determined as the minimum free
energy configuration, and to make them more efficient the statistical mechanical
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(A) (A′)

(B′)(B)

Figure 5: Partial chord diagrams unveil the difference in the topological structure
of RNA molecules.

ensemble (i.e. the partition function algorithm) is implemented [34]. The ap-
plication of these algorithms, which include pseudoknot structures stratified by γ
structures, was studied in [50, 49]. Most of the energy functions essentially respect
the boundary point and length spectra independently. In order to improve the
energy model for RNA structure prediction with pseudoknots, it would be useful
to explore energy parameters for more realistic and efficient energy function on
the basis of the boundary length and point spectrum.

1.2 Plan of the paper

This paper is organized as follows. In Section 2 we construct Hermitian matrix
models with external matrices, which encode generating functions of orientable
partial chord diagrams labeled by the boundary point spectrum (in Subsection
2.1), the boundary length spectrum (in Subsection 2.2), and the boundary length
and point spectrum (in Subsection 2.3). All these constructions are established by
the correspondence between chord diagrams and Wick contractions via the Wick
theorem. The matrix model encoding the boundary length and point spectrum
is given in Theorem 2.13. In Section 3 we derive partial differential equations for
matrix integrals found in Section 2. These partial differential equations coincide
with the cut-and-join equations found combinatorially in [2, 7]. The cut-and-join
equation for partial chord diagrams labeled by the boundary length and point
spectrum is determined in Theorem 3.11. Section 4 is devoted to the analysis of
non-oriented analogues of the results obtained in Section 2 and 3. In Subsection
4.1 we find real symmetric matrix models with external matrices, that encode
generating functions of both orientable and non-orientable partial chord diagrams.
The non-oriented analogue of the matrix integral from Theorem 2.13 is given in
Theorem 4.5. Non-oriented analogues of cut-and-join equations from Section 3
are determined in Theorem 4.10. In Appendix A we derive a partial differential
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equation from Proposition 4.7 for a real symmetric matrix integral with external
matrices. In Appendix B we prove Lemma 4.9.

2 Enumerating partial linear chord diagrams via

matrix models

The enumeration problem of partial chord diagrams with respect to the genus
filtration has been reformulated in terms of matrix integrals. Matrix model tech-
niques for enumeration of the RNA structures with pseudoknots have been devel-
oped in a series of papers [41, 56, 55], and independently in [4, 5, 6]. Subsequently
the analysis involving boundary point and length spectra of partial linear chord
diagrams has been conducted in [2, 7]. In this section we develop a new perspec-
tive on this problem and construct a matrix model that enumerates partial chord
diagrams labeled by the boundary length and point spectrum.

2.1 A matrix model enumerating partial chord diagrams

In the first step we construct a matrix model that counts partial chord diagrams
labeled by the boundary point spectrum {ni}.

Definition 2.1. Let Ng,k,l({bi}, {ni}, {pi}) denote the number of connected par-
tial chord diagrams of type {g, k, l; {bi}; {ni}; {pi}}. In particular, focusing on
the boundary point spectrum we define the following number of partial chord
diagrams characterized by the data {g, k, l; {bi}, {ni}},

Ng,k,l({bi}, {ni}) =
∑
{pi}

Ng,k,l({bi}, {ni}, {pi}).

We introduce the generating function3 for the numbers Ng,k,l({bi}, {ni})

F (x, y; {si}; {ti}) =
∑
b≥1

Fb(x, y; {si}; {ti}),

Fb(x, y; {si}; {ti}) =
1

b!

∑
∑

i bi=b

∑
{ni}

Ng,k,l({bi}, {ni})x2g−2yk
∏
i≥0

sbii t
ni
i .

(2.1)

The generating function for the numbers N̂k,b,l({bi}, {ni}) of connected and
disconnected partial chord diagrams arises in the usual way from the exponent

ZP(x, y; {si}; {ti}) = exp [F (x, y; {si}; {ti})]

=
∑
{bi}

∑
{ni}

N̂k,b,l({bi}, {ni})x−b+k−nyk
∏
i≥0

sbii t
ni
i .(2.2)

3The parameters si and ti in this article and in [2] are related by si ↔ ti.
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In the following we rewrite the generating function ZP(x, y; {si}; {ti}) as a Her-
mitian matrix integral. To this end, we consider first Gaussian averages over
Hermitian matrices.

Definition 2.2. Let O(M) be a function of a rank N Hermitian matrix M . The
Gaussian average ⟨O(M)⟩GN is defined by the integral over the space HN of rank
N Hermitian matrices with respect to the Haar measure dM with the Gaussian

weight e−NTrM
2

2 ,

⟨O(M)⟩GN =
1

VolN

∫
HN

dM O(M) e−NTrM
2

2 ,(2.3)

where the normalization factor VolN takes form

VolN =

∫
HN

dM e−NTrM
2

2 = NN(N+1)/2Vol(HN).(2.4)

In particular for O(M) = MαβMγϵ (α, β, γ, ϵ = 1, . . . , N), the Gaussian average is

MαβMγδ := ⟨MαβMγϵ⟩GN =
1

N
δαϵδβγ.(2.5)

This quantity is called the Wick contraction. By definition, a multiple Wick
contraction is a product of the Gaussian average of each Wick contracted pair.

It follows from the definition (2.3) that Gaussian averages of an odd number of
matrix elements vanish. On the other hand, Gaussian averages of an even number
of matrix elements are non-zero, and can be computed using the Wick theorem
[15, 43, 37], as we now recall. Consider an ordered sequence

Mα1β1Mα2β2 · · ·Mα2kβ2k

of 2k matrix elements Mαnβn (n = 1, . . . , 2k).
Let Pk denote a set of matchings by k Wick contractions among the 2k matrix

elements in the above sequence. Pk is isomorphic to the following quotient of
groups

Pk ≃ GH/GE, GH = S2k, GE = Sk ⋊ (S2)
k.

Here the elements of the permutation group S2k permute 2k matrix elements. The
factors Sk of GE act by permuting k Wick contractions and (S2)

k swaps matrix
elements in each Wick contracted pair. The Wick theorem implies the following
result.

Theorem 2.3. The Gaussian average of 2k matrix elements Mαnβn (n = 1, . . . , k)
equals

⟨Mα1β1Mα2β2 · · ·Mα2kβ2k
⟩GN =

∑
σ∈Pk

k∏
i=1

Mασ(2i−1)βσ(2i−1)
Mασ(2i)βσ(2i)

=
1

Nk

∑
σ∈Pk

k∏
i=1

δασ(2i−1)βσ(2i)
δασ(2i)βσ(2i−1)

.

(2.6)
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2.1.1 Chord diagrams and Wick contractions

Let c be a chord diagram. We now recall the explicit relation between a surface
Σc associated to a chord diagram c and k-matchings or Wick contractions in
the Gaussian average. To illustrate this correspondence we depict chord ends on
backbones in Σc as trivalent vertices that consist of upright and horizontal line
segments, see Figure 6. This correspondence is specified by the following four
points C1–C4.

... ... ...

βj+1 α
′

j′

δαjβ
′

j′
δα′

j′
βj

αiαjβ2 βj βi β′

j′
α2α1 β1

αj+1

MM M M M M

N∑

αj+1,βj=1

δβjαj+1
N

N∑

α1,βi=1

δβiα1

Figure 6: Bijective correspondence between chord diagrams and Wick contrac-
tions.

C1 A matrix element Mαβ corresponds to a chord end on a backbone. Indices
α, β(= 1, . . . , N) are assigned to two upright line segments on the upper
edge of the backbone.

C2 If two matrix elements Mαjβj
Mαj+1βj+1

correspond to two adjacent chord ends
on the same backbone, then the following quantity is assigned to the hor-
izontal segment between these two chord ends on the upper edge of the
backbone

N∑
αj+1,βj=1

δβjαj+1
.

This assignment encodes matrix multiplication of matrix elements corre-
sponding to adjacent chord ends on the backbone.

C3 For the product of i matrix elements M

N∑
α2,...,αi=1

N∑
β1,...,bi−1=1

Mα1β1δβ1α2Mα2β2 . . . δβi−1αi
Mαiβi

= (M i)α1βi
,
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which corresponds to a backbone with i chord ends, the following quantity
is assigned to the bottom edge of the backbone

N

N∑
α1,βi=1

δβiα1 .

Thus, a backbone with i chord ends corresponds to a single trace of the i’th
power of M , namely NTrM i.

C4 The Wick contraction between Mαjβj
and Mα′

j′β
′
j′

corresponds to a band

connecting two chord ends. Each Wick contraction imposes a constraint
δαjβ′

j′
δα′

j′βj
on matrix indices assigned to the edges of the chord ends matched

by the Wick contraction.

The above rules imply the following bijective correspondence

WC
N ({bi}) =

⟨∏
i

(
NTrM i

)bi⟩G

N
,

∑
i

ibi = 2k,(2.7)

between matchings by k Wick contractions in the Gaussian average on one hand,
and chord diagrams that consist of bi backbones with i chord ends on the other
hand, see Figure 7.

N

N∑

α1,α2,α3,α4=1

Mα1α2
Mα2α3

Mα3α4
Mα4α1

N

N∑

α1,α2,α3,α4=1

Mα1α2
Mα2α3

Mα3α4
Mα4α1

N

N∑

α1,α2,α3,α4=1

Mα1α2
Mα2α3

Mα3α4
Mα4α1

Figure 7: Chord diagrams and Wick contractions for ⟨NTrM4⟩GN.

