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Geometric recursion

Jørgen Ellegaard Andersen1, Gaëtan Borot2, Nicolas Orantin3

Abstract

We propose a general theory whose main component are functorial assignments

Σ↦ ΩΣ ∈ E(Σ),

for a large class of functors E from a certain category of bordered surfaces (Σ’s) to a suitable a target
category of topological vector spaces. The construction is done by summing appropriate compositions
of the initial data over all homotopy classes of successive excisions of embedded pair of pants. We
provide sufficient conditions to guarantee these infinite sums converge and as a result, we can generate
mapping class group invariant vectors ΩΣ which we call amplitudes. The initial data encode the
amplitude for pair of pants and tori with one boundary, as well as the “recursion kernels” used for
glueing. We give this construction the name of “geometric recursion”, abbreviated GR.

As an illustration, we show how to apply our formalism to various spaces of continuous functions
over Teichmüller spaces, as well as Poisson structures on the moduli space of flat connections. The
theory has a wider scope than that and one expects that many functorial objects in low-dimensional
geometry and topology should have a GR construction.

The geometric recursion has various projections to topological recursion (TR) and we in particular
show it retrieves all previous variants and applications of TR. We also show that, for any initial data
for topological recursion, one can construct initial data for GR with values in Frobenius algebra-valued
continuous functions on Teichmüller space, such that the ωg,n of TR are obtained by integration of
the GR amplitudes over the moduli space of bordered Riemann surfaces and Laplace transform with
respect the boundary lengths. In this regard, the structure of the Mirzakhani-McShane identities
served as a prototype of GR.
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1 Introduction

1.1 The geometric recursion

In this article, we develop a machinery to construct functorial assignments

Σ↦ ΩΣ ∈ E(Σ),

from a certain category of bordered surfaces to a target E that needs to be specified together with a
small amount of initial data. The target should be a functor from our category of bordered surfaces
to a category enriched in vector spaces, together with natural maps handling union and glueing of
surfaces. This construction is compatible with natural transformation of targets. We propose to call
it “geometric recursion”, hereafter GR.

The differential geometry of Teichmüller spaces provides fundamental examples of targets studied in
the present article: E(Σ) can be the space of functions and sections of natural bundles on Teichmüller
space of Σ or even sections of conformal blocks attached to a given two-dimensional conformal field
theory viewed as bundles over Teichmüller spaces. To mention an example of a different kind, we also
construct targets from the differential geometry of moduli spaces of flat connections and in fact also
geometric objects on such which depends on points in Teichmüller space of the same surface. One can
easily imagine a wealth of other geometric structures attached to surfaces which fit in this framework.
Other examples of natural candidates for being interesting targets are given by the space of smooth
functions, differential forms and cohomology classes, distributions, etc. on Teichmüller spaces but are
left for future work.

The functoriality of GR in particular means that E(Σ) carries a representation of the mapping
class group Γ(Σ), and that ΩΣ is a Γ(Σ)-invariant element of E(Σ), which we call the “GR amplitude”.
The construction of ΩΣ is achieved by recursively defining GR amplitudes as a sum over excisions of
homotopy classes of embedded pairs of pants from Σ. The main difficulty is to show that these infinite
sums make sense at each step of the recursion. We provide axioms on the target and the initial data
ensuring it is so. Then, functoriality is a direct consequence of the naturality of the construction and
the fact that the sum contains all mapping class group translates. The first applications described in
Chapter 2 should convince the reader that these axioms are tractable. Our construction is axiomatic,
and its effectivity depends on three inputs: (1) the construction of a target in which GR will take
values; (2) making the sufficient conditions of admissibility of initial data explicit – i.e. ensuring GR
makes sense; (3) the explicit computation of the infinite sums, at least for surfaces of low genus/number
of boundaries. We explore (1) and (2) in various geometric settings, and we will only briefly touch on
(3) for tori with one boundary and four-holed spheres, for now.

We also propose a “strict” version of the geometric recursion, where the source category only
knows about the topology of bordered surfaces – and not about mapping classes. The structure of
this category is purely combinatorial. It has finitely many objects indexed by (g, n), where g has the
meaning of a genus, n of the number of boundary components, and the automorphism group only
permutes the boundary components. Objects are glued in a naive way, e.g. one can glue (g1,1 + n1)
to (g2,1 + n2) to get (g1 + g2, n1 + n2). Given a strict target theory and a limited amount of initial
data, the strict GR amplitudes are defined recursively on 2g − 2 + n. They are expressed at the end
of the induction by finite sums over fatgraphs of genus g with n leaves. Natural transformations
from target theories to strict target theories – which therefore forget a lot of information – intertwine
GR and strict GR. The reader can keep in mind the following basic example: the target theory
is the space of continuous functions on Teichmüller space, the strict target theory is the space of
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continuous functions on the boundary lengths, and the natural transformation is the integration over
a fundamental domain for the mapping class group in the Teichmüller space of surfaces with fixed
boundary lengths. As other examples we have in mind, let us mention functions on Teichmüller space
valued in a Frobenius algebra, in a modular functor, in a modular operad, etc.

1.2 A geometric interpretation to the topological recursion

Our initial motivation to develop the geometric recursion was the quest for a refinement of the topo-
logical recursion of Eynard and Orantin [23], which would incorporate the geometry of surfaces and
could be sensitive to geometric structures such as cohomology classes, metrics, connections, etc. Ey-
nard and the third author already observed that the Mirzakhani-McShane identities hinted at the
existence of such a formalism, and [25] first attempted to interpret the topological recursion in terms
of glueing of surfaces. The identities in question were proved in [39, 40] using hyperbolic geometry and
express the constant function 1 on Teichmüller space of a surface Σ as a sum over homotopy classes
of embedded pairs of pants in Σ. Integrating this identity over the moduli space implies Mirzakhani’s
famous recursion on the Weil-Petersson volumes of the moduli space of bordered surfaces, by induction
on the Euler characteristic of Σ. Eynard and the third author [24] showed by a Laplace transform
computation that the recursion on volumes is equivalent to the topological recursion of [23] (hereafter
called TR) for the initial data

x(z) = z
2

2
, y(z) = sin(2πz)

2π
, ω0,2(z1, z2) =

dz1 dz2

(z1 − z2)2
. (1)

In general, TR is a machinery which produces, for any (g, n) such that χg,n = 2g − 2 + n > 0, certain
generating series of numbers ωg,n called “correlation functions”, by induction on χg,n. With suitable
choices of initial data, TR has many applications in enumerative geometry (topological strings, map
enumeration, Hurwitz theory, etc.), knot theory, random matrices, etc. In geometric situations, g and
n then receive the respective meaning of the genus and the number of boundaries/punctures of a surface
– for instance, for a suitable initial data ωg,n is a generating series for genus g triangulations with n
boundaries. However, from the definition of TR one feels that its geometric meaning is missing. The
TR formula has finitely many terms which are in bijection with the mapping class group orbits of the
set of homotopy class of embedded pairs of pants in a surface of genus g with n boundaries, the same set
which appears in the Mirzakhani-McShane identities. However, in the latter and therefore in TR for
Weil-Petersson volumes, each of these terms has a clear meaning, directly provided by the hyperbolic
geometry of the embedded pair of pants and the behaviour of geodesics hitting the boundaries. But
for the general framework of TR, this correspondence has remained artificial until now. We also
remark that TR usually generates numerical invariants (enumeration of surfaces, volumes of moduli
spaces, intersection numbers of cohomology classes in cohomological field theories, etc.) only sensitive
to boundary information concerning surfaces of genus g with n punctures. The space to which the
TR amplitude belong essentially depends on n only.

The strict GR is a generalisation of TR to allow richer glueing maps: the space to which the strict
GR amplitudes belong can depend on g and n – like in modular operads. GR itself is much finer, as
it is based on a category of bordered surfaces in which automorphism groups are the mapping class
groups. We find that any initial data of TR can be lifted to an initial data for the GR corresponding
to Frobenius algebra-valued continuous functions over Teichmüller spaces, such that integrating the
GR amplitudes over the moduli space retrieves the TR amplitudes after a Laplace transform in the
boundary lengths. In the example of (1), this is exactly the mechanism by which the Mirzakhani-
McShane identities relate to TR for the Weil-Petersson volumes.
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1.3 What should be initial data for the geometric recursion?

Let us introduce and comment on our point of view on initial data. Kontsevich and Soibelman recently
reformulated TR (hereafter KS-TR) as a quantisation procedure for a Lagrangian subvariety L defined
by quadratic equations in a (possibly infinite-dimensional) symplectic vector spaceW equipped with a
Lagrangian subspace V tangent to L at 0 [37]. The numerical invariants encoded by the TR amplitudes
are then collected into a partition function (also called “wave function”) Z, defined as a germ of function
in V near 0 which is annihilated by a system of at most quadratic differential operators L̂ forming a
Lie algebra and quantising L. The perturbative resolution of L̂ ⋅Z = 0 with

Z(x) = exp (∑
g,n

h̵g−1

n!
Fg,n(x, . . . , x)), Fg,n ∈ (V ⊗n)∗,

directly leads to the structure of the TR formula for Fg,n. The TR formalism of [23] takes as initial
data a spectral curve and it can be embedded in the KS-TR formalism where it corresponds to the
case where the Lie algebra is (a direct sum of copies of) the positive part of the Witt algebra. The
KS-TR formalism is more general in the sense that the Lie algebra is not bound to be related to the
Witt algebra. The initial data of KS-TR is the family of operators L̂, whose coefficients are encoded
into four tensors (A,B,C,D). The requirement that L̂ forms a Lie algebra implies that L̂ ⋅Z = 0 has
non-zero solutions, and it amounts to complete symmetry of A and four quadratic relations involving
(A,B,C,D). The role of these tensors in KS-TR is that A = Fg=0,n=3, D = Fg=1,n=1 determine the
cases χg,n = 1, while B and C intervene in the recursion relation for χg,n > 1. The five relations
between (A,B,C,D) can be used to prove inductively the complete symmetry of Fg,n defined by the
KS-TR formula. We noticed in [2] that three of these relations look like coupled IHX-relations, again
suggesting the existence of a hidden geometric meaning.

To formulate GR, we find the notion of KS-TR initial data more convenient to adapt than
the notion of spectral curve. The initial data for GR therefore consists of functorial elements
A,B,C ∈ E(Σ0,3) and D ∈ E(Σ1,1). A (respectively D) will represent the amplitude of a pair of
pants (respectively, of a torus with one boundary). We do not need to impose any algebraic relation
between (A,B,C,D) for GR to make sense. The counterpart is that ΩΣ depends on the choice of
a distinguished boundary of Σ, a feature which we pass on the choice of our category of surfaces so
that morphisms respect the distinguished boundary. On the other hand, it is possible to treat all
boundaries in a symmetric way and work with the corresponding category of surfaces. We call this
construction “symmetric GR”. The initial data (A,B,C,D) for symmetric GR must satisfy an analog
of the four quadratic relations appearing in KS-TR. These relations are now geometric in nature. For
instance, the H, I, and X terms in each of H-I-X relations represent one mapping class group orbit
of the decomposition of a four-holed sphere into two pairs of pants. These four relations allows a
recursive proof of functoriality of ΩΣ, most importantly functoriality under braidings involving all
boundaries. Although this proof is complicated by homotopy class considerations in the geometry of
glueings, its structure (when forming mapping class group orbits) is similar to the proof of symmetry
of Fg,n in KS-TR [2, Proposition 2.4].

1.4 Main results and outline of the article

Chapter I

Section 2 defines the two main categories of bordered surfaces Bord● and Bord●1 we will be concerned
with, as well as the glueing and cutting operations, with emphasis on the excision of homotopy class
of pairs of pants. The core construction of the geometric recursion appears in Section 3. We introduce
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the notion of target theory valued in a category C, and the corresponding notion of initial data.
Although we choose here a specific category C built out of topological vector spaces, which is sufficient
for most applications involving functional analysis, other choices may be interesting to consider in
the future. The data of a target includes a family of “length functions” for curves on surfaces, which
are used to tame the countably infinite sums in the definition of GR. Our main result states that
the GR formula gives a well-defined functorial assignment (Theorem 3.7), compatible with natural
transformations of target theories (Proposition 3.8). The definition and proof that the procedure is
well-defined uses an induction on the Euler characteristic. We then proceed to show that the GR
amplitudes can be expressed as a fatgraph recursion – where the weight of each fatgraph is given by
a sum over all homotopy class of embedding of this fatgraph on the surface.

In Section 4, we further comment on the computation of GR amplitudes for tori with one boundary
and for four-holed spheres. In particular, the standard description of the mapping class group cosets
in those surfaces here shows that the sums appearing in GR are naturally indexed by paths in the
Farey graph. We will not attempt a more explicit description of GR amplitudes in this article.

Section 5 explains a symmetric version of GR, based on the category Bord● where all boundary
components play the same role. Our second main result is that, provided the initial data satisfy four
relations involving braiding of boundary components in four-holed spheres and two-holed tori, the
same GR formula gives a well-defined functorial assignment from Bord● (Theorem 5.3).

We observe that 2d topological quantum field theories provide toy examples of strict GR in the
first part of Section 7. We also explain that the original topological recursion is a specialisation of
strict GR. For pedagogical reasons, we do so in the two languages which have been used to present
TR: spectral curves à la Eynard-Orantin and quantum Airy structures à la Kontsevich-Soibelman.

Chapter II

This chapter describes the first examples of target theories, based on various spaces of continuous
functions on Teichmüller spaces, and using hyperbolic lengths to specify length functions. Section 8
provides the necessary background in Teichmüller theory. In particular we will use Mirzakhani esti-
mates on the number of multicurves of length ≤ L, and the geometry of glueing of Teichmüller spaces
of pointed bordered surfaces. In order to have a well-defined glueing map, we use marked points on
each curve we glue on. The target theories are then constructed in Section 9. We proceed to discuss
the integrability of the GR amplitudes with respect to the Weil-Petersson volume form on the moduli
space of bordered surfaces (Section 9.5), and the behaviour of the GR formula at the boundary of
Teichmüller spaces, i.e. when a fixed set of curves are pinched (Section 9.6). We also describe an
associated strict target theory, consisting of functions of boundary lengths only, and integration over
the moduli space of bordered surfaces yields the natural transformation which intertwines GR and
strict GR (Section 9.4).

Mirzakhani-McShane identities provide a fundamental and non-trivial example of initial data, for
which the GR amplitude can be explicitly computed: ΩΣ = 1 (Section 10.1). Although this initial data
is not admissible according to our first definition, the knowledge of Mirzakhani-McShane identities
gives us another condition, which we call M-admissibility, under which we show that GR is well-defined
and actually produces uniformly bounded functions on the Teichmüller space (Section 10.2). If we did
not know Mirzakhani-McShane identities, the symmetry of the GR amplitude 1 under braidings of
all boundary components would be mysterious. It would be explained inductively e.g. if Mirzakhani
initial data satisfied the symmetry axioms, which here boil down to two pointwise relations in the
Teichmüller space of a sphere with four boundary components between certain sums over simple closed
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curves. We know these relations hold after integration over the moduli space, but we do not know
whether they are true pointwise (Section 10.4).

The strict GR amplitudes which are functions of the boundary lengths L can be alternatively
be described via their Laplace transform, as functions of variables (z1, . . . , zn). We examine the
Laplace transform of the strict GR formula in Sections 11 and 12. Multiplying lengths in Mirzakhani
initial data by a parameter β ≥ 1 and sending β → ∞ gives an M-admissible initial data for GR.
The integration of its GR amplitudes over the moduli space of bordered surfaces of fixed boundary
lengths becomes a polynomial generating series for the intersection numbers of ψ-classes on Mg,n –
aka Witten-Kontsevich model – computed by the corresponding strict GR (Section 12.1). By taking
its Laplace transform of the strict GR formula, we retrieve the residue formula of Eynard-Orantin TR
for the spectral curve x = y2 (Section 12.2).

This leads us to describe in Theorem 12.6-12.8 and Section 12.6 a Laplace inverse transform
description of TR for any spectral curve with simple ramification points, i.e. in terms of boundary
lengths L instead of points on the spectral curve z. This applies in particular to the correlation
functions of semi-simple cohomological field theories. The answer involves distributions – the Dirac
and its derivatives. Regularising with the parameter β allows lifting any initial data for TR to an
initial data for GR, such that the integration over the moduli space of its GR amplitudes become after
Laplace transform and in the limit β → ∞ the TR amplitudes. The GR amplitudes themselves may
become distributions when β → ∞, and it is a pleasant specificity of the Witten-Kontsevich model
that its β =∞ GR amplitudes exist as continuous functions.

We describe in Section 10.3 an important idea of “fibering” a target theory over Teichmüller space,
i.e. looking at continuous functions over Teichmüller space valued in some other target theory. This
is illustrated in Section 13 where we define a target theory out of sections of a modular functor with
vanishing central charge and conformal dimensions – e.g. the endomorphism theory of a modular
functor.

In Section 14, we sketch a target theory which can be used to construct geometric structures on
the moduli space of flat connections, using ideas from lattice gauge theory and especially the approach
of Fock-Rosly. We apply it to obtain the Fock-Rosly Poisson structure [30] from GR.
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2 Two-dimensional geometry background

2.1 Bordered surfaces

Definition 2.1 A bordered surface Σ is a smooth, oriented, compact 2-dimensional manifold with an
orientation of its boundary.

We remark that a bordered surface has a decomposition of its boundary, namely the subset where
the induced orientation agrees with the given orientation and the subset where they disagree. We
denote these two subsets of the boundary of Σ, ∂+Σ and ∂−Σ respectively. We have of course that
∂±Σ consist of a subset of the connected components of ∂Σ and that

∂Σ = ∂+Σ ∪ ∂−Σ.

We use the notation Σ○ for the interior of Σ. If b ∈ π0(∂Σ), we denote the corresponding oriented
component ∂bΣ.

Definition 2.2 A bordered surface Σ is stable if it is empty, or if each component has a non-empty
boundary and has negative Euler characteristic. It is unstable otherwise.

The mapping class group ΓΣ consists of the set of isotopy classes of orientation preserving diffeo-
morphisms, which also preserve the prescribed orientation on the boundary.

We use the following notation for the components of Σ

Σ = ⋃
a∈π0(Σ)

Σ(a).

2.2 Pointed bordered surfaces

Definition 2.3 A pointed bordered surface Σ is a bordered surface Σ together with a marked point
ob ∈ ∂bΣ for each b ∈ π0(∂Σ).

We consider the category of pointed bordered surfaces Bord●. Its objects are pointed bordered surfaces,
and its morphisms are isotopy classes of orientation preserving diffeomorphisms f ∶ Σ → Σ′ sending
∂±Σ and its set of distinguished points to ∂±Σ′, and its set of distinguished points. We observe that
Bord● is a symmetric monoidal category for the disjoint union, with unit the empty surface.

If Σ is a pointed bordered surface, we denote by Aut(Σ) = ΓΣ the corresponding mapping class
group. It is the set of isotopy classes of orientation preserving diffeomorphisms which preserves the set
of marked points on the boundary. It is isomorphic to the central extension of ΓΣ by isotopy classes
of Dehn twists along curves in Σ○ homotopic to the boundary components.

Let ∆Σ be the group generated by the boundary parallel Dehn twists. We then have an exact
sequence

1Ð→∆Σ Ð→ ΓΣ Ð→ ΓΣ Ð→ 1. (2)

For any homotopy class of a simple closed curve β in Σ○, we denote by δβ the corresponding Dehn
twist.

2.3 Marked pointed bordered surfaces

We will further need to consider marked pointed bordered surfaces, e.g. pointed bordered surfaces
with marked points in the interior.
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Definition 2.4 A marked pointed bordered surface Σ, is a pointed bordered surface Σ together with a
finite set of marked points P ⊂ Σ○. For a pointed bordered surface Σ = (Σ, o), we define its double as
the following marked surface

Σd = (Σ ∪∂ Σ, o).

where Σ is the surface with opposite orientation.

We observe that the double Σd of Σ is a closed surface and that it has an orientation-reversing
involution r ∶ Σd →Σd induced from the identity map of Σ, but which interchanges the two copies of
Σ in Σd.

If we let Γ∂Σ
Σd be the stabiliser of the isotopy class of each component of ∂Σ ⊂ Σd in ΓΣd , then we

have the short exact sequence

1→ ΓΣ → Γ∂Σ
Σd → (Z/2Z)π0(Σ) → 1.

We observe that for any marked pointed bordered surface Σ, we have the underlying pointed
bordered Σ.

Notation 2.5 If Σ is a (marked) pointed bordered surface, the underlying surface without its marked
points is denoted Σ. We keep bold letters whenever the structure given by the marked points matters,
and use normal letters otherwise.

2.4 Glueing and cutting operations

Let Σ be a stable pointed bordered surface, and select a b = (b′, b′′) ∈ C2(π0(∂Σ)), where C2(π0(∂Σ))
is the set of ordered distinct pairs of elements from π0(∂Σ). Choose arbitrarily an orientation-reversing
(with respect to the induced orientations from Σ) diffeomorphism ϕ ∶ (∂b′Σ, ob′) → (∂b′′Σ, ob′′). We
construct another pointed bordered surface Σb,ϕ = Σ/∼, where ∼ is the equivalence relation generated
by ϕ. The projection gives a continuous map p ∶ Σ→Σb,ϕ.

Lemma 2.6 For any two glueing maps ϕ and ϕ′, Σb,ϕ is diffeomorphic to Σb,ϕ′ , canonically so up
to isotopy.

Proof. The map ϕ′ ○ ϕ−1 ∶ (∂b′Σ, ob′) → (∂b′Σ, ob′) is isotopic to the identity. Choose an extension
f ∶ Σ → Σ of it, which is the identity outside of a small annular neighbourhood of ∂b′Σ, and which is
isotopic to the identity. By construction, the induced continuous map p′ ○ f ∶ Σ → Σb,ϕ′ descends to
a continuous map f̃ ∶ Σb,ϕ → Σb,ϕ′ such that f̃ ○ p = p′ ○ f . We can always choose f such that f̃ is a
diffeomorphism. Moreover, any two such choices of f yield isotopic f̃ ’s. ∎

Since we have this canonical identification of Σb,ϕ with Σb,ϕ′ , we simply leave out the glueing map
from the notation and just denote the glued surface Σb. We observe that if we have a finite set b
of pairwise disjoint elements of C2(π0(∂Σ)), then we can also define Σb in a similar way by glueing
along all the pairs in b.

Conversely, we have the operation of cutting a stable pointed bordered surface Σ on a pointed
oriented simple closed curve (γ, o) (for short just γ) in Σ○, so as to obtain a new pointed bordered
Σγ , where we induce the orientation of the curve on the new boundary component (denoted ∂+γΣγ) to
the left of γ and the opposite orientation on the new component on the right (denoted ∂−γΣγ). This
means that all the new boundary components of Σγ are in ∂+Σγ . We further remark, that if we have
an orientation-preserving homotopy from γ to some other oriented simple closed γ′ (we allow moving
the distinguished point), we obtain diffeomorphisms from Σγ to Σγ′ , whose isotopy class is uniquely
determined by the homotopy.
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Definition 2.7 The homotopy class of a one-dimensional compact submanifold in Σ is called a mul-
ticurve. The set of multicurves in Σ is denoted SΣ. The set of multicurves which are not boundary-
parallel is denoted S○Σ. We denote Ŝ○Σ the subset of simple closed curves, i.e. multicurves with a single
connected component.

Definition 2.8 A pointed (oriented) multicurve (γ, o) (for short just γ) on a pointed bordered surface
Σ is the homotopy class of a finite disjoint union of one-dimensional pointed, compact (oriented),
connected submanifold in Σ. They form a set SΣ. Adding the assumption that none of the components
are boundary-parallel gives a subset S○Σ.

We define the cutting and its notation for pointed oriented multicurves in complete analogy with
the cutting for a simple pointed oriented curve.

Definition 2.9 A multicurve is called stable, if Σγ is stable.

If Σγ is obtained from Σ by cutting along a stable pointed oriented multicurve γ in Σ, we have
the exact sequence of groups

1Ð→∆γ Ð→ ΓΣγ Ð→ Stab(γ)Ð→ 1, ∆γ ∶= ∏
β∈π0(γ)

⟨δβ+δ−1
β− , ⟩ (3)

where Stab(γ) ⊆ ΓΣγ are the mapping classes which preserve the image of γ in Σγ , and β+ and β−

are the preimages of β in Σγ .

Definition 2.10 A self-glueing is a glueing in which at least two boundary components of the same
connected surface are identified.

2.5 Excising a pair of pants

The case which is particularly relevant for us is the excision of a pair of pants (i.e. a genus 0 surface
with 3 boundary components) from a stable pointed bordered surface Σ of genus g with n boundaries.
We assume 2g − 2 + n > 1.