The Wick contractions (2.6) in WC
N ({bi}) replace all matrix elements M ’s by

products of δ’s, and summing over matrix indices along a boundary cycle one
finds a factor of N corresponding to each boundary cycle in a chord diagram.
Therefore the overall N dependence following from the above rules amounts to
assigning N b−k+n factor to the term WC

N ({bi}), corresponding to a chord diagram
with backbone spectrum {bi} and n boundary cycles. Combing the Wick theorem
and this bijective correspondence between matchings by k Wick contractions in
the Gaussian average WC

N ({bi}) and the set of chord diagrams with backbone
spectrum {bi}, the following proposition follows.
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Proposition 2.4. The Gaussian average WC
N ({bi}) in equation (2.7) agrees with

the generating function of chord diagrams with backbone spectrum {bi}

WC
N ({bi}) =

∑
n≥0

N̂k,b,n({bi})N b−k+n.(2.8)

Here N̂k,b,n({bi}) is the number of chord diagrams that consist of bi backbones
with i trivalent vertices

N̂k,b,n({bi}) =
∑
{pi}

N̂k,b,l=0({bi}, n0 = n, {ni = 0}i≥1, {pi}).(2.9)

2.1.2 Partial chord diagrams and Wick contractions

We now generalize the above bijective correspondence to partial chord diagrams.
Let c be a partial chord diagram. On the boundary cycles of the surface Σc

we add additional marked points, which correspond to those marked points on
c which are not chord ends. These marked points are represented by external
matrices ΛP of rank N in the Gaussian average. The rules P1–P5 below provide
the correspondence between partial chord diagrams with backbone spectrum {bi}
and matchings with k Wick contractions in the Gaussian average.

P1 A matrix element Mαβ corresponds to a chord end on a backbone. The
graphical rule is the same as the rule C1.

P2 A matrix element ΛPαβ corresponds to a marked point on a backbone in Σc.
Indices α, β(= 1, . . . , N) are assigned to two upright line segments at each
marked point on the upper edge of the backbone, see Figure 8.

P3 To a line segment (on the upper edge of the backbone) between adjacent chord
ends or marked points (located on the same backbone), corresponding to
matrix elements Uαjβj

and Vαj+1βj+1
(for U, V = M or ΛP), we assign

N∑
βj ,αj+1=1

δβjαj+1
,(2.10)

just as in C2.

P4 Let vj, wj ∈ Z≥0 (j = 1, . . . , i) with
∑i

j=1(vj +wj) = i. For an ordered matrix
product

(M v1Λw1
P M v2Λw2

P · · ·M viΛwi
P )α1βi

,(2.11)

corresponding to a backbone which is an ordered sequence of vj chord ends
and wj marked points, we assign

N
N∑

α1,βi=1

δβiα1



Partial Chord Diagrams and Matrix Models 247

to the bottom edge of this backbone. It follows that the trace

NTr(M v1Λw1
P M v2Λw2

P · · ·M viΛwi
P )(2.12)

is assigned to this backbone.

P5 The Wick contraction between Mαjβj
and Mα′

j′β
′
j′

corresponds to a band con-

necting two chord ends, and it is represented in the same way as specified
in C4.

... ... ...

βj+1
αiαjβ2

βj βi
α2α1 β1 αj+1 α

′

j′ β′

j′

δαjβ
′

j′
δα′

j′
βj

MMMM

N

N∑

α1,βi=1

δβiα1

N∑

αj+1,βj=1

δβjαj+1

ΛPΛP

Figure 8: Bijective correspondence between partial chord diagrams and matchings
of Wick contractions

For a fixed backbone spectrum {bi}, all possible sequences {αj, βj} in the
expression (2.12) are generated by the following product of traces∏

i≥0

(
NTr(M + ΛP)i

)bi .(2.13)

Hence, by the above rules, all partial chord diagrams with the backbone spectrum
{bi} correspond bijectively to all matchings by Wick contractions among the M ’s
in the expansion of the Gaussian average

WP
N({bi}, {ri}) =

⟨∏
i≥0

(
NTr(M + ΛP)i

)bi⟩G

N
,(2.14)

where we introduced the reverse Miwa times

ri =
1

N
TrΛi

P.(2.15)
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If there are ni boundary components containing i marked points, then one
finds a trace factor (TrΛi

P)ni in the corresponding term in the Gaussian average
(2.14), see Figure 9. Therefore, for partial chord diagrams with the backbone
spectrum {bi} and the boundary point spectrum {ni}, the corresponding term in
WP

N({bi}, {ri}) contributes the factor

N b−k+n
∏
i≥0

rni
i .

N

N∑

α1,α2,α3,α4=1

Mα1α2
Mα2α3

ΛPα3α4
ΛPα4α1

= NTrΛ
2

P

N

N∑

α1,α2,α3,α4=1

Mα1α2
ΛPα2α3

Mα3α4
ΛPα4α1

= (TrΛP)
2

ΛPΛP

ΛPΛP

Figure 9: Partial chord diagrams of types {g = 0, k = 1, l = 2; b4 = 1;n0 =
1, n2 = 1} and {g = 0, k = 1, l = 2; b4 = 1;n1 = 2}, and the corresponding Wick
contractions.

Therefore, from Wick theorem and the above bijective correspondence be-
tween partial chord diagrams and matchings by Wick contractions, one finds the
following proposition.

Proposition 2.5. The Gaussian average (2.14) is the generating function for the

numbers N̂k,b,l({bi}, {ni}) of partial chord diagrams with the backbone spectrum
{bi} and the boundary point spectrum {ni}

WP
N({bi}, {ri}) =

∑
{ni}

N̂k,b,l({bi}, {ni})N b−k+n
∏
i≥0

rni
i ,(2.16)

where the summation is constrained by
∑

ini =
∑

ibi − 2k.

Using this proposition, we consider the full generating function ZP
N(y; {si}; {ri})

for the numbers N̂k,b,l({bi}, {ni}) of partial chord diagrams weighted by

N b−k+nyk
∏
i≥0

sbii r
ni
i .
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Since the contribution from a partial chord diagram is invariant under permuta-
tions of its backbones, the full generating function

ZP
N(y; {si}; {ri}) =

∑
{bi}

∑
{ni}

N̂k,b,l({bi}, {ni})N b−k+nyk
∏
i≥0

sbii r
ni
i

can be rewritten as a sum over all backbone spectra {bi} of the terms

y
∑

i ibi/2WP
N({bi}, {y−i/2ri})

∏
i

sbii
bi!

.

It follows that

ZP
N(y; {si}; {ri}) =

∑
{bi}

∏
i≥0

sbii y
ibi/2

bi!

⟨(
NTr(M + y−1/2ΛP)i

)bi⟩G

N
.

Performing the summation over bi’s, one finds that the full generating function is
given by the matrix integral

ZP
N(y; {si}; {ri}) =

=
1

VolN

∫
HN

dM exp

[
−NTr

(
M2

2
−

∑
i≥0

si(y
1/2M + ΛP)i

)]
.

(2.17)

This matrix integral and ZP(x, y; {si}; {ti}) in equation (2.2) are identified
by a change of variables. Since the reverse Miwa time for i = 0 yields r0 = 1
automatically, we need to introduce the parameter t0 by the following change of
variables

N → t0N, y → t0y, si → t−1
0 si, ri → t−1

0 ti.

As a result, we find the main theorem in this subsection.

Theorem 2.6. The generating function (2.2) is given by the matrix integral
(2.17),

(2.18) ZP(N−1, y; {si}; {ti}) = ZP
t0N

(t0y; {t−1
0 si}; {t−1

0 ti}).

2.2 A matrix model for the enumeration of chord diagrams

Next we turn to the enumeration of chord diagrams labeled by the backbone spec-
trum {bi} and the boundary length spectrum {pi}. The number Ng,k({bi}, {pi})
of connected chord diagrams is given by

Ng,k({bi}, {pi}) =
∑
{ni}

Ng,k,0({bi}, {ni}, {pi}).

We introduce the following generating function of these numbers4

4The parameters qi’s in our paper correspond to si’s in [2].
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Definition 2.7. Let G(x, y; {si}; {qi}) denote the generating function of chord
diagrams labeled by the boundary length spectrum

G(x, y; {si}; {qi}) =
∑
b≥1

Gb(x, y; {si}; {qi}),

Gb(x, y; {si}; {qi}) =
1

b!

∑
∑

bi=b

∑
{pi}

Ng,k({bi}, {pi})x2g−2yk
∏
i≥0

sbii
∏
i≥1

qpii .
(2.19)

In the same way as the generating function ZP(x, y; {si}; {ti}) in (2.2), the gen-

erating function for the numbers N̂k,b({bi}, {pi}) of connected and disconnected
chord takes form

ZL(x, y; {si}; {qi}) = exp [G(x, y; {si}; {qi})]

=
∑
{bi}

∑
{pi}

N̂k,b({bi}; {pi})x−b+k−nyk
∏
i≥0

sbii
∏
i≥1

qpii .(2.20)

2.2.1 A matrix model for the boundary length spectrum

Let c be a chord diagram. The boundary length spectrum filters chord diagrams
according to combinatorial length of each boundary cycle, i.e. the sum of the
number of chords and backbone underpasses. This length can be determined by
counting marked points of a new type, which we now introduce. We introduce
marked points of a new type between all chord ends and backbone ends, see the left
diagram in Figure 10. For chord diagram decorated in this way, we get new marked
points on the boundaries of the surface Σc by sliding each new marked point along
the boundary of Σc until it reaches the first chord or backbone underside midpoint,
as indicated in the right hand side of Figure 10.

Λ
−1

L
Λ
−1

L
Λ
−1

L
Λ
−1

L
Λ
−1

L

Figure 10: Decorating a chord diagram with new marked points for partitions.

In order to construct a Gaussian matrix integral which counts this type of
chord diagrams we introduce another external matrix ΛL, which is an invertible
rank N matrix that keeps track of new marked points. We introduce a new model
model based on the following rules L1–L5, in which Wick contractions in the
Gaussian average correspond bijectively to decorated chord diagrams.

L1 A matrix element Mαβ corresponds to a chord end on a backbone. This
graphical rule is the same as the rule C1.
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L2 A matrix element (Λ−1
L )αjβj

is adjacent to a matrix element Mαj+1βj+1
on an

upper edge of a backbone in Σc. Without loss of generality, we can put Λ−1
P ’s

on the left hand side of the M ’s. Indices αj, βj(= 1, . . . , N) are assigned to
two upright line segments nipping a marked point in the upper edge of the
backbone, see Figure 11.

L3 If two matrix elements Uαjβj
and Vαj+1βj+1

(U, V = M or Λ−1
L ) on the same

backbone are adjacent, we form a matrix product (UV )αjβj+1
. This graphical

rule is the same as the rule C2.

L4 If a matrix product

(Λ−1
L M)iα1βi

corresponds to a backbone with a marked point, we assign the expression

N
N∑

α1,βi=1

(Λ−1
L )α1βi

to the bottom edge of this backbone. This gives the contribution

NTr((Λ−1
L M)iΛ−1

L )

with i chord ends and therefore i + 1 new marked points.

L5 The Wick contraction between Mαjβj
and Mα′

j′β
′
j′

corresponds to a band con-

necting two chord ends. This graphical rule is the same as the rule C4.

... ... ...

βj+1αjβ2 βjα2α1 β1
αj+1

N∑

αj+1,βj=1

δβjαj+1

α
′

j′ β′

j′

M M M M

δαjβ
′

j′
δα′

j′
βj

N

N∑

αj+1,βj=1

Λ
−1

Lβ2iα1
α1

Λ
−1

L
Λ
−1

L
Λ
−1

L
Λ
−1

L

α2i−1 α2i β2iβ2i−1
α
′

j′−1 β′j′−1

β2i

Figure 11: Bijective correspondence between decorated chord diagrams and
matchings of Wick contractions.
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Repeating the same discussions as in the previous subsection, one finds that
every chord diagram with the backbone spectrum {bi} corresponds to matchings
with k =

∑
ibi/2 Wick contractions, which arise from the following Gaussian

average

W L
N({bi}; {qi}) =

⟨∏
i≥0

(
NTr(Λ−1

L M)iΛ−1
L

)bi⟩G

N
,(2.21)

where we introduced Miwa times

qi =
1

N
TrΛ−i

L .(2.22)

Λ
−1

L
Λ
−1

L Λ
−1

L
Λ
−1

L
Λ
−1

L

Λ
−1

L
Λ
−1

L Λ
−1

L
Λ
−1

L
Λ
−1

L

N

N∑

α1,...,α9=1

Λ
−1

Lα1α2
Mα2α3

Λ
−1

Lα3α4
Mα4α5

Λ
−1

Lα5α6
Mα6α7

Λ
−1

Lα7α8
Mα8α9

Λ
−1

Lα9α1
= N2q2q

2

1

N

N∑

α1,...,α9=1

Λ
−1

Lα1α2
Mα2α3

Λ
−1

Lα3α4
Mα4α5

Λ
−1

Lα5α6
Mα6α7

Λ
−1

Lα7α8
Mα8α9

Λ
−1

Lα9α1
= q5

Figure 12: Chord diagrams of types {g, k; {bi}; {pi}} = {0, 2; b5 = 1; p1 = 2, p3 =
1} and {g, k; {bi}; {pi}} = {1, 2; b5 = 1; p5 = 1}.

It follows from the rules L1–L5 that i Λ−1
L ’s are aligned along the boundary

cycle with length i. Therefore, for chord diagrams with the backbone spectrum
{bi} and the boundary length spectrum {pi}, the corresponding Wick contractions
in W L

N({bi}; {qi}) involve the factor

N b−k+n
∏
i≥1

qpii ,

see Figure 12. The key proposition of this subsection follows.

Proposition 2.8. The Gaussian average W L
N({bi}; {qi}) in eq.(2.21) is the gener-

ating function of the numbers N̂k,b({bi}, {pi}) of chord diagrams with the backbone
spectrum {bi}

W L
N({bi}; {qi}) =

∑
{pi}

N̂k,b({bi}, {pi})N b−k+n
∏
i≥1

qpii .(2.23)
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We also consider the full generating function for the numbers N̂k,b({bi}, {pi})
of chord diagrams

ZL
N(y; {si}; {qi}) =

∑
{bi}

∑
{pi}

N̂k,b({bi}, {pi})N b−k+nyk
∏
i≥0

sbii
∏
i≥1

qpii .

This full generating function is given by the sum of Gaussian averages (2.21), and
in consequence by the following Hermitian matrix integral

ZL
N(y; {si}; {qi}) =

∑
{bi}

1∏
i bi!

ykW L
N({bi}, {y−ibi/2qi})

∏
i

sbii

=
1

VolN

∫
HN

dM exp

[
−NTr

(
M2

2
−

∑
i≥0

siy
i/2

(
Λ−1

L M
)i

Λ−1
L

)]
.

(2.24)

Comparing this matrix integral and the generating function ZL
N(y; {si}; {qi}) in

equation (2.20), we arrive at the main theorem of this subsection.

Theorem 2.9. The matrix integral (2.24) agrees with the generating function
(2.20)

ZL
N(y; {si}; {qi}) = ZL(N−1, y; {si}; {qi}).(2.25)

Specialization of the model

The cut-and-join equation for the numbers of chord diagrams is discussed in Sub-
section 3.2. For technical reasons, the partial differential equation for the gener-
ating function (2.20) with general parameter {si} cannot be written in a simple
form. Therefore we consider the specialization of the generating function (2.20)
defined by5

si = s.

Under this specialization, the matrix integral (2.24) reduces to

ZL
N(y; s; {qi}) = ZL

N(y; {si = s}; {qi})

=
1

VolN

∫
HN

dM exp

[
−NTr

(
M2

2
− s

1 − y1/2Λ−1
L M

Λ−1
L

)]
.

(2.26)

For ZL(x, y; s; {qi}) = ZL(x, y; {si = s}; {qi}), we find

ZL
N(y; s; {qi}) = ZL(N−1, y; s; {qi}).(2.27)

In Subsection 3.2 we derive the cut-and-join equation for this specialized model,
and show the agreement with the cut-and-join equation found by combinatorial
means in [2].

5In [2], the length spectrum generating functionGb(x, y; {si}) is the same as in this specialized
model.
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2.3 The boundary length and point spectrum and the uni-
fied model

So far we have discussed separately the enumeration of chord diagrams and par-
tial chord diagrams labeled by the boundary point spectrum and the boundary
length spectrum. In this subsection we consider a unification of these two kinds
of spectra, which is referred to as the boundary length and point spectrum. This
unified spectrum was introduced and analyzed by cut-and-join methods in [7]. In
what follows we construct a matrix model that encodes this new spectrum, and
in Subsection 3.3 we show how the cut-and-join equation found in [7] follows from
this matrix model.

Figure 13: Decorating a partial chord diagram with the boundary label iii =
(1, 0, 1, 4, 2) with marked points for partitions.

The boundary length and point spectrum {niii} is defined as follows [7].

Definition 2.10. Let c be a partial chord diagram. We associate the K tuple of
numbers iii = (i1, i2, . . . , iK) to a boundary component of Σc, if we find the tuple
iii of marked points around this boundary component, once we record different
numbers of marked points in between chord ends and backbone underpasses along
the boundary in the cyclic order induced from the orientation of Σc. The boundary
length and point spectrum {niii} counts the number of boundary cycles indexed
by iii for the partial chord diagram c.

To enumerate the number of partial chord diagrams labeled by {g, k, l; {bi}; {niii}},
we consider the generating functions introduced in [7].

Definition 2.11. Let Ng,k,l({bi}, {niii}) denote the number of connected chord di-
agrams labeled by the set of parameters (g, k, l; {bi}; {niii}) in the boundary length
and point spectrum. The generating function for these numbers is defined as

F(x, y; {si}; {uiii}) =
∑
b≥1

Fb(x, y; {si}; {uiii}),

Fb(x, y; {si}; {uiii}) =
1

b!

∑
∑

i bi=b

∑
{niii}

Ng,k,l({bi}, {niii})x2g−2yk
∏
i≥0

sbii
∏
K≥1

∏
{iL}KL=1

uniii
iii .

(2.28)
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Exponentiating this generating function, one obtains the full generating function
for the numbers N̂k,b,l({bi}, {niii}) of partial chord diagrams

Z(x, y; {si}; {uiii}) = exp [F(x, y; {si}; {uiii})]

=
∑
{bi}

∑
{niii}

N̂k,b,l({bi}, {niii})x−b+k−nyk
∏
i≥0

sbii
∏
K≥1

∏
{iL}KL=1

uniii
iii ,(2.29)

where l, k, and b obey

l =
∑
K≥1

∑
{iL}KL=1

K∑
L=1

iLn(i1,...,iK), 2k + l =
∑
i≥1

ibi, b =
∑
i≥0

bi.

The enumeration of partial chord diagrams decorated by the boundary length
and point spectrum can also be expressed in terms of Gaussian averages over
Hermitian matrices. To this end we again make use of extra marked points, just
as in the previous section (concerning the length spectrum to mark the separation
between marked points on the backbone, counted by the index iii), see Figure
13. Indeed, the boundary length and point spectrum also encodes the length
spectrum, simply as the number K of partitions of marked points on boundary
cycles.

To represent the boundary length and point spectrum, we introduce two ex-
ternal matrices ΛP and ΛL. In order to faithfully represent the ordering between
marked points and partitions on each boundary cycle, we assume that these two
external matrices do not commute

[ΛP,ΛL] ̸= 0.

The correspondence between partial chord diagrams with the backbone spectrum
{bi} and matchings by Wick contractions in a Gaussian average is given by a com-
bination of the previous rules C1, C2, P2, L2, P4, L4, and L5. We summarize
this correspondence in Table 1.

Table 1: The correspondence between partial chord diagrams with the backbone
spectrum {bi} and matchings by Wick contractions in the Gaussian average.

A partial chord diagram Gaussian average

A chord end on a backbone Λ−1
L M

A marked point on a backbone ΛP

An underside of a backbone NΛ−1
L

A backbone NTr
(
Λ−1

L Λα1
P Λ−1

L Λα2
P Λ−1

L · · ·ΛαK
P Λ−1

L

)
A chord Wick contraction MM
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Based on these rules, one finds a bijective correspondence between partial
chord diagrams with the backbone spectrum {bi} and matchings by Wick con-
tractions in the Gaussian average

WN({bi}; {uiii}) =
⟨∏

i≥0

(
NTr(Λ−1

L M + ΛP)iΛ−1
L

)bi⟩G

N
,(2.30)

where in order to represent trace factors ΛP and ΛL we introduced the generalized
Miwa times

u(i1,...,iK) =
1

N
Tr

(
Λi1

PΛ−1
L Λi2

PΛ−1
L · · ·ΛiK

P Λ−1
L

)
.(2.31)

If a partial chord diagram c contains a boundary cycle labeled by iii = (i1, . . . , iK),
one finds the following trace factor in the corresponding Wick contractions in
WN({bi}; {uiii})

Tr
(
Λi1

PΛ−1
L Λi2

PΛ−1
L · · ·ΛiK

P Λ−1
L

)
.