Let f ∶ P → Σ be an embedding of a pointed pair of pants. We require that when a boundary
component b of P is mapped to a boundary component b′ of Σ, the marked point in b should be
mapped to the marked point in b′, but we allow some of the boundary components of P to be mapped
to Σ○. We further require that f(P ) contains at least one of the boundary components of Σ. Let
us cut Σ along the boundary components of f(P ), which are not boundaries of Σ. The assumption
2g − 2+n > 1 implies that Σ′ = Σ∖ f(P ○) is stable. We choose the induced orientation from Σ′ on the
boundary components of P which belong to Σ○. The marked points in the boundary components of
P give the structure of a pointed bordered surface on Σ′. Later, in certain cases, we will change this
orientation. There are finitely many possible topologies for Σ′ and P ⊂ Σ.

I (g, n) ≠ (1,1), g ≥ 1, P has exactly one boundary component common with Σ and Σ′ is connected
(of genus g − 1 with n + 1 boundaries).

I’ (g, n) ≠ (0,3), P has exactly one boundary component γ disjoint from ∂Σ (we denote {b, b′} the
two others) and Σ′ is connected of genus g with n − 1 boundaries.

II P has exactly one boundary component b common with Σ (we denote {γ, γ′} the two others),
and Σ′ has two connected components with genus {g1, g2} and number of boundaries {n1, n2}
such that g1 + g2 = g, n1 + n2 = n + 1 and (gi, ni) ≠ (0,1), (0,2) for any i ∈ {1,2}.
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We now describe the precise way we will enumerate embedded pairs of pants. >From now on
we will assume that an ordering on the boundary components of P has been chosen, i.e. a bijection
between {1,2,3} and π0(∂P ).

For b1, b ∈ π0(∂Σ)×2, we denote Cb1,b(Σ) the set of homotopy classes of simple curves in Σ with
endpoints the marked points in ∂b1Σ ∪ ∂bΣ modulo the group generated by the Dehn twists δb1 and
δb with the following condition in the case that b1 = b. In this case we require that c ∈ Cb,b(Σ) is not
homotopic to any composition of the form c̃−1 ⋅ (∂b′Σ) ⋅ c̃ for a c̃ ∈ Cb,b′(Σ), for some b′ ≠ b, where we
use ⋅ to denote the composition of curves in the path groupoid of Σ.

Suppose first that b1 ≠ b (case I’). Then for any c ∈ Cb1,b(Σ), there exists an embedding f ∶ P→Σ

such that f(P ) contains a representative from c with f(∂1P ) = ∂b1Σ and f(∂2P ) = ∂bΣ. Any two
such embeddings of P are related by the action of the group of diffeomorphisms of Σ which preserve
the marked points on the boundary of Σ, and which are isotopic to the identity among such. This
means that for any two embeddings fi ∶ P→Σ as before, there exists a morphism of pointed bordered
surfaces Φ ∶ Σf1(∂3P ) → Σf2(∂3P ) induced by the above group action, which is unique up to the
action of ∆f2(∂3P ). We observe therefore that the embedding of the pair of pants modulo this natural
equivalence is determined by the isotopy class of the pointed oriented curve γc ∶= f(∂3P ) modulo the
action of ∆γc . We define the two pointed bordered surfaces Pc and Σc such that Σγc = Pc ∪Σc. We
note that this notation should not be confused with the notation for the glueing of surface along a
number of pairs of boundary components. This should however not be a problem, since c here is a
completely different object.

In the case where b1 = b (either I or II), we get that for any c ∈ Cb1,b1(Σ) there exists an embedding
f ∶ P→Σ such that f(P ) contains a representative from c, with f(∂1P ) = ∂b1Σ and such that cutting P
along the inverse image under f of the representative of c puts ∂2P in a different component than ∂3P .
Any two such embeddings of P are related by the action of diffeomorphisms of Σ which preserve the
marked points on the boundary of Σ, and which are isotopic to the identity among such. This means
that for any two such embeddings fi ∶ P → Σ, there exists a morphism of pointed bordered surfaces
Φ ∶ Σf1(∂2P∪∂3P ) → Σf2(∂2P∪∂3P ) induced by the above group actions, which is unique up to the
action of ∆f2(∂2P∪∂3P ). We observe thus that the embedding of the pair of pants modulo this natural
equivalence is determined by the isotopy class of the pointed oriented multicurve γc ∶= f2(∂2P ∪ ∂3P )
together with the choice of a first component – here this is γ1

c ∶= f2(∂2P ), and the second component
is denoted γ2

c ∶= f2(∂3P ), all of this modulo the action of ∆γc . It is assumed here that the isotopies
preserve the choice of the first component. We define the two pointed bordered surfaces Pc and Σc

such that Σγc = Pc ∪Σc and by changing the orientation of the boundary component of Σ associated
with γ1

c , so as to force it to disagree with the orientation of Σc. The reason for this change of
orientation will become clear in the next section.

For a fixed b1 ∈ π0(∂Σ), the mapping class group acts on

Cb1(Σ) ∶= ⋃
b∈π0(∂Σ)

Cb1,b(Σ) .

This action has finitely many orbits, which have been classified in I, I’ and II. In particular, there is
a unique orbit for each b ≠ b1, which we denote Ob.

2.6 The categories Bord●1 and Bord●s

We consider the full subcategory Bord●1 of Bord●, where we require that objects Σ are stable and such
that the natural map from π0(∂−Σ) to π0(Σ) is a bijection. For disconnected objects Σ of Bord●1, we
denote similarly the connected components by (Σ(a))a∈π0(Σ).
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We observe that the above discussion about cutting and glueing in Bord● applies to Bord●1 with
the following important modifications. If we have an object Σ in Bord●1 and γ is a stable pointed
oriented multicurve in Σ, we can construct Σγ as an object in Bord● as described above. However, it
is not clear that this object belongs to Bord●1.

Definition 2.11 A headed multicurve in an object Σ or Bord●1 is an ordered pair (γ, β) where γ is
a multicurve in Σ and β is a subset of π0(∂+Σγ) such that the natural inclusion of π0(∂−Σγ)∪ β into
π0(Σγ) is a bijection.

If (γ, β) is a stable headed pointed oriented multicurve in Σ, we define Σγ,β to be the object in Bord●1
which results from reversing the orientation of those boundary components of Σγ which are in β.

Definition 2.12 If Σ is a connected object in Bord●1, we will simply denote Cb(Σ) by C(Σ), where
b = π0(∂−Σ).

We remark that excising a pair of pants specified by c ∈ C(Σ) with the definitions of Section 2.5
canonically specifies a stable headed pointed oriented multicurve γc and an object Σc ∶= Σ − Pc in
Bord●1.

Conversely, if we consider glueing, even starting with an object Σ in Bord●1 and an ordered pair
b ∈ C2(π0(∂Σ)), then Σb may not be in Bord●1 again. By convention, the only glueing operations
allowed on an object Σ in Bord●1, are those glueing operations on Σ considered as an object in Bord●,
that produce an object Σb in Bord●1.

We will also consider the full subcategory Bord●s of Bord●, where we require that objects Σ are
stable, and if Σ ≠ ∅ it must have a non-empty boundary and ∂−Σ = ∅. In other words, all boundary
components play a symmetric role. All glueing/cutting operations from Bord● are allowed in Bord●s ,
provided at the end, we make the choice to orient all boundary components in agreement with the
surface itself.

When the category has been specified, we shall denote Γ(Σ) the automorphism group of Σ, and
call it indifferently the mapping class group. We also denote Γ∂(Σ) the pure mapping class groups,
i.e. mapping classes inducing as permutation of π0(∂Σ) the identity map. The mapping class groups
for pointed bordered surfaces and for bordered surfaces will often occur and for them we use the
special notation ΓΣ and ΓΣ as described in Sections 2.1-2.3.

3 Geometric recursion

Our goal is to construct, by means of sums over all pair of pants decompositions, for any stable Σ in
Bord●1, an element ΩΣ of a “space” E(Σ) attached to the surface Σ, which is a functorial assignment.
First of all we need to specify what is the home E(Σ) for ΩΣ, and for the construction to be meaningful,
it should incorporate a compatible set of union and glueing maps, and a mechanism which can make
sense of the “countable sums over pair of pants decompositions”. We call this a target theory. To be
precise, it will be a functor E from Bord●1 to some category C, satisfying a list of axioms to be specified
in Section 3.1. The definition of ΩΣ will depend on a small amount of initial data, specifying what
happens for a pair of pants, for a torus with one boundary, and a way to inductively increase the
complexity of the surfaces (Section 3.2). We call the inductive process leading to ΩΣ from such initial
data geometric recursion (in the chosen target theory E), abbreviated GR.

We also give a variant of this construction based on Bord●s , which we call symmetric GR. Although
the defining formulae are essentially the same, we have to identify consistency conditions – spelled
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out in Section 5.1 – that the initial data must satisfy to guarantee that the assignment Σ ↦ ΩΣ is
functorial. The key point here is that, unlike GR, symmetric GR includes invariance under mapping
classes which can permute all boundary components.

3.1 Target theories

Let K be R or C. We choose C to be constructed from the category V of Hausdorff, complete, locally
convex topological vector spaces over K as described below. We remark that V admits projective
limits [48].

Recall that an object V of V comes with a (possibly uncountable) family of seminorms (∣ ⋅ ∣α)α∈A
which induces the topology of the vector space V such that it is Hausdorff and complete as a locally
convex topological vector space.

Definition 3.1 An object V of C is a directed set I and an inverse system over I of objects

(V (i), (∣ ⋅ ∣α)α∈A (i))i∈I

of V, together with an object V of V which is the projective limit of the (V (i))i∈I . We then define the
(possibly infinite) seminorms ∥ ⋅ ∥i by

∥v∥i ∶= sup
α∈A (i)

∣v∣α ∈ [0,+∞]

and the (possibly not closed) subspace

V ′ ∶= {v ∈ V ∣ ∀i ∈ I , ∣∣v∣∣i < +∞} ⊂ V . (4)

A morphism Φ of C from an object V1 to V2, is an inverse system of continuous linear maps

Φi,j ∶ V (i)1 → V
(j)
2 , i ∈ I1, j ≤ h(i)

over an order preserving map h ∶ I1 → I2, such that the induced continuous linear map Φ ∶ V →W

satisfies Φ(V ′
1) ⊆ V ′

2 .

This category is suited to treat in a uniform way spaces of functions, forms, distributions, sections of
vector bundles on many different topological spaces with various structures associated to surfaces, such
as various moduli spaces of different kinds of structures on surfaces, possibly coupled to Teichmüller
space, etc. It seems to contain a rather minimal structure to make sense of GR. Applications may
justify other choices of categories. For instance, the category of Z-graded complexes of objects in the
above C.

Definition 3.2 Given three objects Vj, j = 1,2,3 of C, a bilinear morphism

F ∶ V1 ×V2 →V3,

is an inverse system of continuous bilinear maps

F i,j,k ∶ V (i)1 × V (j)2 → V
(k)
3 (i, j) ∈ I1 ×I2, k ≤ h(i, j)

over an order preserving map h ∶ I1 ×I2 → I3 (where the lexicographic order governs the source),
such that the induced bilinear map F ∶ V1 × V2 → V3 satisfies F (V ′

1 × V ′
2) ⊆ V ′

3 . Multlinear morphisms
are defined in a similar fashion.
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We do not consider tensor products of topological vector spaces, which usually turn bilinear maps
into linear ones, since we want to (and we can) avoid discussion regarding completions. This allow
more theories to naturally fit in the general setup.

Definition 3.3 A (C-valued) target theory is a functor E from Bord●1 to the category C together with
the following extra structure. For each object Σ of Bord●1 with

E(Σ) = (E(i)(Σ), (∣ ⋅ ∣α)α∈A (i)
Σ

)
i∈IΣ

,

we require the functorial data of lengths functions

lα ∶ SΣ Ð→ K ∖ {0}

indexed by i ∈ IΣ and α ∈ A
(i)
Σ . This data must satisfy the following properties.

Polynomial growth axiom. For each i ∈ IΣ, α ∈ A
(i)
Σ and L ∈ R>0, the set

Nα(Σ, L) = {γ ∈ S○Σ ∣ ∣lα(γ)∣ ≤ L}

is finite and there exists mi, di ∈ R>0, such that we have an upper bound on the cardinality

sup
α∈A (k)(Σ)

∣Nα(Σ, L)∣ ≤miL
di .

Lower bound axiom. For any i ∈ IΣ, there exists εi > 0 such that

inf {∣lα(γ)∣ ∣ (α, γ) ∈ A
(i)
Σ × S○Σ} ≥ εi.

Union axiom. For any two objects Σ1 and Σ2 of Bord●1, we ask for a bilinear morphism

⊔ ∶ E(Σ1) ×E(Σ2)→ E(Σ1 ∪Σ2),

compatible with associativity of cartesian products and associativity of unions. We require E(∅) ∶= K,
and the union map ⊔ ∶ E(∅) ×E(Σ)→ E(Σ) is specified by 1 ⊔ v = v.

Glueing axiom. For any two objects Σ1 and Σ2 in Bord●1, and a subset b ⊂ π0(∂Σ1) × π0(∂Σ2)
consisting of disjoint pairs, let Σ be the object of Bord●1 obtained from glueing Σ1 to Σ2 along b. We
ask for the data of a bilinear morphism

Θb ∶ E(Σ1) ×E(Σ2)→ E(Σ),

which is compatible with the glueing of morphisms, with associativity of glueings and with the union
morphisms.

One can formulate likewise the notion of a symmetric target theory by replacing Bord●1 with its
symmetric analog Bord●s – see Section 2.

Cutting along a stable headed oriented pointed multicurve (γ, β) a connected object Σ of Bord●1
and performing the reciprocal glueing operation gives rise to a glueing morphism

Θγ,β ∶ ∏
a∈π0(Σγ,β)

E(Σγ,β(a))→ E(Σ).
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If we have two stable headed oriented pointed multicurves (γ, β) and (γ′, β′) in the same Γ(Σ)-orbit
O, we can pick a morphism Φ ∶ Σγ,β →Σγ′,β′ in Bord●1, which induces an isomorphism of the mapping
class group invariant subspaces

⎛
⎝ ∏
a∈π0(Σγ,β)

E(Σγ,β(a))
⎞
⎠

Γ(Σγ,β)

≅
⎛
⎝ ∏
a′∈π0(Σγ′,β′)

E(Σγ′,β′(a′))
⎞
⎠

Γ(Σγ′,β′)

.

By construction this isomorphism is independent of the choice of Φ. So, all these spaces can thus be
identified to a single cartesian product EO by canonical identifications, and the glueing morphisms
induce well-defined continuous multlinear morphisms Θγ,O ∶ EO → E(Σ). We shall often resort to
this argument allowing the identification of the source of all glueing maps within the same mapping
class group orbit.

In particular, if we have a c ∈ Cb1(Σ), we can excise the embedded pair of pants Pc as explained
in Section 2.5. We denote the resulting morphism

Θc ∶ E(Pc) ×E(Σc)→ E(Σ)

with its associated order preserving map

hc ∶ IPc ×IΣc → IΣ,

which are induced by the reglueing of Pc and Σc naturally identified with Σ.

3.2 Initial data

All surfaces in the remaining of Section 3 are objects in Bord●1.

Definition 3.4 Initial data for a given target theory E are functorial assignments

● of AP,CP ∈ E(P) for any pair of pants P.

● of BbP ∈ E(P) for any pair of pants P in which some b ∈ π0(∂+P ) has been selected.

● of DT ∈ E(T) for any torus T with one boundary component.

It is enough to make such choices (AP,B
b
P,CP,DT) for a reference P and T, in such a way that

AP,CP ∈ E(P)Γ(P), DT ∈ E(T)Γ(T) ,

and such that, for any ϕ ∈ Γ(P) which induces a permutation ϕ̃ of π0(∂+P ), we have that

ϕ(BbP) = Bϕ̃(b)P .

Then, if P′ is another pair of pants and X ∈ E(P), we can use a morphism ϕ ∶ P → P′ in Bord●1 to
transport X ′ = ϕ(X) ∈ E(P′). If we take X among AP,B

b
P,CP, the mapping class group invariances

of these elements imply that X ′ is independent of ϕ, and indeed contained in the mapping class group
invariant subspace – in the case of BbP this of course means that we only consider mapping classes
which preserve the choice of the selected component ϕ(b) in ∂+P ′. The same argument holds for tori
with one boundary component.
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Definition 3.5 The initial data is called admissible if AP ∈ E′(P), DT ∈ E′(T) and furthermore it
satisfies the following axiom.

Decay axiom. For any connected object Σ in Bord●1, and any c ∈ C(Σ), we require that for any s > 0,
for any (i, j) ∈ IPc ×IΣc and k ∈ IΣ such that k ≤ hc(i, j), any α ∈ A

(k)
Σ , there exists a functorial

Mi,s(Σ) > 0 such that

● if Pc shares two boundary components with Σ, and among those, b denotes the one in ∂+Pc, then

∀v ∈ E′(Σc)Γ(Σc) ∣Θi,j,k
c (BbPc , v)∣α ≤Mi,s(Σ) ∥v∥j ∣lα(γc)∣−s. (5)

● if Pc shares only one boundary component with Σ, then

∀v ∈ E′(Σc)Γ(Σc) ∣Θi,j,k
c (CPc , v)∣α ≤Mi,s(Σ) ∥v∥j(∣lα(γ1

c )∣ + ∣lα(γ2
c )∣)

−s
. (6)

3.3 Definition of the geometric recursion

Let (A,B,C,D) be an admissible initial data for a target theory E.

Definition 3.6 We define the GR amplitudes as follows. We put Ω∅ ∶= 1 ∈ E(∅) = K.
If P is a pair of pants, we put ΩP ∶= AP.
If Σ is a torus with one boundary, we put ΩT ∶=DT.
If Σ is a connected object of Bord●1 with Euler characteristic χ(Σ) ≤ −2 and let b1 = ∂−Σ be the

distinguished boundary. We now seek to inductively define

ΩΣ ∶= 1
2 ∑
c∈Cb1,b1(Σ)

Θc(CPc ,ΩΣc) + ∑
b∈π0(∂+Σ)

∑
c∈Cb1,b(Σ)

Θc(BbPc ,ΩΣc) (7)

as an element of E(Σ).
For disconnected objects Σ, we declare

ΩΣ ∶= ⊔
a∈π0(Σ)

ΩΣ(a).

γc
b1

bi

c

Bb1.bi
Pc

ΩΣc

Figure 1: The B orbits (case I’).

Theorem 3.7 The assignment Σ↦ ΩΣ is well-defined. More precisely, the series converges absolutely
for any of the seminorms ∣ ⋅ ∣α, its limit is an element of E′(Σ), and it is functorial. In particular,
ΩΣ is mapping class group invariant.
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b1

γ1c

c

Cb1
Pc

γ2c

ΩΣc

Figure 2: The C orbits (case I).

b1

γ1c

c

Cb1
Pc

γ2c

ΩΣc(1)

ΩΣc(2)

Figure 3: The C orbits (case II).

Proof. The result holds true in the case χ(Σ) = −1 by the assumptions on initial data. Assume it
holds for all connected objects of Euler characteristic strictly larger that a given χ0 ≤ −2. Let Σ be
an object in Bord●1 with Euler characteristic χ0. For any c ∈ C(Σ), the induction hypothesis applies
to Σc, in particular ΩΣc is Γ(Σc)-invariant. Then, the discussion we had at the end of Section 3.1
shows that, for any c′ in a Γ(Σ)-orbit O ⊆ C(Σ), we can write

Θc′(X,ΩΣc′
) = Θc′,O(X,ΩO)

for the same element (X,ΩO) ∈ EO. Here X = BbP or CP depending of the nature of the orbit and P

is a reference pair of pants in that orbit.
We first work with the unique orbit Ob = Cb1,b(Σ) for some b ≠ b1, for which X = Bb. To have

lighter notations, we just write O in the following argument. By the decay axiom, we have for any
s > 0, any (i, j) ∈ IP ×IΣc and k ∈ IΣ, any α ∈ A

(k)
Σ that

∑
c′∈O

∣Θi,j,k
c′ (BbPc′ ,ΩO)∣

α
≤mkMi,s∥ΩO∥j ζα(s;O) , (8)

where
ζα(s;O) = ∑

γ∈O
(lα(γ))−s ∈ (0,+∞] .

The polynomial growth axiom implies that ζα(s;O) is finite for any s > dk(Σ), and the lower bound
axiom further implies there exists a finite constant M ′

k such that for the choice sk = dk(Σ)+1 we have
that

sup
α∈A (k)

Σ

ζα(sk;O) ≤M ′
k . (9)
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Thus we get that
∑
γ∈O

∣Θi,j,k
γ (BbPγ ,ΩO)∣

α
≤mkMi,sk ∥ΩO∥jM ′

k. (10)

This proves that the series ∑γ∈O Θi,j,k
γ (Bb

Pγ
,ΩO) is absolutely convergent in E(k)(Σ). Let us denote

w
(i,j,k)
O

the limit. The inequality (10) implies

∥w(i,j,k)
O

∥k = sup
α∈A (k)(Σ)

∣w(i,j,k)
O

∣α ≤mkMi,sk ∥ΩO∥jM ′
k. (11)

Since all involved maps are compatible with projective limits, so are w(i,j,k)
Ob

which also means it only
depends on k ∈ IΣ

w
(k)
O

= w(i,j,k)
O

and we get a well-defined, unique element

ΩΣ(Bb;O) ∶= Θc,O(BbP,ΩO) ∈ E(Σ),

which according to (11) in fact belongs to the subspace E′(Σ).
The same reasoning for the orbit of a c ∈ Cb1,b1(Σ) – which corresponds to a C – shows as well

that we have a well-defined, unique element

ΩΣ(C;O) ∶= Θc,O(CP,ΩO) ∈ E′(Σ).

If we let b1 = ∂−Σ and sum over the finitely many distinct Γ(Σ)-orbits, we thus have a well-defined
element

ΩΣ ∶= ∑
b∈π0(∂+Σ)

ΩΣ(Bb;Ob) + 1
2 ∑
O∈Cb1,b1(Σ)/Γ(Σ)

ΩΣ(C;O)

= ∑
b∈π0(∂+Σ)

Θc(BbPc ,ΩΣc
) + 1

2 ∑
c∈Cb1,b1(Σ)

Θc(CPc ,ΩΣc).

Let ϕ ∶ Σ→Σ′ be a morphism in Bord●1. For c ∈ C(Σ), we get ϕ(c) ∈ C(Σ′) and ϕ induces a morphism
ϕ̃ in Bord●1 between Pc ∪Σc and P′

ϕ(c) ∪Σ′
ϕ(c). The compatibility of the glueing maps with glueing

of morphisms implies that

E(ϕ)(Θc(XPc ,ΩΣc)) = Θϕ(c)(E(ϕ̃)(XPc ,ΩΣc)).

We apply this formula toXPc = BbPc or CPc , which are functorial initial data. The induction hypothesis
guarantees that ΩΣc is also functorial. Therefore,

E(ϕ)(Θc(XPc ,ΩΣc)) = Θϕ(c)(XP′

ϕ(c)
,ΩΣ′

ϕ(c)
).

This gives a bijection between the terms in E(ϕ)(ΩΣ) and the terms in ΩΣ′ , implying, thanks to
absolute convergence for each seminorm, that

(ϕ)(ΩΣ) = ΩΣ′ ,

and thus functoriality. In particular, taking Σ′ = Σ gives the mapping class group invariance
E(ϕ)(ΩΣ) = ΩΣ. We conclude the proof by induction. ∎

Remark: weakening admissibility
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The notion of admissibility in Definition 3.5 is a sufficient condition for the result of Theorem 3.7
to hold, but is not optimal. This condition implies that the convergence of ΩΣ is controlled by the
convergence of the zeta function of the length spectra, which is itself guaranteed by the polynomial
growth axiom on length functions. It is sometimes possible and desirable to find weaker conditions
which imply Theorem 3.7. The key point is, for any stable Σ, to secure the absolute convergence
of the series in (7), and an upper bound showing that the outcome belongs to the subspace E′(Σ)
defined in (4).

We will see in Section 10.2 an example of weaker admissibility condition following from the
Mirzakhani-McShane identities.

3.4 Natural transformations of target theories

Let 1 ∶ Bord●1 → C be the symmetric monoidal functor which assigns the unit object K to any object
Σ in Bord●1. A functorial assignment in E(Σ) is a natural transformation from the functor 1 to the
functor E. For any admissible data, the GR amplitude provides such a natural transformation.

More generally, let E and Ẽ be two target theories, and η ∶ E ⇒ Ẽ be a natural transformation
compatible with the union the glueing morphisms, and the length functions. If

I ∶= (AP ,BbP ,CP ,DT )

are admissible initial data for E, it is clear that

η(I) ∶= (ηP (AP ), ηP (BbP ), ηP (CP ), ηT (DT ))

are admissible initial data for Ẽ. Denote ΩI and Ω̃η(I) the E-valued (respectively Ẽ-valued) outcome
of GR from these two set of initial data.

Proposition 3.8 For any object Σ in Bord●1, Ω̃
η(I)
Σ = ηΣ(ΩI

Σ).