Finally, combining Propositions 2.5 and 2.8, we obtain the key proposition.

Proposition 2.12. The Gaussian average WN({bi}; {uiii}) in the equation (2.30)

is the generating function for the numbers N̂k,b,l({bi}, {niii}) of partial chord dia-
grams

WN({bi}; {uiii}) =
∑
{niii}

N̂k,b,l({bi}, {niii})N b−k+n
∏
K≥1

∏
{iL}KL=1

uniii
iii .(2.32)

Repeating the same combinatorics as in the previous subsections, we find the
main theorem of this section.

Theorem 2.13. The Hermitian matrix integral

ZN(y; {si}; {uiii}) =

=
1

VolN

∫
dM exp

[
−NTr

(
M2

2
−
∑
i≥0

si(y
1/2Λ−1

L M + ΛP)iΛ−1
L

)]
(2.33)

agrees with the generating function (2.29)

ZN(y; {si}; {uiii}) = Z(N−1, y; {si}; {uiii}).(2.34)

3 Cut-and-join equations via matrix models

In Section 2 we discussed matrix models that enumerate partial chord diagrams
filtered by the boundary point spectrum, the boundary length spectrum, and the
boundary length and point spectrum. In this section we derive partial differential
equations for these matrix models, and show that they agree with the cut-and-
join equations found in [2, 7]. To derive these differential equations, it is useful to
introduce the following matrix integral.
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Definition 3.1. Let A and B denote invertible matrices of rank N . We define
a formal matrix integral with parameters y, {gi}+∞

i=−∞, and matrices A and B, as
follows

ZN(y; {gi};A;B) =

=
1

VolN

∫
HN

dM exp

[
−NTr

(
1

2
M2 −

∑
i∈Z

gi(y
1/2B−1M + A)iB−1

)]
.

(3.1)

By the following specializations of this matrix integral one finds matrix inte-
grals discussed in Section 2

ZP
N(y; {si}; {ri}) : gi<0 = 0, gi≥0 = si, A = ΛP, B = IN ,

ZL
N(y; {si}; {qi}) : gi<0 = 0, gi≥0 = si, A = 0, B = ΛL,

ZL
N(y; s; {qi}) : gi̸=−1 = 0, g−1 = −s, A = ΛL, B = −IN ,

ZN(y; {si}; {uiii}) : gi<0 = 0, gi≥0 = si, A = ΛP, B = ΛL,

where IN is the rank N identity matrix.
The matrix integral (3.1) satisfies the following partial differential equation.

Proposition 3.2. The matrix integral ZN(y; {gi};A;B) obeys a partial differen-
tial equation

(3.2)

[
∂

∂y
− 1

2N
Tr(B−1)T

∂

∂A
(B−1)T

∂

∂A

]
ZN(y; {gi};A;B) = 0,

where the trace in the second term is defined, for rank N matrices X and Y , as

TrX
∂

∂Y
=

N∑
α,β=1

Xαβ
∂

∂Yβα

.

Proof. By a shift M = X − y−1/2BA, the matrix integral (3.1) can be rewritten
as

ZN(y; {gi};A;B) =

=
1

VolN

∫
H̃N

dX exp

[
−NTr

(
1

2
(X − y−1/2BA)2 −

∑
i∈Z

yi/2gi(B
−1X)iB−1

)]
.

(3.3)

Here H̃N is the space of shifted matrices X = M + y−1/2BA with M ∈ HN . The
invariance of this matrix integral under the infinitesimal scaling Xαβ → (1+ϵ)Xαβ

leads to a constraint equation

(3.4)

⟨
N2 −NTrX2 + y−1/2NTrBAX + N

∑
i∈Z

iyi/2giTr(B−1X)iB−1

⟩
= 0,
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where the first term N2 comes from the measure factor, as dX → (1 + N2ϵ)dX.
Here we have defined the unnormalized average for an observable O(X)

⟨O(X)⟩ =

∫
H̃N

dX O(X) exp

[
−NTr

(
1

2
(X−y−1/2BA)2−

∑
i∈Z

yi/2gi(B
−1X)iB−1

)]
.

Using

1

N
y1/2

N∑
γ=1

(B−1)Tβγ
∂

∂Aγα

ZN(y; {gi};A;B) =

⟨
Xαβ − y−1/2N

N∑
γ=1

BαγAγβ

⟩
,

1

N

∂

∂gi
ZN(y; {gi};A;B) = yi/2

⟨
Tr(B−1X)iB−1

⟩
,

one finds that the constraint equation (3.4) yields[
− 1

N
yTr(B−1)T

∂

∂A
(B−1)T

∂

∂A
− TrAT ∂

∂A
+
∑
i∈Z

igi
∂

∂gi

]
ZN(y; {gi};A;B) = 0.

It follows from (3.3) that the last two derivatives in the expression above can be
replaced by 2y∂/∂y, so that the partial differential equation (3.2) is obtained.

Remark 3.3. In the above proof of the constraint equation (3.4) we considered
the infinitesimal scaling Xαβ → (1 + ϵ)Xαβ. More generally, matrix integral (3.3)
is invariant under infinitesimal shifts

Xαβ −→ Xαβ + ϵ(Xn+1)αβ, n = −1, 0, 1, . . . .

It is known that for the matrix integral without external matrices A and B this
symmetry yields the Virasoro symmetry, and in particular the scaling Xαβ →
(1 + ϵ)Xαβ is related to the Virasoro generator LVir

0 [22, 19].6

3.1 The boundary point spectrum

In Subsection 2.1 we showed that the matrix integral ZP
N(y; {si}; {ri}) in (2.17)

ZP
N(y; {si}; {ri}) =

=
1

VolN

∫
HN

dM exp

[
−NTr

(
M2

2
−
∑
i≥0

siy
i/2(M + y−1/2ΛP)i

)]
,

enumerates partial chord diagrams labeled by the boundary point spectrum. By
the specialization

gi<0 = 0, gi≥0 = si, A = ΛP, B = IN = identity matrix,

6In [33, 18], the Schwinger-Dyson approach to the enumeration of chord diagrams is also
discussed.
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of the matrix integral ZN(y; {gi};A;B) in (3.1) we see that

(3.5) ZN(y; si<0 = 0, {si}i≥0; ΛP; IN) = ZP
N(y; {si}; {ri}),

where the reverse Miwa times ri are defined in (2.15). From (3.2) we obtain the
partial differential equation satisfied by ZP

N(y; {si}; {ri}).

Corollary 3.4. The matrix integral ZP
N(y; {si}; {ri}) obeys the partial differential

equation

(3.6)

[
∂

∂y
− 1

2N
Tr

∂2

∂Λ2
P

]
ZP

N(y; {si}; {ri}) = 0.

This corollary implies the following theorem.

Theorem 3.5. Let L0 and L2 be the differential operators7

L0 =
1

2

∑
i≥2

i−2∑
j=0

irjri−j−2
∂

∂ri
,

L2 =
1

2

∑
i≥2

i−1∑
j=1

j(i− j)ri−2
∂2

∂ri∂ri−j

.

(3.7)

The matrix integral ZP
N(y; {si}; {ri}) obeys the cut-and-join equation

∂

∂y
ZP

N(y; {si}; {ri}) = LZP
N(y; {si}; {ri}),(3.8)

where

L = L0 +
1

N2
L2.

The formal solution of this cut-and-join equation, which gives the matrix integral
ZP

N(y; {si}; {ri}), is iteratively determined from the initial condition at y = 0,

ZP
N(y; {si}; {ri}) = eyLZP

N(0; {si}; {ri}) = eyLeN
2
∑

i≥0 siri .(3.9)

This theorem follows from the lemma below by rewriting the derivative Tr∂2/∂Λ2
P

in the partial differential equation (3.6).

Lemma 3.6. For a function f({ri}) of the reverse Miwa times ri, the derivative
Tr∂2/∂Λ2

P can be rewritten as

1

2N
Tr

∂2

∂Λ2
P

f({ri}) =

(
L0 +

1

N2
L2

)
f({ri}).(3.10)

7In [36] the differential operators L0 and L2 were denoted by W (3).
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Proof. Consider the derivative ∂/∂ΛPβα of ri,

∂ri
∂ΛPβα

=
i

N
Λi−1

Pαβ, Tr
∂2ri
∂Λ2

P

= iN
i−2∑
j=0

rjri−j−2.

Then the derivative Tr∂2/∂Λ2
P of the function f({ri}) is re-expressed as

1

2N
Tr

∂2

∂Λ2
P

f({ri}) =
1

2N

∑
i≥0

Tr
∂2ri
∂Λ2

P

∂f({ri})

∂ri
+

1

2N

∑
i,j≥0

N∑
α,β=1

∂ri
∂ΛPβα

∂rj
∂ΛPαβ

∂2f({ri})

∂ri∂rj

=
1

2

∑
i≥2

i−2∑
j=0

irjri−j−2
∂f({ri})

∂ri
+

1

2N2

∑
i,j≥1

ijri+j−2
∂2f({ri})

∂ri∂rj
.

This coincides with the right hand side of (3.10).

The cut-and-join equation for the rescaled matrix integral (2.18) yields

∂

∂y
ZP

t0N
(t0y; {t−1

0 si}; {t−1
0 ti}) = LZP

t0N
(t0y; {t−1

0 si}; {t−1
0 ti}),(3.11)

where L is given by

L = L0 + x2L2, x = N−1,

L0 =
1

2

∑
i≥2

i−2∑
j=0

itjti−j−2
∂

∂ti
, L2 =

1

2

∑
i≥2

i−1∑
j=1

j(i− j)ti−2
∂2

∂ti∂ti−j

.
(3.12)

This cut-and-join equation agrees with the partial differential equation in Theorem
1 of [2], where it was proven combinatorially by the recursion relation for the
number of partial chord diagrams.8 This completes the proof of Theorem 2.6.

3.2 The boundary length spectrum

In Subsection 2.2 we showed that the matrix integral ZL
N(y; {si}; {qi}) in (2.24)

enumerates chord diagrams labeled by the boundary length spectrum. By the
specialization

gi<0 = 0, gi≥0 = si, A = 0, B = ΛL,

of the matrix integral ZN(y; {gi};A;B) in (3.1) we see that

(3.13) ZN(y; si<0 = 0, {si}i≥0; 0; ΛL) = ZL
N(y; {si}; {qi}),

where the Miwa times qi are defined in equation (2.22).