Proof. This is directly implied by the fact that ηΣ ∶ E(Σ) → Ẽ(Σ) is continuous, linear, and that
the assignment Σ↦ ηΣ is compatible with union and glueing maps and length functions. ∎

3.5 Sums over embedded fatgraphs

In this paragraph, we show that the geometric recursion can be repackaged as a (finite sum) over
fatgraphs of the appropriate topology with no reference to embeddings. The contribution of each
fatgraph also satisfy a recursion when the first vertex is removed, albeit of non local nature. The
similarity but also important differences with the topological recursion of [26] will be spelled out in
Section 6.

Preliminary: fatgraphs and their doubled surface

In this paragraph we assumed 2g − 2 + n > 1. We consider the set Gg,n of connected uni-trivalent
fatgraphs with exactly n univalent vertices and genus g. We denote by Gg,n1 the set of graphs G in
Gg,n equipped with a distinguished univalent vertex, called the root.

We recall the construction of the canonical spanning tree t(G) for any element G ∈ Gg,n1 (see
Figure 4 for an example). We inductively define t(G) by starting at the root in the direction of its
incident edge, traveling on the edges of G respecting the cyclic order of the half-edges at vertices,
adding at each step to t(G) the edge we encounter along the boundary component we are traveling
on, whenever it has not already been added and it does not create a loop. Once we come back to the
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root, we restart the same travel until we get to the first edge e, for which the boundary component
on the other side of the edge is different from the one we are traveling on currently. We then jump to
this next boundary component and continue the travel along this component, adding edges to t(G)
with the same rules. When we come back to the starting point of travel for this boundary component
next to edge e, we iterate the process (travel till we can jump to an unexplored opposite boundary
component), until we cannot add more edges without creating a loop. The outcome is a rooted tree
t(G), which spans all the vertices of G.

1
2

3

4 5
6

7
8

9
10

11
12

14

15

16

13
17

Figure 4: The exploration on a fatgraph G ∈ G2,6
1 . We start from the root 1, and the numbers

indicate in which order we then meet the (unoriented) edges. The spanning tree t(G) is in black.

Figure 5: Hexagon attached to a trivalent vertex.

To any G ∈ Gg,n one can associate a surface Σ(G) of genus g with n boundary components, called
the double (Figure 6). Let us briefly recall this construction. For each vertex of v, we take two copies
H+
v and H−

v of a closed hexagon in which v and its incident half-edges are embedded such that they
end on three (alternating) sides of the hexagon (Figure 5). If there is an edge from a univalent vertex
u to v, we ask that the edge from u to v is embedded in H±

v such that u maps to a point in the interior
of a side of the hexagon. We orient H+

v (respectively H−
v ) so as to agree (respectively disagree) with

the cyclic order of half-edges around v. We then glue together H+
v and H−

v into a pair of pants Pv by
identifying pairs (s−, s+) of sides with opposite orientation in (H−

v ,H
+
v ) which are not crossed by edges

incident to v. Pv is equipped with a marked point on each of its boundary component, remembering
where the edges intersect the sides of H+

v . The surface Σ(G) is then obtained by the quotient of
⋃v Pv, where we for each edge in G, say between the vertices v and v′, identify the pointed boundary
components of Pv and Pv′ corresponding to the edge. In particular, two copies of G are embedded in
Σ(G), and the image Σ+(G) of ⋃vH+

v in Σ(G) deformation retracts onto G.
Since two different ways of choosing the topological spaces H±

v and the glueing are related by
diffeomorphisms in a unique orientation-preserving isotopy class, Σ(G) can be considered as a single
object in Bord● up to canonical isomorphisms.
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Figure 6: The double of the graph of Figure 4
.

If G ∈ Gg,n1 , reversing the orientation of the boundary component of Σ(G) containing the root
gives a unique object in Bord●1 up to canonical isomorphisms. In the remaining G always stands for
a graph in Gg,n1 and Σ(G) such an object in Bord●1.

Let M̃G(Σ) be the set of morphisms from Σ(G) to Σ such that the univalent vertices of G are
mapped to the marked points on ∂Σ, and the root is mapped to the marked point on ∂−Σ. We observe
that an element of M̃G(Σ) induces a pair of pants decomposition of Σ, up to ambient isotopy. Thus
there is a well-defined subgroup ΓG associated to each G, which is the subgroup of Γ(Σ) preserving
each pair of pant, as well as each boundary component of a pair of pants in this decomposition. We
denote the quotient by

MG(Σ) ∶= M̃G(Σ)/ΓG,

and we will write
M̃(Σ) ∶= ⋃

G∈Gg,n1

M̃G(Σ), M(Σ) ∶= ⋃
G∈Gg,n1

MG(Σ).

GR as a sum over fatgraphs

The spanning tree t(G) of G allows us to determine an ordering on the embedded pair of pants
(P1, . . . P2g−2+n). We put Σ(G)1 ∶= Σ(G), and successively excise the pair of pants Pi, for i = 1,2, . . .

we obtain a sequence of surfaces inductively defined by Σ(G)i+1 = Σ(G)i −Pi. When excising Pi, we
can distinguish the following four mutually exclusive cases.

A) ∂Pi ⊆ ∂Σ(G)i.

B) Exactly two of the boundary components of Pi are boundary components of Σ(G)i.

C) Exactly one of the boundary components of Pi is a boundary component of Σ(G)i, and the two
other boundary components of Pi are disjointly embedded in Σ(G)i.

D) Two of the boundary components of Pi are glued together under the embedding into Σ(G)i. In
this case, we rather replace Pi by a torus (which we keep denoting Pi for convenience) with one
boundary obtained by glueing these two boundary components.
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This defines for us a type map X ∶ J1,2g − 2 + nK→ {A,B,C,D}.
In a given target theory E, let us denote

ΘG ∶
2g−2+n
∏
i=1

E(Pi)→ E(Σ(G))

the glueing morphism, and for given admissible initial data, we define ωG ∈ E(Σ(G)) by

ωG ∶= ΘG((XPi(i))
2g−2+n
i=1 ).

For an ϕ̃ ∈ M̃(Σ) we have of course a morphism E(ϕ̃) ∶ E(Σ(G))→ E(Σ). Since the mapping classes
in ΓG preserve individually each boundary components of the Pis, ωG is ΓG-invariant. Therefore
E(ϕ̃)(ωG) ∈ E(Σ) only depends on the projection ϕ ∈M(Σ) of ϕ̃, and can be denoted E(ϕ)(ωG).

Proposition 3.9 For any object Σ in Bord●1, the GR amplitudes satisfy

ΩΣ = ∑
G∈Gg,n1

ΩGΣ, ΩGΣ ∶= ∑
ϕ∈MG(Σ)

E(ϕ)(ωG).

Proof. Unfolding the recursive definition (7) and thanks to the property of absolute convergence
from Theorem 3.7, we can apply the Fubini theorem and obtain a sum over sequences (c1, . . . , cm)
where ci ∈ C(Σc1,...,ci−1), with Σ∅ ∶= Σ and Σc1,...,ci = Σc1,...,ci−1 −Pci . At each step, the excision of
a pair of pants produces the isotopy class of embeddings fi ∶ Pci → Σc1,...,ci−1 of a pair of pants with
ordered boundary components. What is left, when no more excisions are possible (recall we do not
allow Σc = ∅), are connected components which are either pairs of pants (an A factor) or tori with one
boundary component (a D factor). Tracking the ordering of boundary component of the Pci in this
nested structure reveals that this set of sequences is in bijection with M(Σ). For each ϕ ∈ M(Σ), we
can then rearrange the nested application of glueing maps into a single glueing map E(ϕ) ○ΘG using
associativity of glueings in the target theory. It should be applied to a tuple formed by the factors
contributing to each embedded piece Pi, either an A, B, C or D, depending only on the abstract
fatgraph G as listed above. ∎

Fatgraph recursion

We can also write a fatgraph recursion, but we stress that the glueing maps will be non local,
i.e. they a priori not only depend on the excision of a trivalent vertex, but on the full structure of
the fatgraph. This makes our recursion quite different from usual fatgraph recursions encountered in
enumerative geometry, as we will comment on in Section 6.

Let us define EG ∶= E(Σ(G)) and let

ΩG ∶= ∑
ϕ∈MG(Σ(G))

E(ϕ)(ωG) ∈ EG. (12)

Let t1 ⊂ t(G) be the union of the univalent vertex u, the trivalent vertex v incident to it, and the
half edges attached to these two vertices. G̃ ∶= G − t1 may or may not be a connected graph. If it is
connected we put ẼG̃ ∶= EG̃. If it is not connected, G̃ will consist of an ordered (by cyclic order at v
starting with u→ v) pair of connected components (G̃1, G̃2), and we define ẼG̃ ∶= EG̃1

∪EG̃2
. In both

cases, we construct a fatgraph glueing map

ΘG,t1 ∶ Et1 × ẼG−t1 → EG

as follows. Let M(G, t1) be the set of all embeddings of the pair of pants Σ(t1) into Σ(G) up to
isotopy, only preserving the pointed negative boundary component. For each p ∈ M(G, t1) we choose
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an identification ϕp of the complement of p with Σ(G − t1) in such a way that the pointed negative
boundary components are preserved. This way we obtain glueing map Θp ∶ Et1 × ẼG̃ → EG, which
does not depend on the choice of ϕp, and we define

ΘG,t1 ∶= ∑
p∈M(G,t1)

Θp . (13)

This series of maps from Et1 ×ẼG̃ to EG converges absolutely in the topology of pointwise convergence
according to Lemma 3.7 and the convergence axiom for initial data.

Proposition 3.10 For any G ∈ Gg,n1 with 2g − 2 + n ≥ 2, we have ΩG = ΘG,t1(Ωt1 ,ΩG−t1).

Proof. As the series (12) is absolutely convergent, it can be repackaged as

ΩG = ∑
p∈M(G,t1)

∑
ϕ∈MG(Σ(G))

ϕ∣t1=p

E(ϕ)(ωG).

By the definition of ΘG,t1 , ΩG−t1 and ΩG, this sum may be rewritten as ΩG = ΘG,t1(Ωt1 ,ΩG−t1). ∎

4 Three further aspects

In this section, we elaborate some aspects of GR which can be skipped in a first reading.

4.1 Control for large boundary lengths

It can be useful to have some control for the GR amplitudes for large boundary lengths – in terms
of the length functions provided by the target theory. We introduce a finer notion of admissibility
for initial data which allow us to do so. In this paragraph, ℸ ∶ R>0 → R>0 is a given function which
encodes the type of growth we may allow. Let E ∶ Bord●1 → C be a target theory and (A,B,C,D)
some initial data.

For any object Σ, we define modified (possibly infinite) seminorms on E(Σ) indexed by i ∈ A
(i)
Σ

∥v∥ℸi ∶= sup
α∈A (i)

Σ

∣v∣α
∏β∈π0(∂Σ) ℸ(∣lα(β)∣)

∈ [0,+∞] (14)

and the (possibly not closed) subspace

ℸE′(Σ) ∶= {v ∈ E(Σ) ∣ ∀i ∈ IΣ ∥v∥ℸi < +∞} . (15)

Definition 4.1 The initial data (A,B,C,D) is called admissible with ℸ-decay if AP ∈ E′(P), DT ∈
E′(T) and furthermore it satisfies the following axiom.

ℸ-decay at infinity. For any connected object Σ in Bord●1, for any c ∈ C(Σ), we require that for
any s > 0, (i, j) ∈ IPc ×IΣc and k ∈ IΣ such that k ≤ hc(i, j), there exists a functorial Mℸ

i,s(Σ) > 0

such that

● if Pc shares two boundary components with Σ, namely b1 = ∂−Σ and b ∈ ∂+Σ, and γc ⊂ Σ○ is the
last boundary component of Pc, then for any v ∈ E′(Σc)Γ(Σc)

sup
α∈A (k)

Σc

{
ℸ(∣lα(γc)∣) ∣lα(γc)∣s

ℸ(∣lα(b1)∣)ℸ(∣lα(b)∣)
∣Θi,j,k
c (BbPc , v)∣α} ≤Mℸ

i,s(Σ)∥v∥ℸj . (16)
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● if Pc shares only one boundary component with Σ, then for any v ∈ E′(Σc)Γ(Σc)

sup
α∈A (k)

Σ

{
ℸ(∣lα(γ1

c )∣)ℸ(∣lα(γ2
c )∣)

ℸ(∣lα(b1)∣)
(∣lα(γ1

c )∣ + ∣lα(γ2
c )∣)

s ∣Θi,j,k
c (CPc , v)∣α} ≤Mℸ

i,s(Σ) ∥v∥ℸj .

We note that the decay axiom in Definition 3.5 is equivalent to the ℸ-decay at ∞ for the choice
ℸ = 1. Due to the polynomial growth and lower bound axioms for lengths, what really matters in this
definition is the behaviour of ℸ at ∞.

Proposition 4.2 Assume (A,B,C,D) are initial data which are admissible with ℸ-decay. Then, GR
from Definition 3.6 gives a well-defined, functorial assignment Σ↦ ΩΣ ∈ ℸE′(Σ).

Proof. We follow the proof of Theorem 3.7. The only difference is that (8) is now replaced with

sup
α∈A (k)

Σ

{ ∑
c′∈O

∣Θi,j,k
c (BbPc ,ΩO)∣

α

∏β∈π0(∂Σ) ℸ(∣lα(β)∣)
} ≤mkM

ℸ
i,s∥ΩO∥ℸj sup

α∈A (k)
Σ

ζα(s;O)

since the factor ℸ(∣lα(γ)∣) appearing in the left-hand side of (16) is compensated by its inverse ap-
pearing in the definition (14) of seminorm ∥ ⋅ ∥ℸk . We can use (9) and obtain instead of (11)

∥wi,j,k
O

∥ℸk ≤mkMi,sk∥ΩO∥j (17)

which allows the conclusion that the limit of the series exists in E(Σ) and define a unique element

ΩΣ(Bb;O) = Θc,O(BbP,ΩO) ∈ ℸE′(Σ)

by comparison of (17) with the definition (15) of the subspace ℸE′(Σ). The remaining of the proof
of Theorem 3.7 then applies and results in the claim. ∎

4.2 Inducing an initial data for tori with one boundary

In quantum field theories, defining correlation functions for tori with one boundary by a cutting
procedure often involves a renormalisation procedure to get rid of infinities. We avoid to address
these potential problems in the construction of target theories and admissible initial data by not
requiring a priori in the axioms that we have self-glueings at our disposal.

Imagine that we are nevertheless given a functorial morphism,

Ξ ∶ E(P)→ E(T)

where P is a pair of pants seen as an object in Bord●1, and T is the torus with one boundary obtained
by glueing the two boundary components in ∂+P .

If T is now an arbitrary object in Bord●1 which is a torus with one boundary, we obtain a pair of
pants Pγ cutting T along a pointed oriented simple closed curve γ which is not boundary-parallel.
By definition of cutting/glueing, this T is obtained by self-glueing on Pγ , and we denote Ξγ the
self-glueing morphism.

Assume that we are given a functorial P ↦ CP ∈ E(P), in particular CP must be Γ(P) invariant.
We remark that, due to the assumed invariance of C under braiding of the two boundary components
of ∂+Σ, and the assumed functoriality of the self-glueing morphism, Ξγ(CPγ ) does not depend on the
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orientation of γ, neither on the choice of the marked point on γ. Therefore, it makes sense to consider
γ ∈ Ŝ○Σ in these formulae. We may seek to define

ΩT ∶= ∑
γ∈Ŝ○

T

Ξγ(CPγ ) ∈ E(T) .

For this purpose, we introduce a new axiom for C.

Self-glueing C-decay. Assume that we are given a functorial self-glueing morphism for pairs of
pants as above. For any object T in Bord●1 which is a torus with one boundary, for any γ ∈ Ŝ○T , for
any s > 0, any i ∈ IPγ and k ∈ IT such that k ≤ hγ(i), there exists a constant Mi,s(T ) such that for
any α ∈ A

(k)
T , we have

∣Ξi,kγ (CPγ )∣α ≤Mi,s(T )∣lα(γ)∣−s . (18)

By an argument of absolute convergence similar to the one detailed in the proof of Theorem 3.7,
we find

Lemma 4.3 Assume (A,B,C) satisfy the properties listed in Definition 3.5 and the self-glueing decay
axiom. Then

DT = ∑
γ∈Ŝ○

T

Ξγ(CPγ ) (19)

is a well-defined, functorial assignment for any object T in Bord●1 which is a torus with one boundary,
and (A,B,C,D) is an admissible initial data.

Note that the (A,B,C) parts of the initial data are sufficient to define the GR amplitudes ΩΣ for
surfaces Σ of genus 0. The D part is necessary to extend this definition to positive genus. Lemma 4.3
gives a way to induce a D if we have glueing morphisms for pairs of pants and a C satisfying the
self-glueing decay axiom. Note that we could replace C by A in the discussion. Note that BP does
not a priori have the invariance under braiding of the two boundary components of ∂+P . If we insist
in using a B to induce a D, we should replace (19) with the formula

∑
γ∈Ŝ○,or

T

Ξγ(Bγ+Pγ
) ,

where Ŝ○,or
T now enumerates oriented simple closed curves which are not boundary-parallel, and γ+ is

the boundary component of created to the left of γ when we cut T.
Lemma 4.3 can easily be generalised to handle ℸ-decay versions of (18).

Simple closed curves on tori

We review the standard description of the sets of Ŝ○T (and Ŝ○,or
T ) of (oriented) simple closed curves

on tori with one boundary.
It is convenient to first consider Ť the marked closed torus obtained from T by glueing a disk along

its boundary, forgetting the marked point on the (former) boundary, and adding a marked point in
the interior of the disk. We also denote T̆ the closed torus obtained by further forgetting the marked
point. Let us fix two oriented simple closed curve α and β in T ⊂ T̆ having the signed intersection
number α ∩ β = 1. In particular, (α,β) is an integral basis for the homology of T̆ . We can choose the
orientation such that αβα−1β−1 is homologous to the (already oriented) boundary of T. The mapping
class group of T̆ is

Γ(T̆ ) ≅ ⟨s, δα ∣ s4 = 1 and s2 = (sδα)3⟩ ≅ ⟨δα, δβ ∣ δαδ−1
β δα = δ−1

β δαδ
−1
β ⟩ ≅ SL(2,Z) . (20)
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Here s is the flip, δγ the Dehn twist along γ, and these mapping class acts on the homology basis
(α,β) by the SL(2,Z) matrix

s ≡ ( 0 −1
1 0

) , δα ≡ ( 1 1
0 1

) , δβ ≡ ( 1 0
1 1

) ,

where ≡ means identification via the last isomorphism in (20). In particular we have

s = δβδ−1
α δβ .

The canonical map Γ(Ť)→ Γ(T̆ ) is an isomorphism, because the translations of the marked point
are isotopic to the identity. We have an exact sequence

1Ð→ ⟨δ∂T ⟩Ð→ Γ(T)Ð→ Γ(Ť)Ð→ 1 ,

which exhibits the mapping class group of T as a central extension of SL(2,Z). More precisely it can
be presented as

Γ(T) ≅ ⟨s, δα ∣ s2 = (sδα)3⟩ .

Here, s2 is the half-Dehn twist along ∂T , and its square is therefore non-trivial in Γ(T).
Γ(T) acts transitively on Ŝ○T , and the stabiliser of the particular element α (forgetting about its

orientation) is generated by the Dehn twist along α, the Dehn twist along the boundary, and the
element s2 which reverses the orientation of (α,β). Therefore

Lemma 4.4

Ŝ○T ≅ Γ(T)/⟨δα, δ∂T , s2⟩ ≅ SL(2,Z)/⟨δα, s2⟩ ≅ PSL(2,Z)/⟨δα⟩ ,
Ŝ○,or
T ≅ Γ(T)/⟨δα, δ∂T ⟩ ≅ SL(2,Z)/⟨δα⟩ .

∎

Let p, q ∈ Z such that gcd(p, q) = 1. There exists p′, q′ ∈ Z such that pq′ − qp′ = 1. If p′′, q′′ ∈ Z is
another such ordered pair, there exists r ∈ Z such that p′′ = p′ + rp and q′′ = q′ + rq. Therefore, any
element x of SL(2,Z)/⟨δα⟩ is characterised by the ordered pair (p, q) as above, which corresponds to
the oriented simple closed curve on T̆ which is homologous to pα + qβ. Likewise, PSL(2,Z)/⟨δα is in
bijection with the set of ordered pairs (p, q) ∈ Z up to a global sign and such that gcd(p, q) = 1. In
other words

Ŝ○T ≅ Q ∪ {∞}, Ŝ○,or
T ≅ (Q ∪ {∞}) × {±1} .

The continuous fraction expansion of p/q give a way to represent a (canonical) (P)SL(2,Z) matrix
in this coset as a product of generators δα and δβ , which is also described by paths in the Farey
graph. To summarise informally, the sums by which one can induce a GR amplitude for tori with one
boundary are naturally sums over vertices of Farey graphs.

4.3 GR amplitude for the sphere with four boundaries

Let Σ0,4 be an object in Bord1 which is a sphere with four boundaries. Any non-boundary parallel
simple closed curve γ cuts Σ0,4 into two pairs of pants. We denote Pγ the one having ∂−Σ0,4 as
one of its boundary components, bγ = ∂Pγ ∩ ∂+Σ0,4, and P′

γ the second pair of pants. Conversely,
any homotopy class of embedded pair of pants bounding ∂−Σ0,4 arise in this way. Therefore, the GR
amplitude for Σ0,4 is

ΩΣ0,4 = ∑
γ∈S○

Σ0,4

Θγ(BbγPγ ,AP′

γ
) .
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We shall understand the set of simple closed curves on Σ0,4, which in fact reduces to the situation of
a torus with one boundary already discussed in the previous paragraph. We remark that we do not
need to consider oriented curves here, as γ receives a canonical orientation by declaring that it leaves
Pγ (determined by ∂−Σ) on its left.

Let Σ̌0,4 the sphere marked with four points, obtained by glueing disks on each boundary com-
ponent of Σ0,4, forgetting the marked point on each, and adding one marked point in the interior of
each disk. Let f ∶ Σ̌1,1 → Σ̌0,4 be a double branched cover of Σ̌0,4 ramified at the four marked points.
After applying a diffeomorphism in the source and in the target, we can assume that

Σ̌1,1 ≃ C/(Z⊕ iZ), f(z) = z mod ( 1
2
Z⊕ i

2
Z), (21)

see Figure 7.

0 11
2

i

1+i
2

i
2

Σ̌0,4

Figure 7: The double branched cover Σ̌1,1 of Σ̌0,4.

Lemma 4.5 [4, Corollary 3.3] The composition of f∗ with the projection Γ(Σ̌0,4) ≅ SL(2,Z) →
PSL(2,Z) induces an exact sequence

1Ð→ (Z/2Z)2 Ð→ Γ(Σ̌0,4)Ð→ PSL(2,Z)Ð→ 1 ,

where (Z/2Z)2 is the group of translations by vectors in the lattice 1
2
Zoplus i

2
Z.

Proposition 4.6 We have a bijection

Ŝ○Σ0,4
≅ SL(2,Z)/⟨δα⟩ ≅ (Q ∪ {∞}) × {±1} .

Proof. Let γ0 be a non-boundary parallel simple closed curve in Σ0,4 ⊂ Σ̌0,4. We have

Ŝ○Σ0,4
≅ Γ(Σ0,4)/(Stabγ0) ≅ Γ(Σ0,4)/(Stabα) ,

where we can choose the oriented curve α in Σ̌1,1 to be [0,1] in the model (21). As the translations
by vectors in the lattice 1

2
Z ⊂ (Z/2Z)2 stabilise α, we deduce from the exact sequence of Lemma 4.5

that
Ŝ○Σ0,4

≅ PSL(2,Z)/⟨δα⟩ × {±1} ≅ SL(2,Z)/⟨δα⟩ ,

which according to the discussion in Section 4.2 is in bijection with (Q ∪ {∞}) × {±1}. ∎
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5 Symmetric GR

In the recursive definition (7), the single boundary component in ∂−Σ plays a special role, and this
propagates at each step of the recursion. This is why we have formulated the construction with Bord●1.
We now describe a variant where all boundary components play the same role, i.e. with Bord●s .

In this section, it is assumed that all surfaces are objects of Bord●s , unless stated otherwise. We
make the preliminary remark that, to any object Σ in Bord●s together with a choice of b1 ∈ π0(∂Σ),
we can associate an object Σb1 in Bord●1, by reversing the orientation of b1. If Σ is stable, the set of
homotopy classes C(Σb1) required for the excision in Section 2.5 for the object Σb1 in Bord●1, is here
denoted Cb1(Σ). As there is no ambiguity, we also denote Cb,b′(Σ) ∶= Cb,b′(Σb).

5.1 Initial data

Take a target theory E ∶ Bord●s → C. We have to modify slightly the notion of admissible initial data.

Definition 5.1 Symmetric initial data are functorial assignments

● of AP ∈ E(P) for any pair of pants P,

● of Bb1,b2P ∈ E(P) for any pair of pants P together with a choice of an ordered pair b1, b2 ∈ π0(∂P ),

● of Cb1P ∈ E(P) for any pair of pants P together with a choice of b1 ∈ π0(∂P ),

● of DT ∈ E(T) for any torus T with one boundary component,

satisfying the four axioms below with respect to glueing morphisms. The notion of admissibility is the
same as in Definition 3.5.

If (γ, γ′) is an ordered pair of boundary components, we denote by σγ,γ′ – called a braiding of γ
and γ′ – any mapping class which sends γ to γ′. We note that the validity of the relations below does
not depend on the choice of the braidings σγ,γ′

BA relation. For any connected Σ with genus 0 and 4 ordered boundary components (b1, b2, b3, b4),

(σb1,b2 − Id)
⎛
⎝ ∑
c∈Cb1,b2(Σ)

(Id + σb2,b3 + σb2,b4)Θc(Bb1,b2Pc
,AΣc)

⎞
⎠
= 0. (22)

BB-CA relation. For any connected Σ with genus 0 and 4 ordered boundary components
(b1, b2, b3, b4),

(σb1,b2 − Id)
⎛
⎜⎜
⎝

∑
c∈Cb1,b2(Σ)

Θc(Bb1,b2Pc
,Bγc,b3Σc

) + ∑
c∈Cb1,b3(Σ)

Θc(Bb1,b3Pc
,Bb2,γcΣc

) + ∑
c∈Cb4

b1,b1
(Σ)

Θc(Cb1Pc
,AΣc)

⎞
⎟⎟
⎠
= 0,

(23)
where Cb4b1,b1(Σ) consists of the homotopy classes of simple curves c with endpoints in ∂b1(Σ) modulo
the group generated by the Dehn twist δb1 such that c is homotopic to c̃−1 ⋅ ∂b4(Σ) ⋅ c̃ for some
c̃ ∈ Cb1,b4(Σ).

BC relation. For any connected Σ with genus 0 and 4 ordered boundary components (b1, b2, b3, b4),

(σb1,b2−Id)
⎛
⎜⎜
⎝

∑
c∈Cb1,b2(Σ)

Θc(Bb1,b2Pc
,CγcΣc

) + ∑
c∈Cb3

b1,b1
(Σ)

(Θc(Cb1Pc
,Bb2,γcΣc

) + ∑
c∈Cb4

b1,b1
(Σ)

Θc(Cb1Pc
,B

b2,γ
2
c

Σc
))

⎞
⎟⎟
⎠
= 0,

(24)
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where (γ1
c , γ

2
c ) are the two connected components of the multicurve γc.

D relation. For any connected Σ of genus 1 with 2 ordered boundaries (b1, b2),

(σb1,b2 − Id)
⎛
⎝ ∑
c∈Cb1,b2(Σ)

Θc(Bb1,b2Pc
,DΣc) + 1

2 ∑
c∈Cb1,b1(Σ)

Θc(Cb1Pc
,AΣc)

⎞
⎠
= 0. (25)

We note that, due to the properties of the initial data, the validity of these relations for some
choice of braidings σb1,b2 , σb2,b3 , σb3,b4 imply their validities for all choice of braidings.

γc
b1

b2

b3

b4

b1

b2

b3

b4

b1

b2

b3

b4

γc
γcc

c

c

Figure 8: The three types of terms in the BB-CA relation. The same three types of terms appear in
the BA and BC relations, except for a different labeling by homotopy classes c. These relations take
a H-I-X form, and provide a geometric incarnation for the (purely algebraic) H-I-X relations found in
quantum Airy structures and the topological recursion, see Section 7.2.

b1

b2

γ1c γ2c

c
b1

b2

c γc

Figure 9: The two types of terms in the D-relation.

5.2 Definition

Let (A,B,C,D) be an admissible symmetric initial data for a symmetric target theory E ∶ Bord●s → C.

Definition 5.2 We define the symmetric GR amplitudes as follows.
We put Ω∅ ∶= 1 ∈ E(∅).
For pairs of pants P, we put ΩP ∶= AP.
For tori with one boundary T, we put ΩT ∶=DT.
If Σ is a connected object in Bord●s with Euler characteristic χ(Σ) ≤ −2, let us make a choice of a

boundary component b1. We now seek to inductively define ΩΣ using the GR formula (7)

ΩΣ ∶= 1
2 ∑
c∈Cb1,b1(Σ)

Θc(CPc ,ΩΣc) + ∑
b∈π0(∂+Σ)

∑
c∈Cb1,b(Σ)

Θc(BbPc ,ΩΣc). (26)
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For disconnected objects, we declare

ΩΣ ∶= ⊔
a∈π0(Σ)

ΩΣ(a).

We now have to check that, step by step, this assignment does not depend on the choice of b1.

Theorem 5.3 The four axioms and the decay axiom imposed on admissible symmetric initial data
guarantee that Σ ↦ ΩΣ ∈ E′(Σ) ⊂ E(Σ) is well-defined, is independent of the choice of b1, and is a
functorial assignment.

Proof. We denote Ωb1Σ the right-hand side of (26), to stress its potential dependence in the choice of
the boundary component. The result obviously holds when χ(Σ) = −1.

Step 1. Let us prove it when Σ has genus 0 with 4 boundary components, which we arbitrarily order
(b1, b2, b3, b4). Applying (26) with the chosen boundary component b1 yields

Ωb1Σ ∶= ∑
c∈Cb1,b2(Σ)

Θc(Bb1,b2Pc
,AΣc

) + ∑
c∈Cb1,b3(Σ)

Θc(Bb1,b3Pc
,AΣc) + ∑

c∈Cb1,b4(Σ)
Θc(Bb1,b4Pc

,AΣc). (27)

By functoriality of the initial data and the glueing maps, for any morphism ϕ ∶ Σ → Σ′, we have
E(ϕ)(Ωb1Σ ) = Ω

ϕ(b1)
Σ . For instance, the mapping class group invariance of B implies Ωb1Σ is invariant

under braidings among b2, b3 and b4, e.g. the first sum in (27) is obtained from the second sum by
a braiding σb2,b3 and the last sum is left invariant. The BA relation provides the missing invariance
under braidings σb1,b2 , i.e. σb1,b2Ωb1Σ = Ωb2Σ . So, ΩΣ ∶= Ωb1Σ is a well-defined, functorial assignment in
E(Σ) for surfaces Σ of this topology.

Remark. The functoriality argument was already used in the proof of Proposition 3.7, and its
repetitive use in the remaining of the proof will not be mentioned anymore: it will be enough to
establish the missing σb1,b2 invariance of Ωb1Σ .

Step 2. We prove the result likewise when Σ has genus 1 with 2 boundary components, which we
arbitrarily order (b1, b2). Applying (26) with chosen boundary component b1 yields

Ωb1Σ ∶= ∑
c∈Cb1,b1(Σ)

1
2
Θc(Cb1Pc

,AΣc) + ∑
c∈Cb1,b2(Σ)

Θc(Bb1,b2Pc
,DΣc) ,

and this is invariant under braidings σb1,b2 according to relation D.

Step 3. So far we have proved the result up to χ(Σ) ≥ −2. Assume it holds for surfaces with Euler
characteristic larger than a χ0 ≤ −2, and consider Σ of Euler characteristic χ0 − 1.

If Σ has only 1 boundary component, then ΩΣ, defined by (26), does not depend on any choice,
and functoriality from the induction hypothesis, of the initial data and glueing maps imply that
ΩΣ is functorial for such surfaces. If Σ has n ≥ 2 boundary components, we order them arbitrarily
(b1, . . . , bn) and we shall prove invariance of Ωb1Σ under the braiding σb1,b2 . Let us compute Ωb1Σ from
(26), i.e. excise the pair of pants Pc specified by all possible c ∈ Cb1(Σ). We want to replace the
contribution of some of the connected components of Σc with the GR formula unambiguously defined
from the previous induction steps. We distinguish several cases in doing so.

● When c ∈ Cb1,b1(Σ), (γ1
c , γ

2
c ) are the connected components of the multicurve γc along which we

excised – they are ordered by our definition of excision in § 2.5. We denote by Sc the connected
component of Σc, which contains b2 and S′c the union of all other connected components of
Σc. If Sc is a pair of pants bounded by γkc for some k ∈ {1,2}, b2 and another bi for i ≥ 3
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we replace ΩSc = ASc , and leave ΩS′c as it is. We denote by Cbi,kb1,b1
(Σ) the set of c’s such that

π0(∂Sc) = {γkc , b2, bi} and Sc is a pair of pants. We observe that the contributions for k = 1 and
2 from Cbi,kb1,b1

(Σ) are equal, since Cb1Pc is invariant under braidings of its two last boundaries.

The subset C(0)b1,b1(Σ) ⊂ Cb1,b1(Σ) will consist of those c for which Sc is not a pair of pants. For
these we replace ΩSc using GR formula (26) with b2 the chosen boundary, i.e. excise Pc′ from
Σc in all possible ways specified by c′ ∈ Cb2(Σc). If c′ ∈ Cb2,b2(Σc) it yields a contribution of
Cb2Pc′

and if c′ ∈ Cb2,bj(Σc), for bj a boundary component of Σc, we get Bb2,bjPc′
.

● When c ∈ Cb1,b2(Σ), we replace ΩΣc using the GR formula (26) with γc as the chosen boundary
component. We are therefore excising a second time with all possible c′ ∈ Cγc(Σc), and denote
Σc,c′ = Σc −Pc′ the excised surface. If c′ ∈ Cγc,γc(Σc), we get a contribution of CγcPc′

, while if
c′ ∈ Cγc,bi(Σc) for some i ≥ 3 we get a contribution of Bγc,biPc′

.

● When c ∈ Cb1,bi(Σ) for i ≥ 3, we replace ΩΣc using GR formula (26) with b2 the chosen boundary
component, i.e. perform a second excision specified by c′ ∈ Cb2(Σc). We denote Σc,c′ = Σc−Pc′ .
If c′ ∈ Cb2,b2(Σc), we denote (γ1

c′ , γ
2
c′) the ordered connected components of the multicurve γc′ ,

and we get a contribution of Cb2Pc′
. For c′ ∈ Cb2,γc(Σc), we get Bb2,γcPc′

. In the remaining cases,

c′ ∈ Cb2,bj(Σc) for some j ≥ 3 with j ≠ i, we get a contribution of Bb2,bjPc′
.

Keeping in mind the constraint χ(Σ) < −2, the list above exhausts all possible situations, in particular
this process will not pull out contributions of a D. We also stress that Σc,c′ may be empty in some
situations, in which case we use the convention Ω∅ = 1 ∈ K and the union axiom of § 3.1 for the
emptyset. The outcome is

Ωb1Σ (28)

=
n

∑
i=3

∑
c∈Cbi,1

b1,b1
(Σ)

Θc(Cb1Pc
,ASc ,ΩS′c)

+ ∑
c∈C(0)

b1,b1
(Σ)

∑
c′∈Cb2,b2(Σc)

1
4
Θc(Cb1Pc

,Θc′(Cb2Pc′
,ΩΣc,c′

)) +
n

∑
i=3

∑
c∈C(0)

b1,b1
(Σ)

∑
c′∈Cb2,bi(Σc)

1
2
Θc(Cb1Pc

,Θc′(Bb2,biPc′
,ΩΣc,c′

))

+ ∑
c∈C(0)

b1,b1
(Σ)

{ ∑
c′∈Cb2,γ1

c
(Σc)

1
2
Θc(Cb1Pc

,Θc′(Bb2,γ
1
c

Pc′
,ΩΣc,c′

)) + ∑
c′∈Cb2,γ2

c
(Σc)

1
2
Θc(Cb1Pc

,Θc′(Bb2,γ
2
c

Pc′
,ΩΣc,c′

))}

+ ∑
c∈Cb1,b2(Σ)

{ ∑
c′∈Cγc,γc(Σc)

1
2
Θc(Bb1,b2Pc

,Θc′(CγcPc′
,ΩΣc,c′

)) +
n

∑
i=3

∑
c′∈Cγc,bi(Σc)

Θc(Bb1,b2Pc
,Θc′(Bγc,biPc′

,ΩΣc,c′
))}

+
n

∑
i=3

∑
c∈Cb1,bi(Σ)

{ ∑
c′∈Cb2,b2(Σc)

1
2
Θc(Bb1,biPc

,Θc′(Cb2Pc′
,ΩΣc,c′

)) + ∑
c′∈Cb2,γc(Σc)

Θc(Bb1,biPc
,Θc′(Bb2,γcPc′

,ΩΣc,c′
))

+∑
j≥3
j≠i

∑
c′∈Cb2,bj (Σc)

Θc(Bb1,biPc
,Θc′(Bb2,bjPc′

,ΩΣc,c′
))} .

We have ten multisums on the right, which we will denote Si, i = 1, . . .10 – illustrated below.
First we observe that S2 is a sum over the set of (c, c′) ∈ Cb1,b1(Σ) × Cb2,b2(Σ), such that there

exist non-intersecting representatives and cutting along γc ∪ γc′ will not produce a component which
is a pair of pants with b2 and some other bi (b1 and some other bi) in its boundary. This sum is
manifestly invariant under σb1,b2 . The same kind of argument also applies to S10.

Inspection of S3+S8 reveals that the sum of these two terms must be invariant under σb1,b2 , since
we can use composition of glueings on one multicurve at a time.
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Figure 10: S1
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Figure 11: S2
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Figure 12: S3
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Figure 13: S4 + S5
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Figure 14: S6
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c

ΩΣc,c′
γc

Bb1,b2Pc

γc′
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Figure 15: S7

b1

b2

γc

c

γ1c′ c′

ΩΣc,c′

bi
Bb1,bi

Pc

Cb2
Pc′

γ2c′

Figure 16: S8. γc may or may not coincide with γkc′ for some k ∈ {1,2}.

b1

bi

c

ΩΣc,c′
γc

Bb1,biPc

γc′

b2c′

Bb2,γcPc′

Figure 17: S9.

We now consider S9 +S7 +S1. First we invoke composition of glueing for the summands in S9

and S7, so as to reduce each summand to one glueing along one multicurve. If we now compare the
summands of S9, S7 and S1 with the three terms in the BB-CA relation, we find they match. We
now reorganise the three multisums of S9, S7 and S1, into a sum over all possible isotopy classes of
embeddings of a surface S of genus 0 and 4 boundary components, where 3 of its boundary components
goes to b1, b2 and bi, for some fixed i ≥ 3, followed by a sum as in the BB-CA relation locally in each
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ΩΣc,c′
γc′

c′

bi

bj

Figure 18: S10.

of these embedded surfaces S. For each embedding of S we can now invoke the BB-CA relation to
conclude that all together S9 +S7 +S1 is invariant under σb1,b2 .

Finally, we consider S4+S5+S6. We reorganise these three sums to first be a sum over all isotopy
classes of embeddings of a surface S of genus zero and four boundary components, where two of its
boundary components goes to b1, b2 and the other two are mapped to the interior of Σ, followed by a
sum as in the BC relation in each of these embedded surfaces S. Examining the summands of S4,S5

and S6 and using associativity of glueings, we observe that for each embedding of S, we can now
invoke the BC relation to conclude all together that S4 +S5 +S6 is invariant under σb1,b2 . ∎

Remark 5.4 It is easy to see that this proof is still valid if the BB-CA relation is replaced by the
relation

(σb1,b2−Id)
⎛
⎜⎜
⎝

∑
c∈Cb1,b2(Σ)

Θc(Bb1,b2Pc
,Bb3,γcΣc

) + ∑
c∈Cb1,b3(Σ)

Θc(Bb1,b3Pc
,Bb2,γcΣc

) + ∑
c∈Cb4

b1,b1
(Σ)

Θc(Cb1Pc
,AΣc)

⎞
⎟⎟
⎠
= 0

(29)
obtained by replacing Bγc,b3Σc

by Bb3,γcΣc
in the BB-CA relation. This correspond to choosing b3 instead of

γc as the reference boundary in the step 3 of the proof when c ∈ Cb1,b2(Σ). By the induction hypothesis,
this choice does not affect the result.

5.3 Main properties

There is a forgetful functor Bord●1 → Bord●s which reverses the orientation of the − boundary com-
ponent, and it is compatible with union and glueing. If Es ∶ Bord●s → C is a target theory, so is the
composition of this forgetful functor with Es, which we denote E. If (A,B,C,D) is an Es-valued
admissible symmetric initial data and Ωs

Σ the outcome of symmetric GR, then (A,B,C,D) can be
considered as an E-valued convergent initial data in the obvious way. And, for this convergent initial
data, GR generates ΩΣ = Ωs

Σ, as the defining formula (7) is identical to the symmetric version (26).
This little argument shows that symmetric GR is a particular case of GR where the initial data

satisfies relations. Therefore, all the properties listed in § 3.4-3.5 also hold for symmetric GR.

6 Strict GR

Suppose we have chosen for each stable (g, n), a single reference object Σg,n in Bord●1 or Bord●s of
genus g with n boundary components. In the geometric recursion, the functoriality of Σ↦ ΩΣ allows
a non-ambiguous definition of

$g,n ∶= ΩΣg,n
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by induction on 2g−2+n > 0. Namely, it is possible to work (using the remark above the Convergence
axiom) solely with reference surfaces for each g and n all the way through the recursion. Passing
from ΩΣ to $g,n, we have lost the memory of the structure of Bord●1 or Bord●s , and therefore a lot of
topological (and interesting) information and naturality of the construction.

In this section, we want to formalise the type of recursion satisfied by ($g,n)g,n, called strict
geometric recursion, which is a kind of generalisation of the topological recursion of [26, 37, 2], and is
only based on finitely many glueing maps (Section 6.1). This construction contains less information
than GR, but it can also be induced from the richer context of GR when the glueing maps are assembled
from a converging series of homotopy class-dependent glueing maps as in (13) (see Section 6.3).

6.1 Definition

We form a category Bord●1 which is a kind of strictification of Bord●1. Its objects are finite (possibly
empty) sequences (gi, ni)i∈I and 2 − 2gi − ni < 0 for all i ∈ I, and concatenation ∐ of such sequences
gives a monoidal structure. There are no morphisms between distinct objects, and the automorphisms
of (gi, ni)i∈I is the product of the permutation groups ∏i∈I SJ2,niK.

Definition 6.1 A strict target theory is a functor E ∶ Bord●1 → C together with extra data satisfying
the union and glueing axioms below.

Union axiom. For any objects s and s′, we ask for the data of a continuous bilinear map

⊔ ∶ E(s) ×E(s)→ E(s ∐ s′) ,

compatible with associativity of cartesian products. We require that E(∅) ∶= K, and the union map
⊔ ∶ E(∅) ×E(s)→ E(s) is specified by 1 ⊔ v = v.

We need a few more notations before presenting the glueing axiom. If g ≥ 0 and n ≥ 1 are such
that 2g − 2 + n ≥ 2, we introduce the set K(g, n) of (0,3)-excisions. It collects the following objects

I (g − 1, n + 1).

I’ for each j ∈ J2, nK, a copy of the object (g, n − 1) which we denote (g, n − 1)j .

II for each ordered partition J ∪ J ′ = J2, nK and ordered pair (h,h′) such that h + h′ = g such that
2 − 2h − ∣J ∣ < 0 and 2 − 2h′ − ∣J ′∣ < 0, a copy of the object ((h,1 + ∣J ∣), (h′,1 + ∣J ′∣)), which we
denote ((h,1 + J), (h′,1 + J ′)).

To any σ ∈ SJ2,nK and κ ∈ K(g, n), we assign a morphism σ̃ ∶ κ → κσ between κ and an object
κσ ∈ K(g, n) in the following way.

I Let ϕ ∶ J3, n + 1K→ J2, nK defined by ϕ(k) = k − 1. We take (g − 1, n + 1)σ ∶= (g − 1, n + 1), and σ̃
is the morphism ϕ ○ σ ○ ϕ−1.

I’ Let ϕ be the unique strictly increasing map from J2, n− 1K to J2, nK∖ {j}. σ̃ is a morphism from
the j-th copy of (g, n−1) to the σ(j)-th copy, and seen as an automorphism of the single object
(g, n − 1) in Bord●1, it is ϕ ○ σ ○ ϕ−1.

II If K is an ordered set, let ϕK the unique strictly increasing map from K to J2,1+ ∣K ∣K. We take
((h,1 + J), (h′,1 + J ′))σ ∶= ((h,1 + σ(J)), (h′,1 + σ(J ′))) and σ̃ considered as an automorphism
of the single object ((h,1 + ∣J ∣), (h,1 + ∣J ′∣)), is (ϕσ(J) ○ σ ○ ϕ−1

J ) ∐ (ϕσ(J ′) ○ σ ○ ϕ−1
J ′ ).
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If κ = (gi, ni)i∈I is an element of K(g, n), we denote Eπ(κ) ∶= ∏i∈I E(gi, ni). From the previous
construction, each σ ∈SJ2,nK induces morphisms Eκ,σ ∶ Eπ(κ)→ E(κσ) for any κ ∈ K(g, n).

Glueing axiom. For any (g, n) such that 2g − 2 + n ≥ 2 and any κ ∈ K(g, n), we ask for the data of
continuous (multi)linear glueing map Θκ ∶ E(0,3) ×Eπ(κ) → E(g, n) which are compatible with the
action of SJ2,nK on the second factor of the source, and on E(g, n).

Definition 6.2 A strict initial data is a quadruple (A,B,C,D) such that

A,C ∈ E(0,3)S2 , B2 ∈ E(0,3), D ∈ E(1,1).

Let (A,B,C,D) be a strict initial data for a strict target theory E ∶ Bord●1 → C.

Definition 6.3 We define the strict GR amplitudes as follows.
We put $∅ ∶= 1 ∈ K, $0,3 ∶= A and $1,1 ∶=D.
If 2g − 2 + n ≥ 2, we seek to define inductively

$g,n ∶=
n

∑
j=2

Θ(g,n−1)j(Bj ,$g,n−1)

+ 1
2
Θ(g−1,n+1)(C,$g−1,n+1) + 1

2

stable

∑
h+h′=g

J∪J ′=J2,nK

Θ((h,J),(h′,J ′))(C,$h,∣J ∣,$h′,∣J ′∣) , (30)

where the middle sum is restricted to terms which are not involving the (non-defined) (0,1) or (0,2).
For disconnected objects, we put $(gi,ni)i∈I ∶= ⊔i∈I $gi,ni .

Proposition 6.4 (g, n)↦$g,n ∈ E(g, n) is a well-defined, functorial assignment element. In partic-
ular, $g,n is invariant under the action of Aut(g, n) =Sn−1.

Proof. The proof proceeds by induction, and is very easy. Indeed, the only terms in (30) which
may not already be symmetric thanks to the induction hypothesis is Θ(g,n−1)j(Bj ,$g,n−1) indexed by
j ∈ J2, nK, but the required properties of the glueing maps imply that the automorphism group SJ2,nK

of (g, n) just permutes these terms. ∎

6.2 Sums over fatgraphs

We resume the discussion of Section 3.5. Recall that any G ∈ Gg,n1 determines a pair of pants decom-
position, with ordered pair of pants (P1, . . . , P2g−2+n), as well as a type map X ∶ J1,2g − 2 + nK →
{A,B,C,D}. In a strict target theory E, we can assemble a glueing morphism

ΘG ∶
3g−3+n
∏
i=1

E(Pi)Ð→ E(g, n).

Unfolding the recursive definition (30) as we did in Section 3.5 (without the complications due to
homotopy class considerations) yields

Proposition 6.5 Let (A,B,C,D) be an admissible initial data for a strict target theory E. For any
stable (g, n), the strict GR amplitude take the form

$g,n = ∑
G∈Gg,n1

ΘG((XPi)
3g−3+n
i=1 ).

∎
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6.3 From GR to strict GR

Assume E is a target theory satisfying the uniform convergence axiom. We can construct from E a
strict target theory E. This is done by choosing, for each (g, n), a reference surface Σg,n in Bord●1
and set

E(g, n) ∶= E(Σg,n)Γ∂(Σg,n) .

The action of Γ(Σg,n) on E(Σg,n) factors into an action of Sπ0(∂+Σg,n) on E(g, n). Making the extra
choice of an identification π0(∂+Σg,n) ≃ J2, nK, this group defines the action of SJ2,nK on E(g, n), hence
defining a functor E ∶ Bord●1 → C.

We induce union maps for E from the union maps on E in the obvious way. To define glueing
maps for E, we assemble the glueing maps for E. More precisely, if κ ∈ K(g, n), let Σκ denote,
among the reference surfaces we have chosen, the one with topology κ. We let C(Σg,n, κ) ⊂ C(Σg,n)
be the set of homotopy classes c such that there exists a bijection p ∶ π0(Σκ) → π0(Σ − Pc), which
respects the ordering of connected components when Σκ is disconnected, together with isomorphisms
ϕc ∶ Σ0,3 → Pc and ψc ∶= (ψc,S ∶ S → p(S))

S∈π0(Σκ)
in Bord●1. For each c ∈ C(Σg,n, κ) we pick such

a (p,ϕc, ψc), and remark that any other choice is related to (ϕc, ψc) by postcomposition with pure
mapping classes on the connected components of Σ0,3 ∪Σκ. Then, due to the convergence axiom and
Lemma 3.7

Θκ ∶= ∑
c∈C(Σg,n,κ)

Θc ○ (E(ϕc),E(ψc,S)S∈π0(Σκ)) (31)

is a well-defined multilinear map from E(Σ0,3) ×Eπ(Σκ) → E(Σg,n), which does not depend on the
choices of (p,ϕc, ψc) as above. Since we assumed the uniform convergence axiom, this is in fact a
continuous map. And, as all elements in the sum (31) are related by action of pure mapping classes
of Σg,n, Θκ actually takes values in E(g, n).