8For the Grothendieck’s dessin counting, a similar cut-and-join equation was found in [27].
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Obviously, for A = 0 the partial differential equation (3.2) does not hold.
Instead we consider the matrix integral (2.26) obtained by the specialization si = s

ZL
N(y; s; {qi}) =

1

VolN

∫
HN

dM exp

[
−NTr

(
M2

2
+

s

y1/2M − ΛL

)]
.

The same matrix integral can be obtained by the specialization

gi̸=−1 = 0, g−1 = −s, A = ΛL, B = −IN ,

and thus

(3.14) ZN(y; si = −δi,−1; ΛL;B = −IN) = ZL
N(y; s; {qi}).

Then from (3.2) we obtain a partial differential equation for ZL
N(y; s; {qi}).

Corollary 3.7. The matrix integral ZL
N(y; s; {qi}) obeys the partial differential

equation

(3.15)

[
∂

∂y
− 1

2N
Tr

∂2

∂Λ2
L

]
ZL

N(y; s; {ri}) = 0.

This corollary implies the following theorem.

Theorem 3.8. Let K0 and K2 be the differential operators

K0 =
1

2

∑
i≥3

i−1∑
j=1

(i− 2)qjqi−j
∂

∂qi−2

,

K2 =
1

2

∑
i≥2

i−1∑
j=1

j(i− j)qi+2
∂2

∂qi∂qi−j

.

(3.16)

The matrix integral ZL
N(y; s; {qi}) obeys the cut-and-join equation

∂

∂y
ZL

N(y; s; {qi}) = KZL
N(y; s; {qi}),(3.17)

where

K = K0 +
1

N2
K2.

The formal solution of this cut-and-join equation, which gives the matrix integral
ZL

N(y; s; {qi}), is iteratively determined from the initial condition at y = 0,

ZL
N(y; s; {qi}) = eyKZL

N(y = 0; s; {qi}) = eyKeN
2sq1 .(3.18)
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The cut-and-join equation (3.17) was combinatorially proven in Theorem 2 of
[2] for the generating function ZL(x, y; s; {qi}) in (2.19), and thus Theorem 2.9 for
si = s is reproved.

The claim of Theorem 3.8 is proven by rewriting the derivative Tr∂2/∂Λ2
L in

the partial differential equation (3.15) using the following lemma.

Lemma 3.9. For a function g({qi}) of the Miwa times {qi}, the derivative Tr∂2/∂Λ2
L

can be rewritten as follows

1

2N
Tr

∂2

∂Λ2
L

g({qi}) =

(
K0 +

1

N2
K2

)
g({qi}).(3.19)

Proof. By acting ∂/∂ΛL on the Miwa time qi one obtains

∂qi
∂ΛLαβ

= − i

N
Λ−i−1

Lβα , Tr
∂2qi
∂Λ2

L

= iN
i+1∑
j=1

qjqi−j+2.

Adopting this relation via the chain rule applied to the ΛL derivatives, one finds
that

1

2N
Tr

∂2g({qi})

∂Λ2
L

=
1

2N

∑
i≥0

Tr
∂2qi
∂Λ2

L

∂g({qi})

∂qi
+

1

2N

∑
i,j≥0

N∑
α,β=1

∂qi
∂ΛLαβ

∂qj
∂ΛLβα

∂2g({qi})

∂qi∂qj

=
1

2

∑
i≥1

iqjqi−j+2
∂g({qi})

∂qi
+

1

2N2

∑
i,j≥1

ijqi+j+2
∂2g({qi})

∂qi∂qj
.

This coincides with the right hand side of (3.19).

3.3 The boundary length and point spectrum

In Subsection 2.3 we showed that the matrix integral ZN(y; {si}; {uiii}) in (2.29)

ZN(y; {si}; {uiii}) =

=
1

VolN

∫
HN

dM exp

[
−NTr

(
M2

2
−
∑
i≥0

si(y
1/2Λ−1

L M + ΛP)iΛ−1
L

)]
enumerates partial chord diagrams labeled by the boundary length and point
spectrum. By the specialization

gi<0 = 0, gi≥0 = si, A = ΛP, B = ΛL,

of the matrix integral ZN(y; {gi};A;B) in (3.1) we see that

(3.20) ZN(y; si<0 = 0, {si}i≥0; ΛP; ΛL) = ZN(y; {si}; {uiii}),
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where the generalized Miwa times u(i1,...,iK) are defined in (2.31)

u(i1,...,iK) =
1

N
Tr

(
Λi1

PΛ−1
L Λi2

PΛ−1
L · · ·ΛiK

P Λ−1
L

)
.

From (3.2) we obtain a partial differential equation for ZN(y; {si}; {uiii}).

Corollary 3.10. The matrix integral ZN(y; {si}; {uiii}) obeys the partial differen-
tial equation

(3.21)

[
∂

∂y
− 1

2N
Tr(Λ−1

L )T
∂

∂ΛP

(Λ−1
L )T

∂

∂ΛP

]
ZN(y; {si}; {uiii}) = 0.

This corollary implies the following main theorem of this section.

Theorem 3.11. Let M0 and M2 be the following differential operators with respect
to parameters uiii

M0 =
1

2

∑
K≥1

∑
{i1,...,iK}

∑
1≤I ̸=M≤K

iI−1∑
ℓ=0

iM−1∑
m=0

u(iI−ℓ−1,iI+1,...,iM−1,m)u(iM−m−1,iM+1,...,iI−1,ℓ)
∂

∂u(i1,...,iK)

+
∑
K≥1

∑
{i1,...,iK}

K∑
I=0

∑
ℓ+m≤iI−2

u(ℓ,m,iI+1,...,iI−1)u(iI−ℓ−m−2)
∂

∂u(i1,...,iK)

,

M2 =
1

2

∑
K,L≥0

∑
{i1,...,iK}

∑
{j1,...,jL}

K∑
I=0

L∑
J=0

iI−1∑
ℓ=0

jJ−1∑
m=0

u(iI−ℓ−1,iI+1,...,iI−1,ℓ,jJ−m−1,jJ+1,...,jJ−1,m)
∂2

∂u(i1,...,iK)∂u(j1,...,jL)

,

(3.22)

where labels I,M ’s are defined modulo K, and the label J is defined modulo L.
The matrix integral ZN(y; {si}; {uiii}) obeys the cut-and-join equation

∂

∂y
ZN(y; {si}; {uiii}) = MZN(y; {si}; {uiii}),(3.23)

where

M = M0 +
1

N2
M2.

The formal solution of this cut-and-join equation, which gives the matrix integral
ZN(y; {si}; {uiii}), is iteratively determined from the initial condition at y = 0,

ZN(y; {si}; {uiii}) = eyMZN(y = 0; {si}; {uiii}) = eyMeN
2
∑

i≥0 siu(i) .(3.24)
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The partial differential equation (3.23) agrees with the cut-and-equation ob-
tained combinatorially in Theorem 1.1 of [7]. Here we prove this theorem by
rewriting the derivative in the second term of the partial differential equation
(3.21), taking advantage of the following lemma.

Lemma 3.12. For a function h({uiii}) of the generalized Miwa times uiii, the deriva-
tive in the second term of the partial differential equation (3.21) can be rewritten
as follows

1

2N
Tr

[
(Λ−1

L )T
∂

∂ΛP

(Λ−1
L )T

∂

∂ΛP

]
h({uiii}) =

(
M0 +

1

N2
M2

)
h({uiii}).(3.25)

Proof. By the chain rule, the derivative on the left hand side of (3.25) is rewritten
as follows

Tr

[
(Λ−1

L )T
∂

∂ΛP

(Λ−1
L )T

∂

∂ΛP

]
h({uiii}) =

=
∑
K≥0

∑
(i1,...,iK)

Tr

[
(Λ−1

L )T
∂

∂ΛP

(Λ−1
L )T

∂

∂ΛP

u(i1,...,iK)

]
∂

∂u(i1,...,iK)

h({uiii})

+
∑

K,L≥0

∑
(i1,...,iK)

∑
(j1,...,jL)

Tr

[
(Λ−1

L )T
∂

∂ΛP

u(i1,...,iK)(Λ
−1
L )T

∂

∂ΛP

u(j1,...,jL)

]

× ∂2

∂u(i1,...,iK)∂u(j1,...,jL)

h({uiii}).

Each of the coefficients yields

Tr

[
(Λ−1

L )T
∂

∂ΛP

(Λ−1
L )T

∂

∂ΛP

u(i1,...,iK)

]
=

=
∑

1≤I ̸=M≤K

iI−1∑
ℓ=0

iM−1∑
m=0

1

N
Tr(ΛiI−ℓ−1

P Λ−1
L Λ

iI+1

P Λ−1
L · · ·ΛiM−1

P Λ−1
L Λm

P Λ−1
L )

× Tr(ΛiM−m−1
P Λ−1

L Λ
iM+1

P Λ−1
L · · ·ΛiI−1

P Λ−1
L Λℓ

PΛ−1
L )

+ 2
K∑

L=0

∑
ℓ+m≤iI−2

1

N
Tr(Λℓ

PΛ−1
L Λm

P Λ−1
L Λ

iI+1

P Λ−1
L · · ·ΛiL−1

P Λ−1
L )Tr(ΛiI−ℓ−m−2

P Λ−1
L )

= N
∑

1≤I ̸=M≤K

iI−1∑
ℓ=0

iM−1∑
m=0

u(iI−ℓ−1,iI+1,...,iM−1,m)u(iM−m−1,iM+1,...,iI−1,ℓ)

+ 2N
K∑

L=0

∑
ℓ+m≤iI−2

u(ℓ,m,iI+1,...,iI−1)u(iI−ℓ−m−2),

and

Tr

[
(Λ−1

L )T
∂

∂ΛP

u(i1,...,iK)(Λ
−1
L )T

∂

∂ΛP

u(j1,...,jL)

]
=
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=
K∑
I=1

L∑
J=1

iI−1∑
ℓ=0

jJ−1∑
m=0

1

N2
Tr(ΛiI−ℓ−1

P Λ−1
L Λ

iI+1

P Λ−1
L · · ·ΛiI−1Λ−1

L Λℓ
PΛ−1

L

· ΛjJ−m−1
P Λ−1

L Λ
jJ+1

P Λ−1
L · · ·ΛjJ−1

P Λ−1
L Λm

P Λ−1
L )

=
1

N

K∑
I=1

L∑
J=1

iI−1∑
ℓ=0

jJ−1∑
m=0

u(iI−ℓ−1,iI+1,...,iI−1,ℓ,jJ−m−1,jJ+1,...,jJ−1,m).