Using the short argument above Lemma 3.7 to work only with reference surfaces, we find by
construction of (31)

Corollary 6.6 Assume E is a target theory, together with an initial data (A,B,C,D), and denote Ω

be the outcome of GR. Construct a (non-canonical) strict target theory E as above, induce E-valued
initial data by specialising (A,B,C) to the reference Σ0,3 and D to the reference Σ1,1, and denote ω
the outcome of strict GR. Then for stable (g, n), $g,n = ΩΣg,n ∎

We note that the above construction is non-canonical as it involves the choice of reference surfaces
Σg,n. However, if the target theory E is such that Γ(Σ) acts trivially E(Σ), the construction is
independent of these choices and therefore canonical.

More generally, we have by an argument similar to Proposition 3.8

Proposition 6.7 Let E be a target theory, E a strict target theory, and η ∶ E⇒ E a natural transfor-
mation which is compatible with the union and glueing morphisms. If I = (A,B,C,D) is an E-valued
admissible initial data, then η(I) is a strict initial data, and we have the relation between corresponding
GR and strict GR amplitudes

ωη(I) = η(ΩI).

6.4 Strict symmetric GR

One can also formulate a symmetric version of the strict GR. The category Bord●s is constructed
in the same way as Bord●s , except that we now define automorphisms in this category by choosing
braiding representatives for each permutation of J1, nK, hence replace everywhere the groups SJ2,nK
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with SJ1,nK ≅ Sn. Strict symmetric target theories in this context are functors E ∶ Bord●s → C

satisfying axioms parallel to § 6.1.

Definition 6.8 Initial data for strict symmetric GR is a quadruple (A,B,C,D) where

A ∈ E(0,3)S3 , B ∈ E(0,3), C ∈ E(0,3)S{2,3} , D ∈ E(1,1) .

We also require that the initial data satisfies the 4 relations below. The first three ones involve glueing
maps in (0,4), the last one glueing maps in (2,1), and σi,j stands for the transposition of i and j.

BA relation.

(σ1,2 − Id)(Θ(0,3)2(B,A) +Θ(0,3)3(B,A) +Θ(0,3)4(B,A)) = 0 .

BB-AC relation.

(σ1,2 − Id)(Θ(0,3)2(B,B) +Θ(0,3)3(B,B) +Θ(0,3)4(C,A)) = 0 .

BC relation.

(σ1,2 − Id)(Θ(0,3)2(B,C) +Θ(0,3)3(C,B) +Θ(0,3)4(C,B)) = 0 .

D relation.
(σ1,2 − Id)(Θ(1,1)(B,D) + 1

2
Θ(0,3)(C,A)) = 0 .

Given a strict symmetric target theory and initial data, we define$s ∈ E(s) for any object s ∈ Bord●s
by the same formulas as in Definition 6.3.

Proposition 6.9 For any stable (g, n), $g,n is a well-defined element of E(g, n)Sn . In other words,
s↦$s is a functorial assignment from Bord●s .

Proof. The proof uses the same recollection of terms as done in the proof of functoriality of the
symmetric GR in Theorem 5.3, with only (heavily simplifying) difference that we do not have to carry
the sums over homotopy class: each of them is replaced by one of our (0,3)-glueing maps, as is already
apparent in comparing the 4 relations here to the 4 relations in § 5.1. ∎

As explained for GR/symmetric GR in § 5.3, strict symmetric GR inherits the properties of strict
GR described in Section 6.3 in the obvious way, upon replacing everywhere SJ2,nK by Sn allowing the
permutation of all boundary components in Σg,n.

7 Relation to topological recursion

This section gives examples of strict symmetric GR which demonstrate that the topological recursion
(TR) and its many variants are particular cases of the strict symmetric GR. There is nothing really
new here, but we include these examples for pedagogical reasons. The most obvious class of example
comes from two-dimensional topological quantum field theories (TQFTs). We then explain separately
the class of examples governing the original topological recursion of [23] which is based on the geometry
of complex curves, and the Kontsevich-Soibelman approach to topological recursion (KS-TR) [37, 2]
based on algebraic structures called “quantum Airy structures”. Although KS-TR contains the other
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two examples as particular cases, it is instructive to see in each different language how the target
theory should be formed.

The strict GR can be described in some sense as a (possibly non-symmetric) generalisation of the
topological recursion (TR) of [23, 37] in which the glueing maps are allowed to “increase complexity”,
aligning with the possibly increasing complexity of the spaces E(g, n) when 2g − 2+n increases. This
should be compared with Section 7.1-7.2 where they do not depend on g. Adopting this perspective,
we may say in light of Corollary 6.6 that a natural transformation from a target theory to a strict
target theory maps a GR to a TR. The richer structure which appears in the construction of GR due
to infinite sums over homotopy class mapping class group considerations is not seen at the level of the
corresponding TR, as everything has been incorporated into finitely many glueing maps.

Conversely, if we start from a strict target theory E and initial data, we will describe in § 10.3
a way to construct some target theory E and initial data such that GR recomputes the outcome
of strict GR. This is based on the idea of fibering E over Teichmüller spaces, and on Mirzakhani’s
generalisation of McShane identity.

We nevertheless stress that target theories are allowed to contain much more information than their
strict counterpart. Indeed, they are functors from the category Bord●1 which reflects (2+1)-dimensional
topology (surfaces and their mapping classes) while Bord●1 only reflects 2-dimensional topology and
therefore has a simple combinatorial structure. The spaces E(Σ) in which one can choose to work
often have an interesting geometric meaning, and do come naturally (functorially) with non-trivial
mapping class group actions. This meaning is carried to the elements ΩΣ we produce by GR. The gain
between GR and strict GR will become clear in Chapter II (and III), where we construct and use the
first non-trivial examples of target theories based on the topology (the geometry) on the Teichmüller
spaces, and provide examples of natural transformations from GR to strict GR (in application of
Proposition 6.7) by integration over moduli spaces.

7.1 Example from 2d TQFTs

We consider 2d TQFTs in the category VectC of finite-dimensional complex vector spaces to illustrate
the idea – which is standard and elementary – but one may try to adapt a similar construction for
more fancy, higher-categorical notions of TQFTs.

A 2d TQFT is equivalent to the data of a unital Frobenius algebra A, i.e. an object in VectC

equipped with a pairing and a commutative associative product which is invariant for the pairing –
see e.g. [7, 1]. Using the pairing, we have canonical identifications between A and A∗, and therefore
distinguished elements

b† ∈ Hom(Sym2(A∗),C), µ ∈ Sym3(A∗) ,

representing the pairing and the product. The TQFT amplitudes are the element

Fg,n ∈ Hom(A⊗n,C)

defined for any (g, n) as follows. Take a pair of pants decomposition (P1, . . . , P2g−2+n) of a connected
surface of genus g with n boundaries, and form the tensor product

(
2g−2+n
⊗
i=1

µ) ∈ (A∗)6g−6+3n.

Then, each time Pi has a common boundary component with Pj , we use the pairing to contract a
copy of A in the i-th factor together with a copy of A in the j-th factor. This makes a total of
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3g − 3 + n pairings, so we are left with an element of (A∗)⊗n = Hom(A⊗n,K) which is by definition
Fg,n. The axioms of a Frobenius algebra justify that the result is independent of the choice of pair of
pants decomposition, and thus only depends on g and n, and is symmetric under permutation of the
n remaining factors of A.

Strict symmetric target theory. VectC is a rather simple full subcategory of our category C.
For each stable (g, n), we choose E(g, n) = Hom(A⊗n,K). The union map comes from the tensor
product (in this case the functor E is monoidal) and the morphisms are composition of tensors –
using as many times as necessary the canonical identification A ≅ A∗.

Initial data. We take A = B = C = µ representing the product. We also take D = ⟨H, ⋅⟩ where
H ∶= ∑i e2

i in terms of an orthogonal basis (ei)i. The four relation characterising a symmetric initial
data are satisfied because, in each of them, each of the three terms in the left-hand side are separately
symmetric under the permutation σ1,2 due to the properties of the product.

The amplitudes. With this initial data, it is easy to see that $1,1 = F1,1 = D, and to prove
recursively that, if one writes the $g,n as sum over the set Gg,n of fatgraphs described in Section 3.5,
each term uniquely defines a topological class of pair of pants decomposition, and the value assigned
to each fatgraph is by construction the TQFT amplitude Fg,n – computed with help of this pair of
pants decomposition. So, for any 2g − 2 + n > 0, the strict GR amplitudes are

$g,n = ∣Gg,n1 ∣Fg,n.

7.2 Example from quantum Airy structures

Another class of examples of strict symmetric GR is provided by the approach of Kontsevich-Soibelman
approach to topological recursion [37, 2].

We first outline this theory. Let V be a K-vector space, which we here assume to be finite-
dimensional for simplicity, but one could easily handle infinite-dimensionality if equipped with fil-
trations by finite-dimensional subspaces. Let Wh̵

V be the Weyl algebra of V , i.e. the unital algebra
generated over K[[h̵]] by T ∗V = V ⊕ V ∗ with relations

∀(v, λ) ∈ V × V ∗, [v, λ] = h̵ λ(v) ∈ K[[h̵]].

Definition 7.1 A quantum Airy structure is the data of a linear map L ∶ V →Wh̵
V such that there

exists a basis (xi)i∈I of linear coordinates on V in which L takes the form

Li = h̵∂xi − ∑
a,b∈I

1
2
Aia,bxaxb − h̵Bia,bxa∂xb − h̵2

2
Cia,b∂xa∂xb − h̵Di ,

and satisfies Lie algebra relations

∀(i, j) ∈ I2, [Li, Lj] =∑
a∈I

fai,j La (32)

for some scalars Aij,k = Aik,j, Bij,k, Cij,k = Cik,j, Di and fki,j = −fkj,i.

This notion is closely related to the quantisation of Lagrangians in T ∗V which are osculating to
the zero section and defined by quadratic equations. The constraints (32) imposes relations on the
coefficients of L.

Lemma 7.2 [2] Equation (32) is equivalent to the system of equations indexed by i, j, k, ` ∈ I
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● Aij,k = A
j
i,k.

● fki,j = Bij,k −B
j
i,k.

● ∑a∈I Bij,aAak,` +Bik,aA
j
a,` +Bi`,aA

j
a,k = (i↔ j).

● ∑a∈I Bij,aBak,` +Bik,aB
j
a,` +Ci`,aA

j
a,k = (i↔ j).

● ∑a∈I Bij,aCak,` +Cik,aB
j
a,` +Ci`,aB

j
a,k = (i↔ j).

● ∑a∈I Bij,aDa + 1
2 ∑a,b∈I C

i
a,bA

j
a,b = (i↔ j).

The third, fourth and fifth relation have the same index structure, and take the form of H-I-X
relations. This was explained from a Lie algebraic perspective in [2]. The structure of the axioms for
the initial data of a symmetric GR was modelled on these relations, and give them a geometric content
as coming from different pair of pants decomposition of a sphere with four boundaries. In fact, we
have chosen to define the BB-CA relation (23) to stick with Lemma 7.2, instead of the (29), which
appeared in Remark 5.4 as an alternative sufficient condition to prove invariance under braidings of
the symmetric GR.

Remark 7.3 These relations implied by the quantum Airy structure are the motivation for choosing
to define the BB-CA relation instead of the relation 29 for defining symmetric initial data. Indeed,
only the BB-CA relation imply this set of equations by going to the strict case.

We can also assemble the coefficients of a quantum Airy structure into tensors

A ∈ Hom(V ⊗3,1), B ∈ Hom(V ⊗ V,V ), C ∈ Hom(V,V ⊗ V ), D ∈ Hom(V,K)

and the relations in Lemma 7.2 are then tensorial relations, where the sum over intermediate indices
are replaced by composition of linear maps.

To any quantum Airy structure, one may associates amplitudes Fg,n ∈ Hom(V ⊗n,K) in the follow-
ing way.

Theorem 7.4 Let L be a quantum Airy structure. There exists a unique F ∈ h̵−1(SymV ∗)[[h̵]]
without constant term, which we can decompose into

F = ∑
g≥0
n≥1

h̵g−1

n!
Fg,n, Fg,n ∈ SymnV ∗ ,

and such that F0,1 = 0, F0,2 = 0 and

∀i ∈ I, Li ⋅ exp(F ) = 0.

In fact, Fg,n is uniquely determined by the initial data F0,3 = A and F1,1 = D, and a recursion on
2g − 2 + n > 0. If we denote (ei)i∈I the basis of V mentioned in Definition 7.1, and

Fg,n[i1, . . . , in] ∶= Fg,n(ei1 ⊗⋯⊗ ein),

this recursion takes the form

Fg,n[i1, . . . , in] =
n

∑
m=2

∑
a∈I

Bi1im,aFg,n−1[a, iJ2,nK∖{m}] (33)

+ ∑
a,b∈I

1
2
Ci1a,b(Fg−1,n+1[a, b, iJ2,nK] + ∑

J∪J ′={i2,...,in}
h+h′=g

Fg,1+∣J ∣[a, J]Fg′,1+∣J ′∣[b, J ′]) .
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exp(F ) is sometimes called the partition function or wave function, and this theorem characterises
it as the solution of differential constraints forming a Lie algebra. The only point which may not be
obvious is the existence of F – which amounts to prove symmetry of the Fg,n obtained by the recursion
(33). This theorem is proved by general holonomicity argument in [37], and by direct computation
from Lemma 7.2 in [2].

Target theory. For any stable (g, n), we put E(g, n) = Hom(V ⊗n,K). The union map is provided
by the tensor product, and the glueing map by the composition of linear maps.

The amplitudes. The constraints on the tensors (A,B,C,D) described in Lemma 7.2 are exactly
the ones characterising symmetric initial data. This is in fact the reason why we have postulated
these relations in Definition 6.8, as well as their non-strict counterpart in Definition 5.1. The proof
of Theorem 5.3 (of which Proposition 6.9 was a direct consequence) follows the same scheme as the
proof of symmetry of Fg,n in [2], except that it incorporates homotopy class considerations (which in
the strict version are absent). Comparison of (33) with Definition 6.3 shows directly that Fg,n =$g,n.

7.3 Example from spectral curves

We now come back to the original topological recursion of [26] and show it provides an example of
strict symmetric GR. Although it is known from [37, 2] that it is a particular case of the formalism of
Kontsevich-Soibelman, its presentation of the original topological recursion is usually different as it
involves the geometry of complex curves instead of algebras. We think it is also instructive to explain
directly in the language of spectral curves how one can propose a strict target theory for which the
topological recursion will coincide with the strict GR.

The starting point in [23, 26] is the data of

● a spectral curve, i.e. a compact Riemann surface Σ equipped with two meromorphic functions
x, y, such that x ∶ S → P1 is a simple branched cover. We denote r the divisor of the zeroes of
dx. We assume that dy has no zeroes on r. ∆ ∶= {(z, z) ∈ S2 ∣ z ∈ S} the diagonal divisor, and
ω0,1 ∶= ydx.

● a fundamental bidifferential of the second kind, i.e. ω0,2 ∈ H0(S2,K⊠2
S (2∆))S2 such that the

biresidue of ω0,2 at ∆ is 1.

Let U ⊂ S be a small enough neighbourhood of r, equipped with the holomorphic involution transfor-
mation ς ∶ U → U which exchange the sheets meeting at r ∈ r. We introduce the recursion kernel

K(z1, z) ∶=
1

2

∫
z
ς(z) ω0,2(z1, ⋅)

(y(z) − y(ς(z)))dx(z)
.

The topological recursion of [26] is by definition

ωTR
g,n(z1, . . . , zn) = Res

z→r
K(z1, z)(ωg−1,n+1(z, ς(z), z2, . . . , zn) (34)

+
stable

∑
h+h′=g

J∪J ′=J2,nK

ωh,1+∣J ∣(z, (zj)j∈J)⊗ ωh′,1+∣J ′∣(ς(z), (zj)j∈J ′)) ,

where (zj)j∈J and (zj)j∈J ′ are ordered tuples of variables in agreement with the ordering of J and J ′

as subsets of J2, nK. It is known that ωg,n inductively defined in this way for 2g − 2 + n > 0 are such
that

ωg,n ∈H0(Sn,KS((6g − 6 + 4n)r)⊠n)Sn . (35)
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Formula (34) already resembles strongly (30), so we just have to rephrase it in the language of the
strict geometric recursion.

Target theory. For each stable (g, n), we put

E(g, n) ∶= { H0(S3, (KS(2r + p))⊠3) if (g, n) = (0,3)
H0(Sn, (KS((6g − 6 + 4n)r)⊠n)) otherwise

(36)

where p is the divisor of poles of dx. The cutoff of the order of poles is not essential, but it makes
E(g, n) finite-dimensional and thus simplifies our exposition. In particular, continuous multilinear
maps ∏i∈I Vi → W can be traded for linear maps ⊗i∈I Vi → W . We needed to take a larger space
E(0,3) than appearing in (35), since it should host A, B and C. We will see that this choice allows
to circumvent the fact that K(z0, z) is only defined for z in a neighbourhood of r, and the presence
of a pole at coinciding points in ω0,2(z, z′). For (gi, ni)mi=1, we just take

E((gi, ni)i∈I) ∶=
m

⊗
i=1

E(gi, ni)

with the identity as union map.

Glueing maps. Let v = v(z1, z2, z3) ∈ E(0,3), and for each κ ∈ K(g, n), wκ be an element of E′(κ).
We take

Θ(g−1,n+1)(v,wg−1,n+1)(z1, . . . , zn) ∶= Res
z→r

2K(z1, z) v(z1, z, ς(z))
dx(z1)(dx(z))3

wg−1,n+1(z, ς(z), z2, . . . , zn) ,

Θ(g,n−1)i(v,wg,n−1) ∶= Res
z→r

K(z1, z) v(z1, zi, z)
dx(z1)dx(zi)dx(z)

(ω0,2(zi, z)wg,n−1(ς(z), z2, . . . , ẑi, . . . , zn)

+ω0,2(zi, ς(z))wg,n−1(z, z2, . . . , ẑi, . . . , zn)) ,

Θ(h,J),(h′,J ′)(v,wh,∣J ∣,wh′,∣J ′∣) ∶= Res
z→r

K(z1, z) v(z1, z, ς(z))
dx(z1)(dx(z))3

(wh,∣J ∣(z, (zj)j∈J)wh′,∣J ′∣(ς(z), (zj)j∈J ′)

+wh,∣J ∣(ς(z), (zj)j∈J)wh,∣J ′∣(z, (zj)j∈J ′)) .

It is easy to check that these glueing maps indeed take values in E(g, n), and satisfy the axioms of a
symmetric strict target theory.

Initial data. We take

A(z1, z2, z3) ∶= Res
z→r

ω0,2(z1, z)ω0,2(z2, z)ω0,2(z3, z)
dy(z)dx(z) ,

B(z1, z2, z3) ∶= dx(z1)dx(z2)dx(z3),
C(z1, z2, z3) ∶= dx(z1)dx(z2)dx(z3),

D(z1) ∶= Res
z→r

1

2

∫
z
ς(z) ω0,2(⋅, z1)

(y(z) − y(ς(z)))dx(z)
ω0,2(z, ς(z)).

A = ω0,3 is an element of H0(S3, (K3
S(2r))⊠3)S3 ⊂ E(0,3)S3 . The choice of B and C is ad hoc and all

the non-trivial part about them has been transferred to the glueing maps they are always used with.
D = ω1,1 is an element of H0(S,KS(4r)).

Lemma 7.5 [2, Section 4.4] These (A,B,C,D) satisfy the 4 relations making them a symmetric
initial data.

Almost by construction, we have
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Proposition 7.6 For stable (g, n), ωTR
g,n coincide with the strict symmetric GR amplitudes $g,n with

target theory and initial data as above. ∎

It is easy to see that the variants of the topological recursion already existing in the literature and
motivated by applications – base curve C or C∗ and S non-compact in Hurwitz theory [13, 9, 22],
Gromov-Witten theory [12, 27, 28, 29], knot theory [15, 16, 8], statistical mechanics on the random
lattice [10], base curve of higher genus in the context of Hitchin fibration [44], local spectral curves in
[11], all fit in the framework of the strict symmetric GR as well.

7.4 From spectral curves to quantum Airy structures

The formalism of Section 7.3 is a particular case of the formalism of Section 7.2 by decomposing the
multidifferentials ωg,n(z1, . . . , zn) in a basis of meromorphic 1-forms. We review this correspondence
as it allows us a new observation, whose meaning will be questioned in Section 10.5.

Although we restrict to the case where S has only one ramification point to simplify the exposition,
the discussion would also be valid for several ramification points.

By changing the local coordinate, we can always assume that the ramification point is located at
z = 0, and that the branched cover map is locally x = z2

2
+ x0 for some constant x0. We introduce for

k ≥ 0

ξ∗(z) = z2k+1

2k + 1
,

and define the family of odd meromorphic 1-forms (ξk)k≥0 by

ξk(z0) = Res
z→0

(∫
z

0
ω0,2(⋅, z0))

(2k + 1)dz
z2k+2

.

As a matter of fact, we have

ξk(z) =
(2k + 1)dz
z2k+2

+O(dz) ,

and the expansion near the ramification point

ωodd
0,2 (z1, z2) ∶= 1

2
(ω0,2(z1, z2) − ω0,2(−z1, z2)) = ∑

k≥0

dξ∗k(z1) ξk(z2) . (37)

We remark that ωodd
0,2 has double poles at z1 = ±z2, without residues, and one can show via direct

computation of the Taylor expansion near 0 that it is still symmetric in its two variables.
We also introduce

Υ(z) = −2 z2dz

ω0,1(z) − ω0,1(−z)
= ∑
k≥0

Υ2kz
2k ,

and give a name to the leading coefficient in ξ0

ξ0(z) =
dz

z2
+ ξ0,0dz +O(zdz) .

Let us define for i, j, k ≥ 0 the scalars

Aij,k = Res
z→0

ξ∗i (z)dξ∗j (z)dξ∗k(z)
Υ(z)
z2dz

,

Bij,k = Res
z→0

ξ∗i (z)dξ∗j (z) ξk(z)
Υ(z)
z2dz

,

Cij,k = Res
z→0

ξ∗i (z) ξj(z) ξk(z)
Υ(z)
z2dz

,

Di
j,k = δk,0(ξ0,0Υ0 + 1

8
Υ2) + δk,1 Υ0

24
.

The following comparison statement is proved in [37, 2].
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Theorem 7.7 (A,B,C,D) defines a quantum Airy structure, and its amplitudes Fg,n (Theorem 7.4)
are the coefficients of decomposition of ωg,n defined in (34)

ωg,n(z1, . . . , zn) = ∑
k1,...,kn≥0
∑i ki≤3g−3+n

Fg,n[k1, . . . , kn]
n

∏
i=1

ξki(zi) .

We now come to our new observation, which we will return to in Section 10.5. Let us transform
the tensors (A,B,C) into multidifferentials. Taking advantage of (37), we define

Â(z1, z2, z3) = ∑
i,j,k≥0

Aij,k ξi(z1)ξj(z2)ξk(z3) ,

B̂(z1, z2, z3) = ∑
i,j,k≥0

Bij,k ξi(z1)ξj(z2)dξ∗k(z3) ,

Ĉ(z1, z2, z3) = ∑
i,j,k≥0

Cij,k ξi(z1)dξ∗j (z2)dξ∗k(z3) .

Lemma 7.8 We have the relation

B̂(z1, z2, z3) + B̂(z1, z3, z2) = Â(z1, z2, z3) + Ĉ(z1, z2, z3) .

Proof. We deduce from the definitions of (A,B,C) that

Â(z1, z2, z3) = Res
z→0

(∫
z

0
ωodd

0,2 (⋅, z1))ωodd
0,2 (z, z2)ωodd

0,2 (z, z3)Υ(z) ,

B̂(z1, z2, z3) = Res
z→0,±z3

(∫
z

0
ωodd

0,2 (⋅, z1))ωodd
0,2 (z, z2)ωodd

0,2 (z, z3)Υ(z) ,

Ĉ(z1, z2, z3) = Res
z→0,±z2,±z3

(∫
z

0
ωodd

0,2 (⋅, z1))ωodd
0,2 (z, z2)ωodd

0,2 (z, z3)Υ(z) ,

where the poles at ±z2 and ±z3 occur owing to the ordering condition for the variables in ωodd
0,2 . We

see that the contributions of the various residues satisfy the claimed relation. ∎

In particular, as Â(z1, z2, z3) is a symmetric function of its three variables, Lemma 7.8 may account
for the (so far empirical) observation that in computing with TR, the symmetrisation of some terms
in the residue formula (34) seemed to reconstruct some other terms coming from other parts of the
formula.
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Part II

Geometric recursion with the topology
of Teichmüller spaces
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We shall now produce a number of interesting examples of targets. Typically, depending on the
geometric framework we consider, we may add extra conditions for the nature of the objects in the
image of E.