In this way one obtains the right hand side of (3.25).

As a corollary of Theorem 3.11, one finds the cut-and-join equation for the
1-backbone generating function.9

Corollary 3.13. The 1-backbone generating function F1(x, y; {si}; {uiii}) obtained
by picking up the O(s1i ) terms in ZN(y; {si}; {uiii}) as follows

F1(N
−1, y; {si}; {uiii})

=
1

VolN

∫
HN

dM e−NTrM
2

2 N
∑
i≥0

siTr(y1/2Λ−1
L M + ΛP)iΛ−1

L ,
(3.26)

obeys the cut-and-join equation

∂

∂y
F1(x, y; {si}; {uiii}) = MF1(x, y; {si}; {uiii}),(3.27)

where M = M0 + x2M2. The solution is iteratively determined by

F1(x, y; {si}; {uiii}) = eyMF1(x, y = 0; {si}; {uiii}) = eyM
(
x−2

∑
i≥0

siu(i)

)
.(3.28)

4 Non-oriented analogues

In this section we consider the enumeration of both orientable and non-orientable
(jointly called non-oriented) partial chord diagrams [2, 7]. To this end we general-
ize the matrix models introduced in Section 2. In Subsection 4.1, matrix models for
the boundary point spectrum, the boundary length spectrum, and the boundary
length and point spectrum are introduced, based on the corresponding Gaussian
matrix integrals over the space of rank N real symmetric matrices. Subsequently,
in Subsection 4.2, we derive cut-and-join equations for the generating functions of
non-oriented partial chord diagrams, using analogous methods as those discussed
in Section 3.

9For ΛL = IN (or si = s and ΛP = 0) the cut-and-join equation for the 1-backbone generating
function labeled by the boundary point spectrum (or boundary length spectrum) was proven
combinatorially in [2].
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4.1 Non-oriented analogues of the matrix models

In this subsection we generalize matrix models found in Section 2, in order to
enumerate both orientable and non-orientable partial chord diagrams [2, 7].

Definition 4.1. Let Ñh,k,l({bi}, {ni}, {pi}) denote the number of connected non-
oriented partial chord diagrams of type {h, k, l; {bi}; {ni}; {pi}}. Analogously as
in the orientable case, we define

Ñh,k,l({bi}, {ni}) =
∑
{pi}

Ñh,k,l({bi}, {ni}, {pi}),

Ñh,k({bi}, {pi}) =
∑
{ni}

Ñh,k,l=0({bi}, {ni}, {pi}),

and introduce generating functions

F̃ (x, y; {si}; {ti}) =
∑
b≥1

F̃b(x, y; {si}; {ti}),

F̃b(x, y; {si}; {ti}) =
1

b!

∑
∑

i bi=b

∑
{ni}

Ñh,k,l({bi}, {ni})xh−2yk
∏
i≥0

sbii t
ni
i ,

(4.1)

and

G̃(x, y; {si}; {qi}) =
∑
b≥1

G̃b(x, y; {si}; {qi}),

G̃b(x, y; {si}; {qi}) =
1

b!

∑
∑

i bi=b

∑
{pi}

Ñh,k({bi}, {pi})xh−2yk
∏
i≥0

sbii
∏
i≥1

qpii .
(4.2)

Generating functions of connected and disconnected partial chord diagrams are
related by

Z̃P(x, y; {si}; {ti}) = exp
[
F̃ (x, y; {si}; {ti})

]
,(4.3)

Z̃L(x, y; {si}; {qi}) = exp
[
G̃(x, y; {si}; {qi})

]
.(4.4)

Furthermore, we introduce generating functions of non-oriented partial chord
diagrams labeled by the boundary length and point spectrum.

Definition 4.2. Let Ñh,k,l({bi}, {niii}) denote the number of connected orientable
and non-orientable partial chord diagrams of type {h, k, l; {bi}; {niii}} with the
boundary length and point spectrum niii. We define the generating functions

F̃(x, y; {si}; {uiii}) =
∑
b≥1

F̃b(x, y; {si}; {uiii}),

F̃b(x, y; {si}; {uiii}) =
1

b!

∑
∑

i bi=b

∑
{niii}

Ñh,k,l({bi}, {niii})xh−2yk
∏
i≥0

sbii
∏
K≥1

∏
{iL}KL=1

uniii
iii .

(4.5)
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As usual, generating functions of connected and disconnected partial chord dia-
grams are related by

Z̃(x, y; {si}; {uiii}) = exp
[
F̃(x, y; {si}; {uiii})

]
.(4.6)

Non-oriented analogue of partial chord diagrams and Wick contractions

A non-oriented partial chord diagram is a partial chord diagrams with each chord
decorated by a binary variable, which indicates if it is twisted or not. Such
non-oriented partial chord diagrams are enumerated by real symmetric10 matrix
integrals. The Gaussian average ⟨O(M)⟩G̃N over the space HN(R) of real symmetric
matrices is defined by

⟨O(M)⟩G̃N =
1

VolN(R)

∫
HN (R)

dM O(M) e−NTrM
2

4 ,(4.7)

where

VolN(R) =

∫
HN (R)

dM e−NTrM
2

4 = NN(N+1)/2Vol(HN(R)),(4.8)

For the choice of O(M) = MαβMγϵ (α, β, γ, ϵ = 1, . . . , N), the Wick contraction
is defined as

MαβMγϵ := ⟨MαβMγϵ⟩G̃N =
1

N
(δαϵδβγ + δαγδβϵ).(4.9)

This Wick contraction consists of two terms, which encode the corresponding
fatgraph as follows. The first term 1

N
δαϵδβγ is the same as in the Hermitian

matrix integral (2.5), and it can be identified with an untwisted band in the two
dimensional surface Σc associated to the partial chord diagram c. The second
term 1

N
δαγδβϵ in (4.9) relates opposite matrix indices compared to the first term

and can be identified with the twisted band in Σc, see Figure 14. Hence, for the
real symmetric Gaussian average, the correspondence rules C4, P5, L5 in Section
2 are replaced by the following rules [24, 54, 52, 26, 39, 23].

N5 The Wick contraction between Mαjβj
and Mα′

j′β
′
j′

corresponds to a band or a

twisted band connecting two chord ends. Each Wick contraction imposes ei-
ther the constraint δαjβ′

j′
δα′

j′βj
or the constraint δαjα′

j′
δβjβ′

j′
for matrix indices

assigned to edges of chord ends matched by Wick contractions.

In order to construct matrix models that enumerate non-oriented partial chord
diagrams, we introduce two external real symmetric matrices matrices ΩP and ΩL

ΩP = ΩT
P, ΩL = ΩT

L ,

10The Gaussian matrix integral over the space of real symmetric matrix is also referred to as
the Gaussian orthogonal ensemble [21, 35].
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+α

β γ

ǫ α

β γ

ǫ

MαβMγǫ =
1

N
(δαǫδβγ + δαγδβǫ)

Figure 14: Wick contraction and the untwisted / twisted bands.

which take account of the fact that boundary cycles of non-oriented partial chord
diagrams are not endowed with a specific orientation. To model the index struc-
ture iii of the boundary length and point spectrum correctly, we assume these two
matrices do not commute

[ΩP,ΩL] ̸= 0.

Furthermore, we introduce corresponding generalized Miwa times

u(i1,...,iK) =
1

N
Tr

(
Ωi1

PΩ−1
L Ωi2

PΩ−1
L · · ·ΩiK

P Ω−1
L

)
,(4.10)

which are invariant under the symmetry

u(i1,...,iK) = u(iK ,iK−1,...,i1).

This assignment implies the bijective correspondence (analogous to the orientable
case discussed earlier) between non-oriented partial chord diagrams and Wick
contractions, which is summarized in Table 2.

Table 2: The correspondence between partial chord diagrams and operator prod-
ucts in the real symmetric matrix integral.

Partial chord diagram Gaussian average

A chord end on a backbone Ω−1
L M

A marked point on a backbone ΩP

An underside of a backbone NΩ−1
L

A backbone NTr
(
Ωα1

P Ω−1
L Ωα2

P Ω−1
L · · ·ΩαK

P Ω−1
L

)
A Chord A Wick contraction MM

Using this correspondence, generating functions Z̃P(x, y; {si}; {ri}), Z̃L(x, y; {si}; {qi}),

and Z̃(x, y; {si}; {uiii}) can be re-expressed in terms of matrix integrals. Repeat-
ing the same combinatorial arguments as for the orientable case in Section 2, we
obtain the following three theorems.
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Theorem 4.3. Let Z̃P
N(y; {si}; {ri}) be the real symmetric matrix integral with

the external symmetric matrix ΩP of rank N

Z̃P
N(y; {si}; {ri}) =

=
1

VolN(R)

∫
HN (R)

dM exp

[
−NTr

(
M2

4
−

∑
i≥0

siy
i/2(M + y−1/2ΩP)i

)]
,

(4.11)

where ri are reverse Miwa times

ri =
1

N
TrΩi

P.(4.12)

This matrix integral agrees with the generating function (4.3)

Z̃P
N(y; {si}; {ri}) = Z̃P(N−1, y; {si}, t0 = 1, {ti = ri}i≥1).(4.13)

The t0-dependence can be implemented by the following rescaling of parameters

Z̃P
t0N

(t0y; {t−1
0 si}; {t−1

0 ti}) = Z̃P(N−1, y; {si}; {ti = ri}).(4.14)

Theorem 4.4. Let Z̃L
N(y; {si}; {qi}) be the real symmetric matrix integral with

the external invertible symmetric matrix ΩL of rank N

Z̃L
N(y; {si}; {qi}) =

=
1

VolN(R)

∫
HN (R)

dM exp

[
−NTr

(
M2

4
−

∑
i≥0

siy
i/2

(
Ω−1

L M
)i

Ω−1
L

)]
,(4.15)

where qi are Miwa times

qi =
1

N
TrΩ−i

L .(4.16)

This matrix integral agrees with the generating function (4.4)

Z̃L
N(y; {si}; {qi}) = Z̃L(N−1, y; {si}; {qi}).(4.17)

As considered in (2.26) and Subsection 3.2, the specialization si = s of the
matrix integral (4.15) gives the following reduced model

Z̃L
N(y; s; {qi}) = Z̃L

N(y; {si = s}; {qi}) =

=
1

VolN(R)

∫
HN (R)

dM exp

[
−NTr

(
M2

4
+

s

y1/2M − ΩL

)]
.(4.18)

The cut-and-join equation that follows from this reduced model is derived in the
next subsection.
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Theorem 4.5. Let Z̃N(y; {si}; {uiii}) be the real symmetric matrix integral with
the external invertible symmetric matrices ΩP and ΩL of rank N

Z̃N(y; {si}; {uiii}) =

=
1

VolN(R)

∫
HN (R)

dM exp

[
−NTr

(
M2

4
−
∑
i≥0

si(y
1/2Ω−1

L M + ΩP)iΩ−1
L

)]
,

(4.19)

and uiii be the generalized Miwa times defined in (4.10). This matrix integral agrees
with the generating function (4.6)

Z̃N(y; {si}; {uiii}) = Z̃(N−1, y; {si}; {uiii}).(4.20)

4.2 Non-oriented analogues of cut-and-join equations

We derive now non-oriented analogues of cut-and-join equations discussed in Sec-
tion 3. Analogously to the Hermitian matrix integral in (3.1), we introduce the
following matrix integral.

Definition 4.6. Let U = UT and V = V T be rank N invertible symmetric
matrices. We define a formal real symmetric matrix integral with parameters y,
{gi}+∞

i=−∞ as follows

Z̃N(y; {gi};U ;V ) =

=
1

VolN(R)

∫
HN (R)

dM exp

[
−NTr

(
1

4
M2 −

∑
i∈Z

gi(y
1/2V −1M + U)iV −1

)]
.

(4.21)

The matrix integrals discussed in the previous subsection follow from this
matrix integral by specializations

Z̃P
N(y; {si}; {ri}) : gi<0 = 0, gi≥0 = si, U = ΩP, V = IN ,(4.22)

Z̃L
N(y; {si}; {qi}) : gi<0 = 0, gi≥0 = si, U = 0, V = ΩL,(4.23)

Z̃L
N(y; s; {qi}) : gi ̸=−1 = 0, g−1 = −s, U = ΩL, V = −IN ,(4.24)

Z̃N(y; {si}; {uiii}) : gi<0 = 0, gi≥0 = si, U = ΩP, V = ΩL,(4.25)

where IN is the rank N identity matrix.
In Appendix A we prove the following proposition.

Proposition 4.7. The matrix integral Z̃N(y; {gi};U ;V ) in (4.21) obeys the partial
differential equation

(4.26)

[
∂

∂y
− 1

4N
Tr(V −1)T

∂

∂A
(V −1)T

∂

∂A

]
Z̃N(y; {gi};U ;V ) = 0,
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where A is a matrix such that

U = A + AT.

From this proposition and by the specializations (4.22), (4.24), and (4.25) we
find partial differential equations for the corresponding matrix integrals. For the
specialization (4.23), because of U = 0 (and thus A = 0), the partial differential
equation (4.26) cannot be reduced to a partial differential equation.

Corollary 4.8. The matrix integral Z̃P
N(y; {si}; {ri}) in (4.11), Z̃L

N(y; s; {qi}) in

(4.18) and Z̃N(y; {si}; {uiii}) in (4.19) obey partial differential equations[
∂

∂y
− 1

4N
Tr

∂2

∂Λ2
P

]
Z̃P

N(y; {si}; {ri}) = 0,[
∂

∂y
− 1

4N
Tr

∂2

∂Λ2
L

]
Z̃L

N(y; s; {qi}) = 0,[
∂

∂y
− 1

4N
Tr(Ω−1

L )T
∂

∂ΛP

(Ω−1
L )T

∂

∂ΛP

]
Z̃N(y; {si}; {uiii}) = 0,

(4.27)

where ΛP and ΛL are matrices satisfying

ΩP = ΛP + ΛT
P, ΩL = ΛL + ΛT

L .

From this corollary we obtain non-oriented analogues of cut-and-join equa-
tions, by rewriting the derivatives with respect to the external matrices ΛP and
ΛL in Corollary 4.8 in terms of Miwa times ri in (4.12), qi in (4.16), and uiii in
(4.10) as follows.

Lemma 4.9. Let L1, K1, M1, and M∨
2 denote differential operators

L1 =
1

2

∑
i≥1

i(i + 1)ri
∂

∂ri+2

,(4.28)

K1 =
1

2

∑
i≥3

(i− 2)(i− 1)qi
∂

∂qi−2

,(4.29)

M1 =
1

2

∑
K≥1

∑
{i1,...,iK}

∑
1≤I ̸=M≤K

iI−1∑
ℓ=0

iM−1∑
m=0

u(m,iM−1,iM−2,...,iI+1,iI−ℓ−1,iM−m−1,iM+1,...,iI−1,ℓ)
∂

∂u(i1,...,iK)

+
∑
K≥1

∑
{i1,...,iK}

K∑
L=1

∑
ℓ+m≤iI−2

u(ℓ,iI−ℓ−m−2,m,iI+1,...,iI−1)
∂

∂u(i1,...,iK)

,

(4.30)
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and

M∨
2 =

1

2

∑
K,L≥1

∑
{i1,...,iK}

∑
{j1,...,jL}

K∑
I=1

L∑
J=1

iI−1∑
ℓ=0

jJ−1∑
m=0

u(ℓ,iI−1,...,iI+1,iI−ℓ−1,jJ−m−1,jJ+1,...,jJ−1,m)
∂2

∂u(i1,...,iK)∂u(j1,...,jL)

.

(4.31)

Then the derivatives with respect to ΛP and ΛL in Corollary 4.8 are rewritten as

1

4N
Tr

∂2

∂Λ2
P

f({ri}) =

(
L0 +

1

N
L1 +

2

N2
L2

)
f({ri}),

1

4N
Tr

∂2

∂Λ2
L

g({qi}) =

(
K0 +

1

N
K1 +

2

N2
K2

)
g({qi}),

1

4N
Tr

[
(Ω−1

L )T
∂

∂ΛP

(Ω−1
L )T

∂

∂ΛP

]
h({uiii})

=

(
M0 +

1

N
M1 +

1

N2

(
M2 + M∨

2

))
h({uiii}),

(4.32)

where f({ri}), g({qi}), and h({uiii}) are functions of Miwa times ri, qi, and uiii,
respectively. Here L0,2, K0,2, and M0,2 are defined in (3.7), (3.16), and (3.22),
respectively.

The proof of this lemma is given in Appendix B. By combining Corollary 4.8
with Lemma 4.9 one arrives at the following theorem.

Theorem 4.10. The matrix integrals Z̃P
N(y; {si}; {ri}) in (4.11), Z̃L

N(y; s; {qi})

in (4.18), and Z̃N(y; {si}; {uiii}) in (4.19) obey the cut-and-join equations

∂

∂y
Z̃P

N(y; {si}; {ri}) = L̃Z̃P
N(y; {si}; {ri}),

∂

∂y
Z̃L

N(y; s; {qi}) = K̃Z̃L
N(y; s; {qi}),

∂

∂y
Z̃N(y; {si}; {uiii}) = M̃Z̃N(y; {si}; {uiii}),

(4.33)

where

L̃ = L0 +
1

N
L1 +

2

N2
L2,

K̃ = K0 +
1

N
K1 +

2

N2
K2,

M̃ = M0 +
1

N
M1 +

1

N2

(
M2 + M∨

2

)
.
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Assuming certain initial conditions at y = 0, one can iteratively determine the
above matrix integrals by solving the cut-and-join equations

Z̃P
N(y; {si}; {ri}) = eyL̃Z̃P

N(y = 0; {si}; {ri}) = eyL̃eN
2
∑

i≥0 siri ,

Z̃L
N(y; s; {qi}) = eyK̃Z̃L

N(y = 0, s; {qi}) = eyK̃eN
2sq1 ,

Z̃N(y; {si}; {uiii}) = eyM̃Z̃N(y = 0; {si}; {uiii}) = eyM̃e−N2
∑

i≥0 siu(i) .

(4.34)

The cut-and-join equations (4.33) agree with those of [2, 7]. Finally, from
Theorem 4.10 we find non-oriented analogues of cut-and-join equations for 1-
backbone generating functions.

Corollary 4.11. The 1-backbone generating function F̃1(x, y; {si}; {uiii}) obtained

by picking up the O(s1i ) term in Z̃N(y; {si}; {uiii}) is given by the following matrix
integral

F̃1(N
−1, y; {si}; {uiii}) =

=
1

VolN(R)

∫
HN (R)

dM e−NTrM
2

4 N
∑
i≥0

siTr(y1/2Ω−1
L M + ΩP)iΩ−1

L ,
(4.35)

and it obeys the cut-and-join equation

∂

∂y
F̃1(x, y; {si}; {uiii}) = M̃F̃1(x, y; {si}; {uiii}),(4.36)

where M̃ = M0 + xM1 + x2
(
M2 +M∨

2

)
. The solution is iteratively determined by

F̃1(x, y; {si}; {uiii}) = eyM̃F̃1(x, y = 0; {si}; {uiii}) = eyM̃
(
x−2

∑
i≥0

siu(i)

)
.(4.37)
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A Proof of Proposition 4.7

In this appendix we prove the Proposition 4.7, which states that the matrix inte-
gral

Z̃N(y; {gi};U ;V ) =

=
1

VolN(R)

∫
HN (R)

dM exp

[
−NTr

(
1

4
M2 −

∑
i∈Z

gi(y
1/2V −1M + U)iV −1

)]
,

obeys the partial differential equation

(A.1)

[
∂

∂y
− 1

4N
Tr(V −1)T

∂

∂A
(V −1)T

∂

∂A

]
Z̃N(y; {gi};U ;V ) = 0,

where A is a matrix that satisfies U = A + AT.