8 Teichmüller theory background

8.1 Teichmüller spaces

Let Σ be a bordered surface. If we consider the space of smooth metrics modulo conformal equivalence
on Σ, we obtain a space of conformal classes of metrics on Σ, which is a Diff0(Σ) fiber bundle over
Teichmüller space. Here Diff0(Σ) is the group of diffeomorphisms of Σ, which are isotopic to the
identity (see e.g. [18]).

Recall that for Σ stable, TΣ is in bijection with the set of hyperbolic metric on Σ, for which the
boundaries are geodesic, modulo diffeomorphisms which are isotopic to identity. We further recall
that TΣ is a smooth manifold of dimension 6g − 6+ 3n, where g is the genus of Σ and n is the number
of boundary components of Σ.

We denote T∂Σ = Rπ0(∂Σ)
>0 the Teichmüller space associate to the boundary, and p∂ ∶ TΣ → T∂Σ the

induced restriction map. If L is an assignment of positive real numbers to the boundary components
of Σ, we denote TΣ(L) = p−1

∂ (L).
We can of course also describe the Teichmüller space in terms of complex structures on Σ, e.g.

TΣ is also the set of equivalence classes of diffeomorphisms µ from Σ to a bordered Riemann surface
S. If µi ∶ Σ → Si with i = 1,2 are two diffeomorphisms as above, we declare them equivalent if there
exists a biholomorphic map Φ ∶ S1 → S2, such that µ−1

2 ○ Φ ○ µ1 is isotopic to identity on Σ among
such diffeomorphisms. When Σ is stable, the mapping class group ΓΣ acts on the Teichmüller space
TΣ properly discontinuously, and the quotient is the moduli space MΣ.

To any bordered surface Σ there is naturally associated a closed marked surface Σ̃, where each
boundary component of Σ is collapsed to a point. Let P∂ denote the resulting set of marked points on
Σ̃. The Teichmüller space of a marked closed surface, such as Σ̃, TΣ̃, is the space of complete finite
volume hyperbolic metrics on Σ̃−P∂ modulo the diffeomorphisms of Σ̃, which induces the identity on
the finite set of marked points P∂ and which is isotopic to the identity modulo such. This Teichmüller
space is also a manifold of dimension 6g − 6 + 2n and its quotient by the mapping class group ΓΣ̃ is
the usual moduli space MΣ̃ of ∣P∂ ∣-pointed Riemann surfaces of genus g(Σ̃).

8.2 Hyperbolic lengths and Teichmüller distance

If σ ∈ TΣ is a hyperbolic metric and γ is a simple closed curve, there is a unique shortest geodesic in
the homotopy class of γ, and we denote `σ(γ) its hyperbolic length. The length of a multicurve is
by definition the sum of lengths of its components. We recall the famous collar lemma, see e.g. [14,
Section 4.1]

Lemma 8.1 Let Σ be a stable bordered surface, and σ a hyperbolic metric on Σ. Let γ, γ′ ⊆ Σ be two
geodesics, which intersect transversally, and assume γ is simple and closed. If γ is contained in the
interior of Σ and γ′ is closed, then

sinh( `σ(γ)
2

) sinh( `σ(γ
′)

2
) > 1.

If γ is a boundary of Σ, then
sinh( `σ(γ)

2
) sinh(`σ(γ′)) > 1.
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The length spectrum is the sequence (lσ,i)i≥1 of lengths of isotopy classes of simple closed curves
(which are not isotopic to the boundary) in Σ○, in weakly increasing order. The systole is the shortest
of these lengths sysσ ∶= lσ,1. We will exploit the following result.

Lemma 8.2 If σ is a hyperbolic metric on a bordered surface Σ with non-zero boundary lengths, for
any t ∈ [0, `σ(∂Σ)) there exists another hyperbolic metric σ̃ on Σ such that

● t = `σ̃(∂Σ) < `σ(∂Σ).

● lσ̃,i ≤ lσ,i for any i ≥ 1.

● sysσ̃ ≥ min (sysσ,2 ln(1 +
√

2)).

Proof. The two first points can be found in [45, Theorem 3.3]. To get the last one, we need a small
modification of its proof, which was communicated to us by Hugo Parlier. In this argument, by curve
we mean geodesic representative of the homotopy class of a simple closed curve. We first remark that
by the collar lemma, two curves of length ≤ 2 arcsinh(1) = 2 ln(1 +

√
2) cannot intersect. Let σ(0) be

a hyperbolic metric on Σ, and S0 be the set of systoles in Σ0 ∶= Σ. We denote Σ′
0 the surface obtained

by cutting Σ0 along each of the curves which belong to S0. We denote

s0 ∶= min (sysσ(0),2 ln(1 +
√

2)).

We are going to construct for each t ∈ [0, `σ(∂Σ)] a finite set of curves St and hyperbolic metric σ(t)
on Σ such that

`σ(t)(∂Σ) = `σ(∂Σ) − t, ∀i ≥ 1, lσ(t),i ≤ lσ(0),i. (38)

In this process we will always denote Σ′
t the surface Σt cut along the curves in St. We start to decrease

the length as in [45, Theorem 3.3.] on each boundary component of the connected components of
Σ′

0 which does not belong to S0, so that the length spectrum of Σ0 decreases continuously. This
defines a new hyperbolic metric σ(t) satisfying (38) for t ≥ 0 small enough and we keep St ∶= S0. If
for t ∈ [0, `σ(∂Σ)] all curves which are not in St have σ(t)-length > s0, the algorithm terminates.
Otherwise, there exists a minimal t∗ ∈ (0, `σ(0)(∂Σ)) such that some curve(s) in Σ has σ(t∗)-length
s0. We add all of those curves to St (= S0 if t < t∗) to form an updated set St∗ . We then continue
to decrease the length of the boundary components of Σ′

t which are not elements of St, continuously
decreasing the σ(t)-length spectrum, and repeat our update each time we meet curves of σ(t)-length
exactly s0. For any t, the curves collected in St cannot intersect due to the previous observation,
and there are at most 3g − 3 + n non-intersecting curves in the interior of a surface of genus g with n
boundaries. Therefore, ∣St∣ ≤ 3g − 3+n for any t, and S can only be updated finitely many times. The
construction makes sure that for all t, the last requirement sysσ(t) ≥ s0 holds, while (38) meets the
two first requirements. ∎

We also need a well-known estimate on the number of multicurves of bounded length, which we
can make uniform in the boundary length using the previous theorem. The more precise asymptotic
estimate of this number established by Mirzakhani will not be needed here.

Theorem 8.3 Let Σ be a bordered surface of genus g with n boundaries. For any ε > 0, there exists
a constant M(g, n, ε) such that, for any σ ∈ TΣ, the number Nσ(L) of geodesic multicurves of length
at most L on Σ satisfies the bound

∀L ≥ 0, Nσ(L) ≤M(g, n, ε)( ∏
γ∈Ŝ○Σ
`σ(γ)≤ε

1

`σ(γ)
)L6g−6+2n
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In particular, if sysσ ≥ ε, the right-hand side is equal to M(g, n, ε)L6g−6+2n.

Proof. We rely on an intermediate result of Mirzakhani [42, Proposition 3.6]: if Σσ only has punctures
(boundaries of length 0), for any ε > 0, there exists a constant M(g, n, ε) > 0 such that for any
hyperbolic metric we have

Nσ(L) ≤M(g, n, ε)( ∏
γ∈Ŝ○Σ
`σ(γ)≤ε

1

`σ(γ)
)L6g−6+2n. (39)

If σ is a hyperbolic metric on Σ with non-zero boundary lengths, Theorem 8.2 provides us with σ̃ having
zero boundary lengths, such that li,σ̃ < li,σ for any i ≥ 1. A fortiori we must have Nσ(L) ≤ Nσ̃(L) and
sysσ̃ ≥ 2 ln(1 +

√
2). The bound (39) now extends uniformly to hyperbolic metrics assigning positive

lengths to the boundaries. ∎
If Σ has no boundaries and S1 and S2 are two Riemann surfaces diffeomorphic to Σ, a quasicon-

formal map is a smooth map f ∶ S1 → S2 such that k(f) ∶= supS1
∣∂f
∂f

∣ < 1. Its dilation factor is

K(f) ∶= 1+k(f)
1−k(f) . If σ,σ

′ are two hyperbolic metrics on Σ, we let

dT (σ,σ′) ∶= inf { 1
2

lnK(f) ∣ f ∶ Σσ → Σσ′ quasi-conformal}

and it defines a distance, called the Teichmüller distance, making TΣ a complete metric space.

Remark 8.4 If ϕ ∶ Σ→ Σ′ is a morphism between surfaces in the category of bordered surfaces, then
ϕ induces a continuous map TΣ → TΣ′ which is an isometry for the respective Teichmüller distances.

We use this distance to compare lengths of curves with respect to different metrics on Σ.

Theorem 8.5 [55, Lemma 3.1]. Let Σ be a stable surface without boundaries, and γ ⊂ Σ be a simple
closed curve whose homotopy class is non trivial. Let `σ(γ) be the length of the geodesic (for a
hyperbolic metric σ) representative in its homotopy class. Then for any two hyperbolic metrics σ,σ′

on Σ

e−2dT (σ,σ′) ≤ `σ(γ)
`σ′(γ)

≤ e2dT (σ,σ′)

The result is also true if Σ has boundaries, provided we use the Teichmüller distance on TΣd , where
recall that Σd is the surface without boundary obtained by doubling Σ along ∂Σ.

8.3 Teichmüller space of pointed bordered surfaces

We will also need the Teichmüller space of pointed bordered surfaces. Let Σ be a pointed bordered
surface, so we have marked points on the boundary o = (ob), b ∈ π0(∂Σ).

Definition 8.6 The Teichmüller space TΣ for a pointed bordered surface Σ is the set of equivalence
classes of diffeomorphisms µ from Σ to a bordered Riemann surface S. The equivalence relation is as
above, with the change, in the notation from above, that (µ2)−1 ○Φ ○ µ1 restricts to the identity on o
and that isotopies are required to preserve this property.

There is a canonical projection
pΣ ∶ TΣ Ð→ TΣ,

and it is an Rπ0(∂Σ)-bundle.
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Recall that ∆Σ is the group generated by Dehn twists along the boundaries. Its action is free on
TΣ, and the induced projection

p̃Σ ∶ TΣ/∆Σ Ð→ TΣ

is a U(1)π0(∂Σ)-bundle. We denote TΣ/∆Σ by T̃Σ.
When Σ is connected, has genus g with n boundaries (stability requires 2g − 2 + n > 0), T̃Σ is a

smooth manifold of real dimension 6g − 6 + 4n. It will be implicit that all maps considered between
Teichmüller spaces are smooth.

If P is a pair of pants, we get a canonical identification

TP ≅ R3
>0

once we have chosen an ordering of the boundary components of P . If we choose an embedding of
a uni-trivalent Y -graph into (P,∂P ) (see figure ...) and we let o be the univalent vertices of Y and
P = (P, o), then we get canonical identifications

TP ≅ (R>0 ×R)3, T̃P ≅ (R>0 ×U(1))3 .

We denote by (Li, αi)3
i=1 the resulting coordinates on T̃P, and stress that they depend on the embed-

ding of the above mentioned Y -graph.

8.4 The fibrations relevant for glueing and cutting

Let Σ be a stable pointed bordered surface, and γ be a stable oriented pointed multicurve in Σ. We
introduce T̃ =

Σγ ⊂ T̃Σγ , the submanifold along which the connected components of ∂+γΣγ and ∂−γΣγ

have the same length and the image of p∂ followed by the projection onto the factors π0(∂+γΣγ) and
π0(∂−γΣγ) is contained in the diagonal. We let

ιγ ∶ T =
Σγ Ð→ TΣγ

denote the inclusion map. The submanifold T =
Σγ is defined precisely so that we get a smooth fibration

ϑγ ∶ T =
Σγ Ð→ TΣ,

obtained by using the glueing map which is induced from the cutting construction of Σγ .
We can see that T =

Σγ is a principal Rπ0(γ)-bundle over TΣ. Suppose µ ∶ Σγ → S represents a
point in T =

Σγ . Then α ∈ Rπ0(γ) acts by precomposing µ with a diffeomorphism of Σγ , which is the
identity on the complement of a small tubular neighbourhood of ∂+γΣγ ∪ ∂−γΣγ , and which rotates by
the amount `σ(β)α(β) on each of the pairs of boundary components in Σγ corresponding to β ∈ π0(γ),
measured with respect to the hyperbolic metric σ specified by µ. Note that the subgroup generated
by simultaneous Dehn twists along ∂+γΣγ and ∂−γΣγ is identified with the subgroup Zπ0(γ) ⊂ Rπ0(γ).

The fibration ϑγ comes with the action of the exact sequence of groups (3)

1Ð→∆γ Ð→ ΓΣγ Ð→ Stab(γ)Ð→ 1, ∆γ ∶= ∏
β∈π0(γ)

⟨δβ+δ−1
β−⟩.

If we rather consider a subgroup GΣγ of ΓΣγ , which contains ∏β⟨δβ+δ−1
β−⟩, then this is also true if we

replace Stab(γ) by the image of GΣγ in ΓΣ via the projection map in (3). In any case, we denote

q̃γ ∶ T =
Σγ Ð→ T =

Σγ /∆γ
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the quotient map and
ϑ̃γ ∶ T =

Σγ /∆γ Ð→ TΣ

the unique glueing map such that ϑ̃γ ○ q̃γ = ϑγ .
It will be useful to consider the decorated Teichmüller space modding out by the action of all Dehn

twists along the boundaries. In this context, we have an inclusion map

ι̃γ ∶ T̃ =
Σγ Ð→ T̃Σγ

and a glueing fibration
ϑ̃γ ∶ T̃ =

Σγ Ð→ T̃Σ. (40)

Although these symbols are the same as for the maps when we do not divide by Dehn twists along
the boundaries, which one of these maps we refer to with the symbols ι̃γ and ϑ̃γ will be clear from
the context.

But to actually compute with the geometric recursion, we only use this fibration in the case where
γ is the internal boundary of an embedded pair of pants f ∶ P → Σ as in Section 2.5. In case I and
II, γ has two components so U(1)2 acts simply transitively on the fibers of ϑ̃γ , while in case I’, we
rather have U(1) acting simply transitively.

9 Continuous functions on Teichmüller spaces

9.1 On pointed bordered Teichmüller spaces

We shall describe several variants of target theories based on the space of continuous functions on
Teichmüller spaces. We first present the case of continuous functions on T̃Σ, for which we can take
advantage of the proper fibration ϑ̃γ ∶ T̃ =

Σγ → T̃Σ induced by the glueing map ϑ̃γ . The last paragraph
in this section describes the small amendments of this construction which turns C0(TΣ) into a target
theory.

Spaces for the target theory

We let
E(Σ) ∶= C0(T̃Σ) ≅ C0(TΣ)∆Σ (41)

equipped with the topology of convergence on all compact subsets. This is a locally convex, Hausdorff,
complete, topological vector space which is functorial in Σ. We present it as a projective limit of such
spaces as follows.

We introduce the directed set IΣ = R>0. For any ε ∈ IΣ, we introduce

K○
Σ(ε) ∶= {σ ∈ T̃Σ ∣ sysσ ≥ ε}, K∂

Σ(ε) = {σ ∈ T̃Σ ∣ ∀b ∈ π0(∂Σ), `σ(b) ≥ ε}.

Beware that the notation ○ does not stand here for the interior, but rather reminds the reader that
this set controls lengths of curves in the interior of Σ. We also introduce the ε-thick subset of TΣ

KΣ(ε) ∶=K○
Σ(ε) ∩K∂

Σ(ε). (42)

The sets K○
Σ(ε) and K∂

Σ(ε) are stable under the action of the mapping class group, and allow arbi-
trarily large and small boundary lengths, and for this reason they are not compact. Note that if P is
a pair of pants, KP(ε) =K∂

P(ε).
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We then take
Eε(Σ) ∶= C0(KΣ(ε)).

On this space, we define the functorial exhaustive family of seminorms indexed by the set A ε
Σ of

compact subsets of KΣ(ε), such that

∀K ∈ A ε
Σ, ∣f ∣K ∶= sup

σ∈K
∣f(σ)∣.

This gives Eε(Σ) the structure of a locally convex, Hausdorff, complete topological vector spaces, and
we have continuous restriction maps Eε(Σ) → Eε

′(Σ) whenever ε < ε′. One then easily checks that
E(Σ) in (41) is the projective limit of these spaces over the directed set R>0. Recalling the notations
of Definition 3.3, we also have seminorms

∥f∥ε = sup
σ∈KΣ(ε)

∣f(σ)∣

and a subspace
E′(Σ) = {f ∈ C0(T̃Σ) ∣ ∀ε > 0, ∥f∥ε < +∞}.

Length functions

For any ε > 0 and K a compact subset of KΣ(ε), we use the hyperbolic length `σ to define the
length functions,

∀γ ∈ SΣ, lK(γ) = min
σ∈K

`σ(γ). (43)

Since K is compact, Lemma 8.2 shows that for any σ ∈K, there exists a constant cK ∈ (0,1) such that

cK `σ(γ) ≤ lK(γ).

As the systole is bounded below by construction on each KΣ(ε), we deduce that the length functions
(43) satisfy the lower bound axiom. We also deduce that the number of γ ∈ S○Σ with lK ≤ L is bounded
from above by Nσ(L/cK). Consequently, Theorem 8.3 guarantees they also satisfy the polynomial
growth axiom. Note that, as KΣ(ε) allows for arbitrarily large boundary lengths, it was important
to obtain an estimate of the number of simple closed curves below a given hyperbolic length which is
uniform with respect to the boundary lengths, and this was achieved thanks to Lemma 8.2.

Union morphisms

As union morphism, we take ⊔ ∶ E(Σ1)×E(Σ2)→ E(Σ1 ∪Σ2) given by f1 ⊔ f2 = q∗1f1 ⋅ q∗2f2, where
qi ∶ E(Σ1 ∪Σ2)→ E(Σi) are the projections. It is clearly continuous.

Glueing morphisms

We now construct the glueing morphisms. With notations from the glueing axiom, if (f1, f2) ∈
E(Σ1) × E(Σ2) and ιγ ∶ T̃ =

Σγ → T̃Σγ denotes the inclusion, ι∗γ(f1 ⊔ f2) is a continuous function on
T̃ =

Σγ . We can then define
Θγ(f1, f2)(σ) ∶= ∫

ϑ̃−1
γ (σ)

ι∗γ(f1 ⊔ f2)dα. (44)

where dα is the measure on the fibers of ϑ̃ with total mass 1 and which is invariant under action of
Rπ0(γ). Equation (44) gives a continuous function of σ ∈ T̃Σ. Since ϑ̃γ is a proper fibration, Θγ is
continuous. It is easily seen that the union and glueing maps satisfy all the compatibility requirements
required for E to be a target theory.
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Admissibility for initial data

Taking into account the uniform comparison from Lemma 8.5 for hyperbolic lengths for two metrics
in any compact subset of Teichmüller space, the decay axiom on initial data (A,B,C,D) takes the
following equivalent form.

We should assume that for any s, ε > 0, there exists a constant M(s, ε) > 0 such that, if P is a pair
of pants with boundaries ∂−P = b1 and ∂+P = b ∪ b′,

sup
σ∈KP(ε)

`σ(b′)s ∣BbP(σ)∣ ≤M(s, ε), sup
σ∈KP(ε)

(`σ(b) + `σ(b′))s ∣CP(σ)∣ ≤M(s, ε) . (45)

GR is well-defined

If (A,B,C,D) are admissible initial data for the target theory C0(T̃Σ) we have just described,
Theorem 3.7 guarantees that GR constructs a well-defined functorial assignment Σ ↦ ΩΣ ∈ E′(Σ).
Note in particular that ΩΣ is uniformly bounded when the boundary lengths go to +∞ (provided the
systole does not go to zero).

If we rather use initial data which are admissible with ℸ-decay at infinity (see Definition 4.1),
Proposition 4.2 shows that ΩΣ can grow at most like ∏β∈π0(∂Σ) ℸ(`σ(β)) when the boundary lengths
go to +∞ (provided the systole remains bounded from below). There are no constraint on the choice
of the function ℸ ∶ R>0 → R>0.

For pedagogical reasons, let us repeat, in outline, the proof of Theorem 3.7 for this particular
target theory.

The idea is to start by proving – thanks to the decay axiom – the absolute convergence of the sums
uniformly over any compact in Teichmüller space. Thanks to Lemma 8.5, it is obtained for instance
by proving first pointwise convergence at a point σ ∈ T̃Σ with help of an upper bound on the zeta
function of σ-hyperbolic lengths coming from Theorem 8.3. Note that this upper bound in fact only
depends on the systole of σ, and may diverge only when the systole approaches zero. As a result,
the pointwise limit (and actually uniform limit over any compact according to the previous remark)
is bounded by a constant that only depends on the systole, i.e. on our lower bound ε on the systole.
This shows that the limit exists in E′(Σ) ⊂ E(Σ). However we do not prove that the series converge
uniformly over the systole subsets KΣ(ε) – this would be wrong4. Indeed, all the terms in our infinite
sums are related by the action of the mapping group. As the sets KΣ(ε) are stable under this action,
all the terms in our sum have equal ∥ ⋅ ∥ε-norm, and therefore the sum of their ∥ ⋅ ∥ε-norm is +∞. Now
that we have convergence on any compact subset, we are free to reshuffle the terms of the sum in an
arbitrary way. As our sums range over mapping class group orbits, the limit must be mapping class
group invariant, and more generally functorial.

9.2 On bordered Teichmuller spaces

A small adaptation of the previous case provides a target theory

E(Σ) = C0(TΣ).

The only notable difference lies in the definition of glueing morphism. We first use the natural
projections p̃Σi ∶ T̃Σi → TΣi to lift any element f ∈ C0(∏2

i=1 TΣi) to an element f̃ ∈ C0(∏2
i=1 T̃Σi

),
and apply the glueing morphism of the previous target theory. Almost by construction, the result is

4A prototype of this phenomenon is that the series x↦ ∑n∈Z exp(−(n+x)2) converges uniformly on any compact to
a 1-periodic continuous function of x ∈ R, but this convergence is not uniform on R.
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a function which is constant over the fibers of p̃Σ, therefore drops to an element of C0(TΣ) which we
define to be Θ(f). In other words

Θ(f1, f2)(σ) = f1(σ1)f2(σ2)

where σi = σ∣Σi . In this context, the GR formula (7) reads

ΩΣ(σ) = ∑
b∈π0(∂+Σ)

∑
c∈Cb1,b(Σ)

BbPc(Lb1 , Lb, `σ(γc))ΩΣc(σ∣Σc) +

+ 1
2 ∑
c∈Cb1,b1(Σ)

CPc(L1, `σ(γ1
c ), `σ(γ2

c ))ΩΣc(σ∣Σc). (46)

Actually, the lift by the projection map p̃Σ gives a natural transformation relating these target
theories

C0(TΣ)Ô⇒ C0(T̃Σ)

and it is compatible with union and glueing morphisms. Following Section 3.4, we can use them to
transport initial data and GR from one target theory to the other.

9.3 Coupling to 2d TQFTs

Let (A, ⋅, ⟨ , ⟩) be a Frobenius algebra, together with an (arbitrary) choice of hermitian norm ∣ ⋅ ∣A.
The previous construction can be adapted to make

E(Σ) = C0(TΣ,A
∗ ⊗A⊗π0(∂+Σ)) or E(Σ) = C0(T̃Σ,A

∗ ⊗A⊗π0(∂+Σ)) (47)

where the glueing morphism now incorporates the product in A, and the norms of these spaces are
provided by the supremum of ∣ ⋅ ∣A on compact subsets.

Another way to describe (47) is to make the tensor product of the strict target theory based on
the 2d TQFT of A, with the aforementioned target theories of continuous functions over Teichmüller
spaces. This tensor product is well-defined because A is a finite-dimensional vector space. When A is
semi-simple, the choice of a canonical basis on A gives a natural choice of hermitian norm on A. This
is a basic example of the fibering procedure described later in Section 10.3.

9.4 Continuous functions of boundary lengths

We can define a strict, partial target theory based on a space of continuous functions of the boundary
lengths. We fix a function ℸ ∶ R>0 → R>0 which will control the allowed behaviour of our amplitudes
when the boundary lengths approach 0 or +∞.

Definition 9.1 We introduce the space C0
ℸ⋅poly(Rn>0) be the space of continuous functions f on Rn>0

for which there exists r > 0 such that

sup
L∈Rn

>0

∣f(L)∣
∏n
i=1(1 +Li)rℸ(Li)

< +∞.

We define a (partial) strict target theory

E(g, n) ∶= { C0(R3
>0) if (g, n) = (0,3)

C0
ℸ⋅poly(Rn>0) otherwise

which we will use in the next paragraph.
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The union morphisms are induced by the product map

⊔ ∶ C0
ℸ⋅poly(Rn1

>0) × C0
ℸ⋅poly(Rn2

>0)→ C0
ℸ⋅poly(Rn1+n2

>0 ), f1 ⊔ f2 = f1 ⋅ f2.

Here we see it is convenient to work with bilinear maps as we do in the category C, rather than to
turn it into a linear map via the tensor product, to avoid discussion of completion issues.

To complete the definition, we should introduce the glueing morphisms. If (g1, n1) and (g2, n2)
are two stable objects which we glue along the last component of (g1, n1) and the first component of
(g2, n2), we define their glueing by

Θ(f1, f2) = ∫
R>0

d` ` f(L1, . . . , Ln1−1, `) g(`,L′2, . . . , L′n2
). (48)

The reason to include an extra factor of ` will appear in the next paragraph. We stress that these
glueing morphisms are only partially defined, on the space of (f1, f2) such that the quantity under the
integral is integrable on R>0. In that case, we say that f1 and f2 are glueable. The glueing morphism
corresponding to glueing of several objects along several components is defined in a similar way.

Let us spell out the definition of strict GR in this context. Initial data consist of functions

A ∈ C0
ℸ⋅poly(R3

>0), B ∈ C0(R3
>0), C ∈ C0(R3

>0), D ∈ C0
ℸ⋅poly(R>0),

with the following symmetries

A(L1, L2, L3) = A(L1, L3, L2), C(L1, L2, L3) = C(L1, L3, L2),

Definition 9.2 We say that (A,B,C,D) is admissible with ℸ-decay for this target theory if there
exists η > 0 such that, for any s ≥ 0 there exists rs > 0 and Ms > 0 such that

sup
(L1,L2,`)∈R3

>0

ℸ(`)`2−η+s ∣B(L1, L2, `)∣
(1 +L1)rs(1 +L2)rsℸ(L1)ℸ(L2)

≤ Ms, (49)

sup
(L1,`,`′)∈R3

>0

ℸ(`)ℸ(`′)(``′)2−η+s ∣C(L1, `, `
′)∣

(1 +L1)rsℸ(L1)
≤ Ms.

The recursive formula for the strict GR reads

$g,n(L1, . . . , Ln) (50)

=
n

∑
m=2

∫
R>0

d` `B(L1, Lm, `)$g,n−1(`,L2, . . . , L̂m, . . . , Ln)

+ 1
2 ∫R2

>0

d`d`′ ` `′C(L1, `, `
′)($g−1,n+1(`, `′, L2, . . . , Ln) + ∑

J∪J ′={L2,...,Ln}
h+h′=g

$h,1+∣J ∣(`, J)$h′,1+∣J ′∣(`′, J ′))

with the conventions $0,1 = 0 and $0,2 = 0 and where (L1, L2, . . . , L̂m, . . . , Ln) stands for
(L1, L2, . . . , Ln) with Lm removed. This formula is just another version of the topological recur-
sion reviewed in Section 7. The initial data plays the role of kernel functions for the integral operators
appearing in the recursion.

Lemma 9.3 If (A,B,C,D) is admissible as in Definition 9.2, then the strict GR is a well-defined
functorial assignment (g, n)↦$g,n ∈ C0

ℸ⋅poly(Rn>0).

Proof. This is proved by induction. Assume the claim has been proved for objects (g′, n′) such that
2g′ − 2 + n′ < 2g − 2 + n. We look at the term B(L1, Lm, `)$g,n−1(`,L2, . . . , Ln). It is integrable near
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`→∞ because the ω factor is O(ℸ(`)`m) for some m > 0 and we estimate B with the bound (49) for
s = m + 1. It is also integrable near 0, because the ω factor is O(ℸ(`)), and we estimate B with the
bound (49) with s = 0. These bounds in fact imply that the outcome of the integration still belongs
to C0

ℸ⋅poly(Rn>0). The other terms are treated in the same way. ∎

A priori, the $g,n are symmetric functions of L2, . . . , Ln only. Sufficient conditions to ensure that
$g,n are symmetric functions of their n variables are provided in Section 6.4. Here they amount to
requiring that A is symmetric in its three variables, and for any L1, L2, L3, L4 > 0,

∫
R>0

d` ` (B(L1, L2, `)A(`,L3, L4) +B(L1, L3, `)A(L2, `,L4) +B(L1, L4, `)A(L2, `,L3)) = (L1 ↔ L2),

∫
R>0

d` ` (B(L1, L2, `)B(`,L3, L4) +B(L1, L3, `)B(L2, `,L4) +C(L1, L4, `)B(L2, `,L3)) = (L1 ↔ L2),

∫
R>0

d` ` (B(L1, L2, `)C(`,L3, L4) +C(L1, L3, `)B(L2, `,L4) +C(L1, L4, `)B(L2, `,L3)) = (L1 ↔ L2),

∫
R>0

d` `B(L1, L2, `)D(`) + 1
2 ∫R2

>0

d`d`′C(L1, `, `
′)A(L2, `, `

′) = (L1 ↔ L2).

9.5 Integrability with respect to Weil-Petersson volume form

In this paragraph, we work with the target E(Σ) = C0(TΣ) and the strict target theory E(g, n) =
C0(Rn>0). If L ∈ Rπ0(∂Σ)

>0 , the moduli space MΣ(L) of bordered Riemann surfaces with hyperbolic
boundary lengths L carries the Weil-Petersson volume form νΣ. The GR amplitudes ΩΣ are mapping
class group invariant functions on TΣ, therefore descend to continuous functions on the moduli space
MΣ of bordered Riemann surfaces. We are going to show that, under suitable conditions on initial
data, the GR amplitudes are integrable with respect to νΣ on MΣ(L), for any L ∈ Rπ0(∂Σ), and their
integration over the moduli space are computed by the strict GR.

In the statement below, Σg,n will be a generic notation for objects in Bord●1 which have genus g
with n boundaries.

Proposition 9.4 Let (A,B,C,D) be initial data for C0(TΣ). We assume that, for any L > 0, D is
integrable over MΣ1,1(L). We also assume that there exists η > 0 such that for any s ≥ 0 there exists
rs > 0 and Ms > 0, such that

sup
(L1,L2,`)∈R3

>0

ℸ(`)`2−η+s∣BΣ0,3(L1, L2, `)∣
(1 +L1)rs(1 +L2)rsℸ(L1)ℸ(L2)

≤Ms,

sup
(L1,`,`′)∈R3

>0

ℸ(`)ℸ(`′)(``′)2−η+s ∣C(L1, `, `
′)∣

(1 +L1)rsℸ(L1)
≤Ms.

Then (A,B,C,D) is admissible with ℸ-decay (see Definition 4.1), and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A(L1, L2, L3) = AΣ0,3(L1, L2, L3)
B(L1, L2, L3) = BΣ0,3(L1, L2, L3)
C(L1, L2, L3) = CΣ0,3(L1, L2, L3)

D(L) = ∫MT (L) νΣ1,1 DΣ1,1

(51)

are admissible initial data with ℸ-decay for C0
ℸ⋅poly(Rn>0) (see Definition 9.2). Let Ω and ω be respec-

tively the GR amplitudes for (A,B,C,D), and the strict GR amplitudes for (A,B,C,D). For any
stable (g, n) and L ∈ Rn>0, we have that

$g,n(L) = ∫
MΣg,n(L)

ΩΣg,n νΣg,n .
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Proof. The admissibility statement is an easy check from the definitions. So, we can apply Lemma 9.3
and the strict GR amplitudes ω are well-defined.

TΣ0,3(L) is a point, so the GR amplitude ΩΣ0,3 ∶= AΣ0,3 coincides with

$0,3(L) ∶= AΣ0,3
(L) = ∫

TP(L)
ΩΣ0,3 νΣ0,3 .

The definition of $1,1(L) =D(L) agrees with the result of integration of ΩΣ1,1
=DT = ΩT.

We now assume that Σ is an object in Bord●1 with Euler characteristic χ(Σ) ≤ −2. We specialise
Proposition 3.9 to the target C0(TΣ), in which the glueing maps are given by (48). Therefore

ΩΣ(σ) = ∑
G∈Gg,n1

∑
ϕ∈MG(Σ)

E(ϕ)(ωG)(σ) (52)

where

ωG(σ) =
2g−2+n
∏
i=1

XPi(`σ(∂Pi)). (53)

We have explained in Section 3.5 that each term in the sum determines uniquely a homotopy class
of pair of pants decomposition P. In this construction, the pair of pants came with an ordering
P = (P1, . . . , P2g−2+n). We also have a type map X ∶ J1,2g − 2 + nK → {A,B,C,D}. For any given P,
we denote γ1, . . . , γ3g−3+n the boundary components of the pair of pants in P, which are interior in Σ.
The length and twists of these curves provide Fenchel-Nielsen coordinates on TΣ, in which the measure
determined by the Weil-Petersson volume form is dνΣg,n = 2dg,n∏3g−3+n

i=1 d`i dθi where dg,n ∶= 3g−3+n.
As (g, n) ≠ (1,1), the stabiliser of P in ΓΣ is generated by the Dehn twists along γi, which acts on the
Fenchel-Nielsen coordinates via

(`j , θj)→ (`j , θj + δj,i`i).

Therefore, a fundamental domain of TΣ(L) for the action of Stab(PG) is

{(`, θ) ∈ (R>0 ×R)3g−3+n ∶ 0 ≤ θi < `i}.

By the integration lemma in [40, Section 8], we have

∫
MΣ(L)

( ∑
G∈Gg,n1

∑
ϕ∈MG(Σ)

∣E(ϕ)(ωG)∣(σ))dνΣ(σ) = 2dg,n ∑
G∈Gg,n1

∫
TΣ(L)/Stab(PG)

∣ωG(σ)∣
3g−3+n
∏
i=1

dθi d`i

where PG is the reference homotopy class of pair of pants decomposition corresponding to G. Remark
that ωG only depends on the lengths `i and the boundary lengths L, so the twists parameters can
be integrated out and contribute to a factor ∏3g−3+n

i=1 `i. Besides, each `i participates at most twice
in the factors XPi . Therefore, the assumptions on (A,B,C,D) guarantees that the integral is finite.
By dominated convergence, this shows that ΩΣ is integrable on MΣ(L), and applying the integration
lemma to (52) yields

∫
MΣ(L)

ΩΣ dν = 2dg,n ∑
G∈Gg,n1

∫
Rk(G)
>0

∏
i∈k(G)

d`i
2g−2+n
∏
i=1

XPi
(`Pi) (54)

where k(G) is the set of curves which are not self-glued in PG, and X is the composition of the type
map X with the obvious map {A,B,C,D} → {A,B,C,D}. We have absorbed the extra factors of
`i resulting from twist integrations in the definition of the underlined quantities, see (51), and the
remaining integration over lengths is the glueing morphism for the strict target theory described in
Section 9.4. The right-hand side of (54) matches with the strict GR amplitudes for the underlined
initial data according to Proposition 6.5. ∎
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9.6 Behaviour at the boundary of Teichmüller space

We consider the behaviour of GR amplitudes in the target theory E(Σ) = C0(TΣ) at the boundary of
the Teichmüller space, i.e. when some curves are pinched.

Proposition 9.5 Let (A,B,C,D) be admissible initial data. Furthermore, we assume that, for any
ε > 0, there exists ςε > 0 and Mε > 0 such that

sup
ε≤Lb1 ,Lb≤ε−1

sup
`≥ε

∣BbP(Lb1 , Lb, `)∣ eςε` ≤ Mε, (55)

sup
ε≤Lb1≤ε−1

sup
`,`′≥ε

∣CP(Lb1 , `, `′)∣ eςε(`+`
′) ≤ Mε. (56)

Let Σ be a stable connected object in Bord●1, and µ be disjoint union of finitely many, non-boundary
parallel and non-pairwise homotopic simple closed curves in Σ. Denote C(Σ, µ) be the set of c which
are homotopy class of embedded pairs of pants Pc such that there exists a connected component µi of
µ for which (∂Pc ∖ ∂Σ) ∩ µi = ∅.

For any ε > 0, there exists a finite constant M ′′
ε > 0 such that, for any σ ∈ TΣ such that the length

of all closed curves in Σ except for the connected components of µ is larger than ε, and the length of
all boundary components is smaller than ε−1, we have

∣ΩΣ(σ) − ∑
c∈C(Σ,µ)

Ω
(c)
Σ (σ)∣ ≤M ′′

ε ∏
µi∈π0(µ)

`σ(µi)4ςε−1−ε

where Ω
(c)
Σ is the term in the GR formula (46) corresponding to c.

Proof. We detail the proof when µ is a simple closed curve in the interior of Σ, as the case of several
components is similar. We denote C′(Σ, µ) the complement of C(Σ, µ) in C(Σ). For any c ∈ C′(Σ, µ),
the (multi)curve γc intersects µ. As µ must at least enter and exit Pc, it must intersects at least twice
γc. By the collar Lemma 8.1, we must have

`σ(γc) ≥ 2wσ(µ) (57)

where wσ(µ) > 0 is the increasing function of `σ(µ) defined by the equation

sinh(wσ(µ)
2

)sinh( `σ(µ)
2

) = 1.

When `σ(µ)→ 0, we have that

wσ(µ) ∼ 2 ln ( 4

`σ(µ)
) (58)

and the left-hand side is always larger than the right-hand side.
Let ε > 0, and σ ∈ TΣ such that the only simple closed curve with length ε is µ. In particular, for

any c ∈ C′(Σ, µ), we have sysσ(Σc) ≥ ε and `σ(β) ≥ ε for any β ∈ π0(∂Pc). Let us also assume that
each boundary component of Σ has length ≤ ε−1. We obtain the upper bound

∣ ∑
c∈C′(Σ,µ)

XPc(`σ(Pc))ΩΣc(σ∣Σc)∣ ≤ ∑
c∈C′(Σ,µ)

Mε e
−ςε`σ(γc)∥ΩΣc∥ε

where X is either a B or a C as in the GR formula, depending on the topology of Σ − Pc. By
construction of GR, ΩΣc is a functorial assignment and has finite ∥ ⋅ ∥ε which only depends on the
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topology of Σc. Since there are finitely many possible topologies, there exists a finite constant M ′
ε

such that
∀c ∈ C′(Σ, µ), ∥ΩΣc∥ε ≤M ′

ε.

Using the assumption (55)-(56) and the lower bound (57), we then obtain

∣ ∑
c∈C′(Σ,µ)

XPc(`σ(Pc))ΩΣc(σ∣Σc)∣ ≤MεM
′
ε ∑

γ∈S○Σ
`σ(γ)≥2wσ(µ)

e−ςε `σ(γ).

We estimate it as follows

∑
γ∈S○Σ

`σ(γ)≥2wσ(Γ)

e−ςε`σ(γ) ≤ ∑
n≥0

(Nσ(2wσ(µ) + n) −Nσ(2wσ(µ) + n + 1)) e−ςε(2wσ(µ)+n)

≤ Nσ(2wσ(µ)) e−2wσ(µ)

where Nσ(`) is the number of multicurves with length bounded above by `. Using Mirzakhani’s fine
upper bound in Theorem 8.3, we deduce

∣ ∑
c∈C′(Σ,µ)

XPc(`σ(Pc))ΩΣc(σ∣Σc)∣ ≤M ′′
ε `σ(µ)4ςε−1 ( ln ( 4

`σ(µ)
))

6g−6+2n

where g and n is the genus and number of boundary components of Σ andM ′′
ε is some finite constant.

We can get rid of the logarithm factor by replacing ςε with a slightly smaller constant. ∎

In particular, when ςε > 1
4
, the contribution in ΩΣ of pair of pants intersecting the components µi

of µ vanishes when `σ(µi) → 0. If the initial data had a stronger decay like e−l
α

for some α > 1 with
respect to the length l of the curve we glue on, the same proof would conclude that the contribution in
ΩΣ of the pair of pants intersecting µi decays faster than any polynomial when `σ(µi)→ 0, i.e. would
be negligible compared to Taylor series expansion (if it exists) at any order in this length variable.

10 Revisiting Mirzakhani-McShane identities

In this section, we review the famous generalisation [40] of McShane identity [39], which is the proto-
type of the geometric recursion. It will also provide us with weaker admissibility conditions for initial
data. By symmetry considerations, we also conjecture a new McShane-type identity for the sphere
with four boundaries. Finally, we exploit the Mirzakhani-McShane identity to give a systematic lift
of the strict GR to GR.

10.1 The identity and its consequences

Let us work in the target theory E(Σ) = C0(TΣ) for Bord●1, and consider what we will call Mirzakhani
initial data,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(L1, L2, L3) = 1

B(L1, L2, `) = 1 − 1
L1

ln( cosh(L2
2 )+cosh(L1+`

2 )

cosh(L2
2 )+cosh(L1−`

2 )
)

C(L1, `, `
′) = 1

L1
ln( exp(L1

2 )+exp( `+`′2 )
exp(−L1

2 )+exp( `+`′2 )
)

D(L) = L2

24
+ π2

6

. (59)
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This is an initial data for strict GR, which determines the following initial data for GR

XP(σ) = X(`σ(∂P )), X ∈ {A,B,C},
DT(σ) = ∑

γ∈Ŝ○
T

CPγ (σ∣Pγ ).

Let us introduce the function
F(x) = 2 ln(1 + e− x2 )

which has the property F(x) − F(−x) = −x. This initial data can also be decomposed as

B(L1, L2, `) = 1

2L1

(F(` +L2 −L1) + F(` −L2 −L1) − F(` −L2 +L1) − F(` +L2 +L1)), (60)

C(L1, `, `
′) = 1

L1

(F(` + `′ −L1) − F(` + `′ +L1)). (61)

The formula for the GR amplitudes would read

ΩΣ(σ) = ∑
b∈π0(∂+Σ)

∑
c∈Cb1,b(Σ)

B(`σ(b1), `σ(b), `σ(γc))ΩΣc(σ∣Σc)

+ 1
2 ∑
c∈Cb1,b1(Σ)

C(`σ(b1), `σ(γ1
c ), `σ(γ2

c ))ΩΣc(σ∣Σc) , (62)

where b1 is the negatively oriented boundary of Σ.
However, the above B and C decay exponentially in the lengths ` and `′ for fixed L1 and L2, but

we can only say that it is uniformly bounded when L1, L2, `, `
′ →∞. Therefore, this initial data is not

admissible in the sense of Definition 3.5, and we return to this question in the next paragraph.
The Mirzakhani-McShane identity nevertheless states that

Theorem 10.1 [40] For any stable Σ, ΩΣ is the constant function 1 on TΣ.

There is a similar identity for tori with one boundary [40, Equation 1.4]. With our notations it
reads

∀σ ∈ TT , DT(σ) = 1 = ∑
γ∈Ŝ○

T

C(`σ(∂T ), `σ(γ), `σ(γ)) (63)

where T is an object in Bord●1 which is a torus with one boundary. We see that this choice of DT

coincides with the choice described in Lemma 4.3.
In [40], Mirzakhani used these identities to prove a recursive formula for the Weil-Petersson volumes

of the moduli space of bordered surfaces

Vg,n(L) = ∫
MΣ(L)

1 ⋅ νΣ.

In fact, Vg,n(L) are the strict GR amplitudes for the initial data (59) – and the value of D(L) was
chosen to be equal to the known value of V1,1(L).

We also know [24] that an equivalent form of this recursion, after Laplace transform in the boundary
lengths, is the topological recursion of Eynard and Orantin (see Section 7.3), for the initial data

x(z) = z2, ω0,1(z) =
sin(2πz)

2π
zdz, ω0,2(z1, z2) =

dz1dz2

(z1 − z2)2
.

More generally, in Section 11 we will investigate more generally the formulation of (strict) GR in terms
of the Laplace transform of the boundary lengths and its relation to the original topological recursion.
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We now review the relation between the Weil-Petersson volumes Vg,n(L) and intersection theory
on Deligne-Mumford compactification of the moduli space Mg,n of genus g Riemann surfaces with
n punctures [S, p1, . . . , pn]. We recall that Mg,n is a complex orbifold for which Poincaré duality
holds. Let us denote ψi the first Chern class of the cotangent line bundle T ∗piS at the i-th puncture.
We also denote κd the class of complex degree d obtained by pushforward of ψd+1

n+1 via the morphism
Mg,n+1 →Mg,n forgetting the last puncture. It is well-known that the cohomology class of the Weil-
Petersson symplectic form on Mg,n is 2π2κ1 [56]. By examination of the symplectic reduction on the
space MΣg,n with the moment map (L

2
1

2
, . . . ,

L2
n

2
), Mirzakhani proved

Theorem 10.2 [41] For 2g − 2 + n > 0, we have

Vg,n(L) = ∫
Mg,n

exp(2π2κ1 +
n

∑
i=1

L2
i

2
ψi)

where the exponential is understood by expanding in Taylor series, and keeping only the terms of
complex cohomology degree dg,n = 3g − 3 + n.

10.2 Another admissibility condition

Non-admissibility of Mirzakhani initial data

As already mentioned, Mirzakhani initial data is not admissible in the sense of Definition 3.5. It
is rather a limit of admissible initial data.

Lemma 10.3 For any s > 1, we have

sup
L1,L2,`≥ε

B(L1, L2, `) `s = +∞ , sup
L1,`,`′≥ε

C(L1, `, `
′) (` + `′)s = +∞ .

Proof. The estimate
C(` + `′, `, `′) = 2

` + `′ ln ( 2

1 + e−`−`′ ) ∼
2 ln 2

` + `′
when `+ `′ →∞ implies the claim for C. The analysis of B(`,2`, `) when `→∞ gives the claim for B.

∎

Lemma 10.4 For α ∈ (0,1), let (A(α),B(α),C(α)) be the initial data obtained from (59) by replacing
L1 with αL1, and induce D(α) from (19). This initial data is admissible with ℸ-decay (see Defini-
tion 4.1) for the choice ℸ(`) = eα`2 .

Proof. For any x ∈ R, we have 0 ≤ F(x) ≤ 2 e−
x
2 . We deduce

ℸ(`)ℸ(`′)
ℸ(L1)

C(α)(L1, `, `
′) ≤ 2ℸ(`)ℸ(`′)

ℸ(L1)αL1
e
αL1−`−`

′

2 = 2 e−
1−α

2 (`+`′)

αL1

and therefore, for any ε > 0, any s > 0 and α ∈ [ε,1) we have

sup
L1,`,`′≥ε

ℸ(`)ℸ(`′)
ℸ(L1)

C(α)(L1, `, `
′) (` + `′)s < +∞.

Likewise, we bound

ℸ(`)
ℸ(L1)ℸ(L2)

B(α)(L1, L2, `) ≤
ℸ(`)

ℸ(L1)ℸ(L2)
e
αL1−L2−`

2 + e
αL1+L2−`

2

αL1
= e

− 1−α
2 `− 1+α

2 L2 + e− 1−α
2 (`+L2)

αL1
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which implies for any s > 0

sup
L1,L2,`≥ε

ℸ(`)
ℸ(L1)ℸ(L2)

B(α)(L1, L2, `) `s < +∞.

∎

Yet, the Mirzakhani-McShane identities tells us that ΩΣ is well-defined, i.e. the series in (62)
are absolutely convergent on any compact, and the result actually belongs to the space E′(Σ) of
continuous functions which are bounded on the thick part of the Teichmüller space.

Therefore, we may circumvent the non-admissibility of (A,B,C,D) by running GR for the initial
data depending on α ∈ (0,1) to get functorial functions Ω

(α)
Σ for any stable Σ, and then take the limit

α → 1 which reaches the function 1 on C0(TΣ) according to the Mirzakhani-McShane identities.
Note that the properties of GR with ℸ-decay a priori show that for any α < 1, Ω

(α)
Σ can grow at

most like O(eα`σ(∂Σ)) in the boundary lengths in the thick part of the Teichmüller space. But, as
Ω
(α)
Σ is an increasing function of α, we in fact know that

Ω
(α)
Σ (σ) ≤ ΩΣ(σ) = 1.

This uniform bound clearly cannot be reached with the previous results on GR.

M-admissibility and GR

At this stage, we find instructive to turn the point of view upside down: we will formulate weaker
admissibility conditions using the bounds implied by the Mirzakhani-McShane identities, under which
the main Theorem 3.7 of definition of the GR amplitudes will continue to hold.

We should first extract the relevant property of the hyperbolic length spectrum which Theorem 10.1
provides.

Corollary 10.5 For any ε > 0, there exists M(ε, g, n) > 0 such that, for any stable Σ of genus g with
n boundaries, we have

sup
σ∈KΣ(ε)

1

`σ(b1)`σ(b)
∑

c∈Cb1,b(Σ)
ln (1 + e

`σ(b1)+`σ(b)−`σ(γc)

2 ) ≤M(ε, g, n), (64)

sup
σ∈KΣ(ε)

1

`σ(b1)
∑

c∈Cb1,b1(Σ)
ln (1 + e

`σ(b1)−`σ(γc)

2 ) ≤M(ε, g, n). (65)

We cannot prove this result by zeta function arguments using the estimate of Theorem 8.3 on
the number of simple closed curves of bounded length on bordered surfaces. In fact, in the proof of
Theorem 8.3, we have controlled the length spectra on bordered surfaces uniformly in terms of the
length spectra on punctured surfaces. In doing so, we have lost the dependence of Nσ in the boundary
lengths, and it could explain why we are unable to give a direct proof of Corollary 10.5.