Proof. In order to differentiate the matrix integral Z̃N(y; {gi};U ;V ) with respect
to A we use the identities

∂Uαβ

∂Aγϵ

= δαγδβϵ + δαϵδβγ,

∂(y1/2V −1X)−1
αβ

∂Aγϵ

= −(y1/2V −1X)−1
αγ (y1/2V −1X)−1

βϵ − (y1/2V −1X)−1
αϵ (y1/2V −1X)−1

βγ ,

where X = M + y−1/2V U . Using this shifted variable X one obtains

1

2N

∂

∂Aαβ

Z̃N(y; {gi};U ;V ) =

⟨ ∞∑
i=0

y(i−1)/2gi

i−1∑
j=0

(
(V −1X)jV −1(V −1X)i−j−1

)
αβ

−
∞∑
i=1

y−(i+1)/2g−i

i−1∑
j=0

(
(V −1X)−j−1V −1(V −1X)−i+j

)
αβ

⟩
R
,

where ⟨· · · ⟩R denotes the unnormalized average

⟨O(X)⟩R =

∫
H̃N (R)

dX O(X) exp

[
−NTr

(
1

4
(X−y−1/2V U)2−

∑
i∈Z

yi/2gi(V
−1X)iV −1

)]
.

Here H̃N(R) is the space of shifted matrices X = M +y−1/2V U with M ∈ HN(R).
It follows that

1

2N2
Tr(V −1)T

∂

∂A
(V −1)T

∂

∂A
Z̃N(y; {gi};U ;V ) =

=

⟨ ∞∑
i=0

y−1/2gi

i−1∑
j=0

Tr(X − y−1/2V U)V −1(y1/2V −1X)jV −1(y1/2V −1X)i−j−1
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−
∞∑
i=1

y−1/2g−i

i−1∑
j=0

Tr(X − y−1/2V U)V −1(y1/2V −1X)−j−1V −1(y1/2V −1X)−i+j

⟩
R
.

(A.2)

On the other hand, by differentiating the matrix integral Z̃N(y; {gi};U ;V ) with
respect to y one obtains the same expression as (A.2) times N/2, from which the
partial differential equation (A.1) is obtained.

B Proof of Lemma 4.9

In this appendix we prove the Lemma 4.9, which states that for functions f({ri}),
g({qi}), and h({uiii}) of Miwa times ri in (4.12), qi in (4.16), and uiii in (4.10), we
find

1

4N
Tr

∂2

∂Λ2
P

f({ri}) =

(
L0 +

1

N
L1 +

2

N2
L2

)
f({ri}),(B.1)

1

4N
Tr

∂2

∂Λ2
L

g({qi}) =

(
K0 +

1

N
K1 +

2

N2
K2

)
g({qi}),(B.2)

1

4N
Tr

[
(Ω−1

L )T
∂

∂ΛP

(Ω−1
L )T

∂

∂ΛP

]
h({uiii})

=

(
M0 +

1

N
M1 +

1

N2

(
M2 + M∨

2

))
h({uiii}),

(B.3)

where L0,1,2, K0,1,2, M0,1,2, and M∨
2 are defined in (3.7), (3.16), (3.22), and in

Lemma 4.9. Here the matrices ΛP and ΛL satisfy ΩP = ΛP+ΛT
P and ΩL = ΛL+ΛT

L .

Proof. First we prove (B.1). Consider the derivative ∂/∂ΛP of the reverse Miwa
time ri

∂ri
∂ΛPβα

=
2i

N
Ωi−1

Pαβ, Tr
∂2ri
∂Λ2

P

= 2Ni

i−1∑
j=1

rj−1ri−j−1 + 2i(i− 1)ri−2.

Using these relations the left hand side of (B.1) is rewritten as

1

4N
Tr

∂2

∂Λ2
P

f({ri}) =
1

4N

∑
i≥1

Tr
∂2ri
∂Λ2

P

∂f({ri})

∂ri
+

1

4N

∑
i,j≥1

Tr
∂ri
∂ΛP

∂rj
∂ΛP

∂2f({ri})

∂ri∂rj

=
1

2

∑
i≥2

i−1∑
j=1

irj−1ri−j−1
∂f({ri})

∂ri
+

1

2N

∑
i≥2

i(i− 1)ri−2
∂f({ri})

∂ri

+
1

N2

∑
i,j≥1

ijri+j−2
∂

∂ri

∂

∂rj
f({ri}).
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This agrees with the right hand side of (B.1).
Second, we prove (B.2). Using the identity

∂Ω−1
Lγϵ

∂ΛLαβ

= −Ω−1
LβϵΩ

−1
Lγα − Ω−1

LαϵΩ
−1
Lγβ,

one finds that

∂qi
∂ΛLαβ

= −2
i

N
Ω−i−1

Lβα , Tr
∂2

∂Λ2
L

qi = 2i(i + 1)qi+2 + 2iN
i∑

j=0

qi+1qj+1.

Then the left hand side of (B.2) yields

1

4N
Tr

∂2

∂Λ2
L

g({qi}) =
1

2

∑
i≥1

i∑
j=0

iqi+1qj+1
∂g({qi})

∂qi
+

1

2N

∑
i≥1

i(i + 1)qi+2
∂g({qi})

∂qi

+
1

N2

∑
i,j≥1

ijqi+j+2
∂2g({qi})

∂qi∂qj
.

This agrees with the right hand side of (B.2).
Finally we prove (B.3). Using the chain rule, the derivative action on the left

hand side of (B.3) is written as

Tr

[
(Ω−1

L )T
∂

∂ΛP

(Ω−1
L )T

∂

∂ΛP

]
h({uiii}) =

=
∑
K≥1

∑
{i1,...,iK}

Tr

[
(Ω−1

L )T
∂

∂ΛP

(Ω−1
L )T

∂

∂ΛP

u(i1,...,iK)

]
∂

∂u(i1,...,iK)

h({uiii})

+
∑

K,L≥1

∑
{i1,...,iK}

∑
{j1,...,jL}

Tr

[
(Ω−1

L )T
∂

∂ΛP

u(i1,...,iK)(Ω
−1
L )T

∂

∂ΛP

u(j1,...,jL)

]

× ∂2

∂u(i1,...,iK)∂u(j1,...,jL)

h({uiii}).

Each of the coefficients yields

Tr

[
(Ω−1

L )T
∂

∂ΛP

(Ω−1
L )T

∂

∂ΛP

u(i1,...,iK)

]
=

= 2
K∑

1≤I ̸=M≤K

iI−1∑
ℓ=0

iM−1∑
m=0

1

N

(
Tr(ΩiI−ℓ−1

P Ω−1
L Ω

iI+1

P Ω−1
L · · ·ΩiM−1

P Ω−1
L Ωm

P Ω−1
L )

× Tr(ΩiM−m−1
P Ω−1

L Ω
iM+1

P Ω−1
L · · ·ΩiI−1

P Ω−1
L Ωℓ

PΩ−1
L )

+ Tr(Ωm
P Ω−1

L Ω
iM−1

P Ω−1
L Ω

iM−2

P Ω−1
L · · ·ΩiI+1

P Ω−1
L ΩiI−ℓ−1

P Ω−1
L )

· ΩiM−m−1
P Ω−1

L Ω
iM+1

P Ω−1
L Ω

iM+2

P Ω−1
L · · ·ΩiI−1

P Ω−1
L Ωℓ

PΩ−1
L )

)
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+ 4
K∑
I=1

∑
ℓ+m≤iI−2

( 1

N
Tr(Ωℓ

PΩ−1
L Ωm

P Ω−1
L Ω

iI+1

P Ω−1
L · · ·ΩiI−1

P Ω−1
L )Tr(ΩiI−ℓ−m−2

P Ω−1
L )

+ Tr(Ωℓ
PΩ−1

L Ωm
P Ω−1

L ΩiI−ℓ−m−2
P Ω−1

L Ω
iI+1

P Ω−1
L · · ·ΩiI−1

P Ω−1
L )

)
= 2

∑
1≤I ̸=M≤K

iI−1∑
ℓ=0

iM−1∑
m=0

(
Nu(iI−ℓ−1,iI+1,...,iM−1,m)u(iM−m−1,iM+1,...,iI−1,ℓ)

+ u(m,iM−1,iM−2...,iI+1,iI−ℓ−1,iM−m−1,iM+1,...,iI−1,ℓ)

)
+ 4

K∑
I=0

∑
ℓ+m≤iI−2

(
Nu(ℓ,m,iI+1,...,iI−1)u(iI−ℓ−m−2) + u(ℓ,iI−ℓ−m−2,m,iI+1,...,iI−1)

)
,

and

Tr

[
(Ω−1

L )T
∂

∂ΛP

u(i1,...,iK)(Ω
−1
L )T

∂

∂ΛP

u(j1,...,jL)

]
=

=
K∑
I=1

L∑
J=1

iI−1∑
ℓ=0

jJ−1∑
m=0

2

N2

(
Tr(ΩiI−ℓ−1

P Ω−1
L Ω

iI+1

P Ω−1
L · · ·ΩiI−1Ω−1

L Ωℓ
PΩ−1

L

· ΩjJ−m−1
P Ω−1

L Ω
jJ+1

P Ω−1
L · · ·ΩjJ−1

P Ω−1
L Ωm

P Ω−1
L )

+ Tr(Ωℓ
PΩ−1

L Ω
iI−1

P Ω−1
L · · ·ΩiI+1Ω−1

L ΩiI−ℓ−1
P Ω−1

L

· ΩjJ−m−1
P Ω−1

L Ω
jJ+1

P Ω−1
L · · ·ΩjJ−1

P Ω−1
L Ωm

P Ω−1
L )

)
=

2

N

K∑
I=1

L∑
J=1

iI−1∑
ℓ=0

jJ−1∑
m=0

(
u(iI−ℓ−1,iI+1,...,iI−1,ℓ,jJ−m−1,jJ+1,...,jJ−1,m)

+ u(ℓ,iI−1,...,iI+1,iI−ℓ−1,jJ−m−1,jJ+1,...,jJ−1,m)

)
.

Then one obtains the right hand side of (B.3).
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