Proof. As B and C are non-negative, Theorem 10.1 implies that

sup
σ∈KΣ(ε)

∑
c∈Cb1,b(Σ)

B(`σ(b1), `σ(b), `σ(γc)) ≤ 1, (66)

sup
σ∈KΣ(ε)

∑
c∈Cb1,b1(Σ)

C(`σ(b1), `σ(γ1
c ), `σ(γ2

c )) ≤ 1. (67)

We decompose

C(L1, `, `
′) = 2

L1
ln(1 + e

L1−`−`
′

2 ) − 2

L1
ln(1 + e−

L1+`+`
′

2 ).
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The second term satisfies the condition (6) in our decay axiom. In particular, the proof of our
Theorem 3.7 via the uniform convergence of the zeta function implies that there exists a constant
M ′(ε, g, n) > 0 such that

sup
σ∈KΣ(ε)

∑
c∈Cb1,b1(Σ)

1

`σ(b1)
ln(1 + e

`σ(b1)−`σ(γ
1
c )−`σ(γ

2
c )

2 ) ≤M ′(ε, g, n),

hence the claimed estimate (65).
For the second estimate, we use the decomposition (60) of B, in the following form

B(L1, L2, `) +
F(` +L2 +L1)

2L1
= F(` +L2 −L1)

2L1
+ F(` −L2 −L1) − F(` −L2 +L1)

2L1
(68)

≥ F(` +L2 −L1)
2L1

as F(x) decreases with x. We then replace ` = `σ(γc) and sum over c ∈ Cb1,b(Σ) for a σ ∈KΣ(ε). The
contribution of the first term in the left-hand side of (68) is bounded due to (66), the second term
satisfies the decay axiom (5) therefore also gives a bounded contribution. We conclude that there
exists a constant M ′′(ε, g, n) > 0 such that

sup
σ∈KΣ(ε)

∑
c∈Cb1,b(Σ)

F(`σ(γc) + `σ(b) − `σ(b1))
`σ(b1)

≤M ′′(ε, g, n).

As b1 and b play a symmetric role in Cb1,b(Σ), and KΣ(ε) is invariant under braiding of b1 and b, this
also implies

sup
σ∈KΣ(ε)

∑
c∈Cb1,b(Σ)

F(`σ(γc) + `σ(b1) − `σ(b))
`σ(b)

≤M ′′(ε, g, n).

We can now rewrite

1

L2
B(L1, L2, `) +

F(` +L2 +L1)
2L1L2

+ F(` −L2 +L1)
2L1L2

= F(` +L2 −L1)
2L1L2

+ F(` −L2 −L1)
2L1L2

≥ F(` −L2 −L1)
2L1L2

because F is nonnegative. We substitute (L1, L2, `) = (`σ(b1), `σ(b), `σ(γc)) and since `σ(b) is
bounded from below by ε for σ ∈ KΣ(ε), we deduce from the previous bounds there exists a con-
stant M ′′′(ε, g, n) > 0 such that

sup
σ∈KΣ(ε)

∑
c∈Cb1,b(Σ)

F(`σ(γc) − `σ(b) − `σ(b1))
`σ(b1)`σ(b)

≤M ′′′(ε, g, n)

which is the claim (64). ∎

Definition 10.6 An initial data (A,B,C,D) for the target theory C0(TΣ) is M-admissible if for any
ε > 0, there exists a constant M(ε) > 0 such that, for any L1, L2, `, `

′ ≥ ε we have

∣B(L1, L2, `)∣ ≤ M(ε) ln(1 + e
L1+L2−`

2 )
L1L2

, (69)

∣C(L1, L2, `)∣ ≤ M(ε) ln(1 + e
L1−`−`

′

2 )
L1

. (70)

We say that (A,B,C,D) is M-bounded if the constant M(ε) above can be chosen independent of ε.
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Proposition 10.7 Let (A,B,C,D) be an M-admissible initial data. Then, for any stable Σ, the GR
amplitude ΩΣ is well-defined. More precisely, the series in (46) converges uniformly on any compact,
its limit is an element of E′(Σ), and it is functorial. In particular, ΩΣ is mapping class group
invariant.

If (A,B,C,D) is M-bounded, then ΩΣ is a function on TΣ bounded by the constant M . A fortiori,
ΩΣ is integrable with respect to the Weil-Petersson volume form, and

$g,n(L) = ∫
MΣg,n(L)

ΩΣg,nνΣg,n

belongs to C0
poly(Rn>0) and are the strict GR amplitudes for the initial data (A,B,C,D) which is related

to (A,B,C,D) via (51).

Proof. To prove the first part, we repeat the proof of Theorem 3.7, but use the bounds of Corol-
lary 10.5 instead of (9). In the second part, the assumption and the monotonicity of F implies the
existence of a universal constant M > 0 such that, for any L1, L2, `, `

′ > 0 we can control our initial
data by Mirzakhani initial data

∣B(L1, L2, `)∣ ≤M B(L1, L2, `) , ∣C(L1, `, `
′)∣ ≤M C(L1, `, `

′).

Therefore
∀σ ∈ TΣ, ΩΣ(σ) ≤M ΩΣ(σ) =M.

We can then follow the proof of Proposition 9.4 to check that integration over the moduli space
followed by strict GR coincide with GR followed by integration over the moduli space. ∎

Comments.

In case we wish to induce initial data for tori with one boundary from B or C, the result of
Lemma 4.3 also easily extends to M-admissible/M-bounded (A,B,C).

We remark that M-admissibility implies that B and C decay like O(e−
`σ(γ)

2 ) with respect to the
length of the curve we glue on provided the boundary lengths Li remain bounded. Such a decay is not
implied by the admissibility condition in Definition 3.5, therefore M-admissibility is neither weaker
nor stronger than admissibility.

In the same target C0(TΣ), one could formulate other notions of admissibility as soon as one has
of some Bref and Cref such that, for any stable Σ and any ε > 0, there exist constants M(ε, g, n) > 0

such that

∑
σ∈KΣ(ε)

∑
c∈Cb1,b(Σ)

∣Bb,ref
Pc

(σ∣Pc)∣ ≤ M(ε, g, n),

∑
σ∈KΣ(ε)

∑
c∈Cb1,b1(Σ)

∣Cref
Pc (σ∣Pc)∣ ≤ M(ε, g, n).

In particular, we stress that such estimates are uniform when the boundary lengths become large
owing to the definition of KΣ(ε) for bordered surfaces Σ.

M-admissibility only makes sense in target theories involving functions over the Teichmüller space,
as it relies on properties of the hyperbolic length spectrum like Corollary 10.5. In an arbitrary target,
one may add assumptions on the property of the length functions provided with the target to obtain
weaker condition of convergence of the series involved in the GR formula. The value of such additional
assumptions should be put in balance with the amount of properties of lengths functions the readers
want to establish in the specific target theories they would like to work with.
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10.3 Fibering over Teichmüller space

Imagine that F is a target theory maybe without the data of length functions. We may call this a
pre-target theory. The typical case we have in mind are functors coming from topological field theories
or conformal field theories (see Section 13). We may construct a new target theory by considering
continuous functions from Teichmüller space with values in F,

E(Σ) = C0(TΣ,F(Σ)). (71)

We define the union and glueing morphisms for E by combining those of F and those of Sections 9.1-
9.2. We equip E(Σ) with the seminorms indexed by i ∈ I F

Σ , α ∈ A
(i),F
Σ , ε > 0 and F a compact subset

of KΣ(ε),
∣f ∣α,F = sup

σ∈F
∣f(σ)∣α.

We can equip E with the collection of length functions induced by hyperbolic lengths as in (43)

`α,K = min
σ∈F

`σ(γ)

which in fact does not depend on α. On top of the notion of admissibility of E-valued initial data
from Definition 3.5, one can also formulate the notion of M-admissibility (and M-boundedness), by
replacing in (69)-(70) the absolute value with the norms the space F(Σ) is functorially equipped with.
For M-admissible initial data, the result of Theorem 3.7 still holds, i.e. the E-valued GR amplitudes
are well-defined and functorial.

If (A,B,C,D) are initial data for F, we can introduce canonical initial data (Ã, B̃, C̃, D̃) for E

with the formulae

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ÃP(L1, L2, L3) = 1

B̃P(L1, L2, `) = {1 − 1
L1

ln( cosh(L2
2 )+cosh(L1+`

2 )
cosh(L2

2 )+cosh(L1−`

2 )
)} ⋅BP

C̃P(L1, `, `
′) = 1

L1
ln( e

L1
2 +e

`+`′

2

e−
L1
2 +e

`+`′
2

) ⋅CP

D̃T(σ) = DT .

(72)

Obviously, (Ã, B̃, C̃, D̃) is always M-bounded.
If the mapping class groups act trivially on F(Σ), using the Mirzakhani-McShane identity, we

deduce that the GR amplitudes for E attached to (72) will be constant functions ΩΣ on Teichmüller
space. This constant value in F(Σ) can be considered as a definition of the GR amplitude for F with
initial data (A,B,C,D). This trick circumvents the potential absence of length functions in certain
would-be target theories.

If the mapping class group act non-trivially on F(Σ), this argument does not apply and the GR
amplitudes attached to (72) could a priori be interesting functions on the Teichmüller space.

10.4 Symmetry issues

C0(TΣ) can also be considered as a symmetric target theory. We see that for the Mirzakhani initial
data, ΩΣ is invariant under braidings of all boundaries because it is the function 1. Without using
the full knowledge of Theorem 10.1, it would be interesting to understand why the result of GR is
symmetric.

It is possible that it occurs because (A,B,C,D) actually induces an initial data for symmetric GR,
i.e. it satisfies the relations described in Section 5.1. Let us make our suspicions more precise.
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A is obviously invariant under all braidings. Since the BA and D relation are respectively equivalent
to the invariance of ΩΣ0,4 and ΩΣ1,2 under all braidings, so they hold for Mirzakhani initial data. The
BB-AC and BC relations are used in proving invariance under all braidings in symmetric GR, but
from the proof of Theorem 5.3 one cannot conclude it is equivalent to this invariance for some ΩΣ.
We thus ask the following.

Question 10.8 Do the Mirzakhani initial data satisfies the BC and BB-CA relation? Namely, if Σ

is a sphere with four boundaries (b1, b2, b3, b4), let us define the following functions of σ ∈ TΣ

Q(σ) = ∑
c∈Cb3

b1,b1
(Σ)

C(L1, L3, `σ(γc))B(L2, `σ(γc), L4) + ∑
c∈Cb4

b1,b1
(Σ)

C(L1, L4, `σ(γc))B(L2, `σ(γc), L3)

+ ∑
c∈Cb1,b2(Σ)

B(L1, L2, `σ(γc))C(`σ(γc), L3, L4) (73)

R(σ) = ∑
c∈Cb1,b2(Σ)

B(L1, L2, `σ(γc))B(`σ(γc), L3, L4) + ∑
c∈Cb1,b3(Σ)

B(L1, L3, `σ(γc))B(L2, `σ(γc), L4)

+ ∑
c∈Cb4

b1,b1
(Σ)

C(L1, L4, `σ(γc)).

Is it true that Q and R are invariant under braiding of b1 and b2 ?

If the answer to this question is positive, it would explain by the general mechanism of Theorem 5.3
why a priori ΩΣ for Mirzakhani initial data is invariant under braiding of all boundaries – without
knowing that it is in fact equal to 1 for all Σ.

We know that the strict Mirzakhani initial data are symmetric, because they are equivalently
described in Laplace transform and we can then rely on Lemma 7.5. In particular, we know that

Lemma 10.9 If Σ is a sphere with four boundaries, for any X ∈ {Q,R} we have

∫
MΣ(L1,L2,L3,L4)

X(σ) = ∫
MΣ(L2,L1,L3,L4)

X(σ).

Equivalently,

∫
R>0

d` `(B(L1, L2, `)C(`,L3, L4) + C(L1, L3, `)B(L2, `,L4) + C(L1, L4, `)B(L2, `,L3)) = (L1 ↔ L2),

∫
R>0

d` `(B(L1, L2, `)B(`,L3, L4) +B(L1, L3, `)B(L2, `,L4) + C(L1, L4, `)) = (L1 ↔ L2).

∎

A positive answer to the above question is tantamount to a finer version of Lemma 10.9.
Lemma 10.9 would then be a corollary obtained by averaging over the length ` of the closed curves
along which one can cut a sphere with four boundaries. To answer positively the question, it would
for instance be enough to prove that (Id − σb1,b2) applied to (73) is a constant function over the
Teichmüller space.

10.5 The relation B +B = C +A

A direct computation shows that Mirzakhani initial data satisfies

B(L1, L2, L3) +B(L1, L3, L2) = C(L1, L2, L3) +A(L1, L2, L3) (74)
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with here A(L1, L2, L3) = 1. This relation is explained by the geometric origin of these functions in
the work of Mirzakhani [40]. For any object Σ in Bord●1, an important ingredient in the proof of
Theorem 10.1 is a decomposition of ∂−Σ into subsets

∂−Σ = BΣ(σ) ∪CΣ(σ) ∪ZΣ(σ) (75)

which are measurable for the Lebesgue measure (denoted µ) with respect to the arc-length parametri-
sation of ∂−Σ induced by σ. By definition, an orthogeodesic is a geodesic in Σ which is orthogonal to
∂Σ at each of its point of intersection with ∂Σ. Let γx be the geodesic shot from x ∈ b1 orthogonally
to b1.

● BΣ(σ) is the set of x ∈ ∂−Σ such that the homotopy (relative to the boundary) class cx of γx
belongs to Cb1,bi(Σ) for some bi ∈ π0(∂+Σ).

● CΣ(σ) is the set of x ∈ ∂−Σ such that the homotopy class of γx belongs to Cb1,b1(Σ)

● the complement set ZΣ(σ) has measure zero.

The sets BΣ(σ) and CΣ(σ) can be further partitioned by their intersection with the fibers of c ∶
∂−Σ→ C(Σ) which associates cx to x, i.e. equivalently the homotopy class of embedded pair of pants
determined by γx.

The measure of each of this piece can be computed purely in terms of the geometry of a hyperbolic
pair of pants P embedded in Σ with exactly one negatively oriented boundary component ∂−P . There
are seven special orthogeodesics on P (see Figure 19): one from p1 ∈ b1 to p2 ∈ b1, one from r ∈ b1 to b,
one from r′ ∈ b1 to b′, one starting from o1 ∈ b1 and spiralling around b, one from o′1 ∈ b1 and spiralling
around b′, and the ones related to the last two by exchanging the role of the two hexagons which glue
to form P . For any c ∈ C(Σ), one has

µ[BΣ(σ) ∩ c−1(c)] = µ[I(Pc(σ))] = B(`σ(b1), `σ(b), `σ(b′))
µ[CΣ(σ) ∩ c−1(c)] = µ[I1(Pc(σ)) ∪ I2(Pc(σ))] = C(`σ(b1), `σ(b), `σ(b′))

with the notation of Figure 19, and hyperbolic trigonometry led Mirzakhani to the expressions (59)
for B and C. And from the decomposition of ∂−P = b1 in the figure, we see that these functions must
satisfy (74) and

A(L1, L2, L3) = 1

appears as the total mass of µ.
We already met a similar relation (74) on initial data, in the context of the topological recursion

–Section 7.4 and Lemma 7.8. It although appeared in different variables zi instead of Li – which are
in fact Laplace dual (see Section 11).

Question 10.10 Can one give a similar, geometric interpretation of the relation B +B = C + A of
Lemma 7.8, which we know holds for the initial data attached to any spectral curve ?

11 Laplace transforms of the boundary lengths

There are many equivalent ways to describe continuous functions on Rn>0. One of them is via their
Laplace transform. In this section, we explore these alternative representations for admissible initial
data. The slogan is that the Laplace variable which is dual to boundary length should be identified,
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Figure 19: Identification of the subset XΣ(σ) ∩ c−1(c) in Pc, in the case X = B (top) or X = C
(bottom).

in terms of the original topological recursion on spectral curves, with the local variable z near a
ramification point, in which the deck transformation acts as z ↦ −z. However, convergence subtleties
prevents from using the results of this section to describe the original topological recursion in terms
of length variables. For this we will have to wait for Section 12.

At an abstract level, the Laplace transform is better defined in terms of distributions. As we prefer
to avoid unnecessary technicalities in this computationally-minded section, we will keep ourselves
at the level of functions with a few (maybe non optimal) regularity assumptions. We refer to the
monograph [53] for the properties of the Laplace transform which we use.
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11.1 The glueing morphism in Laplace variable

If U is an open subset of C, we denote O(U) the space of holomorphic functions on U . If t ∈ R, we
introduce

Ut ∶= {z ∈ C ∶ Re z > t}.

The Laplace transform of a function f ∶ R>0 → C is defined by

f̂(z) ∶= L[f](z) ∶= ∫
R>0

d` e−`z f(`)

when it exists. The definition extends to functions of n positive real variables.
Let t ∈ R and set et(`) ∶= et`. Recall from Definition 9.1 that the space C0

et⋅poly(R>0) consists of
continuous functions which are bounded at 0, and are bounded at infinity by `ret` for some r > 0. The
Laplace transform gives an injective linear map

L ∶ C0
et⋅poly(Rn)Ð→ O(Unt ).

We rely on the basic Laplace inversion result.

Lemma 11.1 If f ∈ C0
et⋅poly(R>0), for any t′′ > t we have,

∀` > 0, f(`) = 1

2iπ
∫
t′′+iR

dz ez` f̂(z)

where the right-hand side is defined as an improper integral, i.e. the limit of ∫
t′′+iM ′

t′′−iM whenM,M ′ →∞.
For any ` < 0, the integral in the right-hand side evaluates to 0.

Corollary 11.2 Let t′ > t. If f ∈ C0
e
−t′ ⋅poly(R>0) and g ∈ C0

et⋅poly(R>0), then `↦ ` f(`)g(`) is integrable
on R>0. Let t′′ ∈ (t, t′) and assume that g is C1 and (g ⋅ et′′)′ has bounded variation on R>0,

∫
R>0

d` ` f(`)g(`) = − 1

2iπ
∫
t′′+iR

dz f̂(−z) ĝ′(z) = − 1

2iπ
∫
t′′+iR

dz f̂ ′(−z) ĝ(z).

Proof. The growth assumptions imply that f ⋅ g is integrable. We apply Lemma 11.1 and write for
t′′ > t and ` > 0

∫
R>0

d` ` f(`) g(`) = − 1

2iπ
∫
R>0

d` f(`)∫
t′′+iR

dz ez` ĝ′(z)

We have
∣f(`)ez`ĝ′(z)∣ ≤ ∣f(`)∣e(Re z)`∣ĝ′(z)∣. (76)

To estimate the growth when Im z →∞ while Re z = t′′, we rely on the basic result

Lemma 11.3 If f ∈ C0
et⋅poly(R) has bounded variation, for any t′′ > t we have

sup
z∈t′′+iR

∣z f̂(z)∣ < +∞.

◻

Consequently, the assumptions on g imply that supz∈t′′+iR ∣z2ĝ′(z)∣ < +∞. We deduce that (76) is
integrable over R>0 × (t′′ + iR) provided we choose t′′ < t′. By Fubini theorem, we then find

∫
R>0

d` ` f(`) g(`) = − 1

2iπ
∫
t′′+iR

dz(∫
R>0

d` ez` f(`)) ĝ′(z) = − 1

2iπ
∫
t′′+iR

dz f̂(−z)ĝ′(z).

∎
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11.2 Polynomials in ` and rational functions in z

In this paragraph, we want to describe a situation where the integral over z in Corollary 11.2 can be
turned into a sum of residues, so as to bring the setup of strict GR closer to the original setup of
the topological recursion in terms of local spectral curves. The latter will be compared in the next
paragraph.

We introduce two vector spaces depending on the data of a cartesian product of n subsets of C,
here denoted Λ. The first space is

FΛ ∶= ⊕
λ∈Λ

(C[L1, . . . , Ln] ⋅
n

∏
i=1

eλiLi).

Elements in the direct sum are finite linear combinations of elements in the summands. We will
avoid discussing its topological completion as it would blur our illustrative purposes. The Laplace
transforms induces an isomorphism from FΛ to a second space, which we denote MΛ. It consists of
the rational functions ϕ(z1, . . . , zn) of n variables, which can have poles when zi approaches pri(Λ),
and are such that

ϕ(z1, . . . , zn) ∈ O(z−1
1 ⋯ z−1

n ), zi →∞.

In the following, we fix two subsets Λ,ΛB ⊂ C, and denote

t = sup
λ∈Λ

Reλ, t′ ∶= inf
β∈ΛB

Reβ

and assume
t < t′. (77)

By convention −ΛB ∶= {−β ∶ β ∈ ΛB}. Assume we are given functions

B ∈ FΛ2×(−ΛB), C ∈ FΛ×(−ΛB)2 . (78)

For any f ∈ FΛ, the assumption (77) implies that B(L1, L2, `)f(`) has exponential decay when
` →∞. Therefore, B and f are glueable, and we obtain an expression for the glueing solely in terms
of Laplace variables (see Figure 20).

Lemma 11.4 For any f ∈ FΛ, B and f are glueable, and

∫
R2
>0

dL1 dL2 e
−z1L1−z2L2 ∫

R>0
d` `B(L1, L2, `) f(`) = Res

z→ΛB
B̂(z1, z2,−z)dz f̂(z) (79)

= −Res
z→Λ

B̂(z1, z2,−z)dz f̂(z) .

For any f ∈ FΛ2 , C and f are glueable, and

∫
R>0

dL1 e
−z1L1 ∫

R2
>0

d` `d˜̀˜̀C(L1, `, ˜̀) f(`, ˜̀) = Res
z→ΛB
z̃→ΛB

Ĉ(z1,−z,−z̃)dzdz̃ f̂(z, z̃) (80)

= Res
z→Λ
z̃→Λ

Ĉ(z1,−z,−z̃)dzdz̃ f̂(z, z̃) .

Proof. The assumptions of Corollary 11.2 are satisfied, and we have, for z1, z2 ∈ Ut and t′′ ∈ (t, t′),

∫
R>0

dL1dL2 e
−z1L1−z2L2(∫

R>0
d` `B(L1, L2, `)f(`)) = − 1

2iπ
∫
t′′+iR

dz B̂(−z, z1, z2)dz f̂(z).

>From the definition of our spaces of functions, we know that f̂ ′(z) ∈ O(z−2) when z → ∞, and
B̂(z1, z2,−z) is O(z−1) when z →∞. Therefore, we can close the contour and surround all the poles
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in the region Ut′′ . The assumption (77) implies that f̂(z) has no poles in this region, so we are picking
up the residues at the poles of B̂(z1, z2, z) in the variable z, which occur at −ΛB . The formula (80) is
derived similarly. The second line in each formula is obtained by closing the contour to surround all
the complement of Ut′′ . ∎

t t′t′′

poles of B̂(−z, . . .)

Ut

poles of f̂(z)

Figure 20: Poles in the Laplace variable.

12 Lifting TR initial data to GR

12.1 Interpolating between Mirzakhani and Witten-Kontsevich

We start by describing a deformation of Mirzakhani initial data, which consists in rescaling all lengths
by a factor β > 0. Let us define

Fβ(x) = 2 ln (1 + e−
βx
2 ), F(x) ∶= F1(x). (81)

In the language of statistical physics, the parameter β > 0 is interpreted as an inverse temperature,
and Fβ is closely related to the Fermi-Dirac weight. We now introduce

Aβ(L1, L2, L3) ∶= 1,

Bβ(L1, L2, `) ∶= 1

2βL1

(Fβ(` +L2 −L1) + Fβ(` −L2 −L1) − Fβ(` −L2 +L1) − Fβ(` +L2 +L1)),

Cβ(L1, `, `
′) ∶= 1

βL1

(Fβ(` + `′ −L1) − Fβ(` + `′ +L1)),

Dβ(L1) ∶= ∑
γ∈Ŝ○

Σ1,1

Cβ(L1, `σ, `σ).

The choice for Dβ is the natural deformation of (63), and is justified in order to have Lemma 12.1
below. Since Fβ(x)/β is a decreasing function of β > 0 for any x ∈ R, we deduce that (Aβ ,Bβ ,Cβ ,Dβ)
is uniformly M-bounded (see Definition 10.6) for any β ∈ [1,+∞].

In fact,

G(x) ∶= lim
β→∞

Fβ(−x)
β

= { x if x ≥ 0
0 if x < 0

(82)

and the convergence is uniform for x ∈ R. As lengths are positive, we have

B∞(L1, L2, `) ∶= lim
β→∞

Bβ(L1, L2, `) =
1

2L1

(G(L1 −L2 − `) −G(−L1 +L2 − `) +G(L1 +L2 − `)),

C∞(L1, `, `
′) ∶= lim

β→∞
Cβ(L1, `, `

′) = 1

L1
G(L1 − ` − `′)
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and the convergence is uniform over R3
>0. One can check directly that these functions are nonnegative.

These remarks on uniformity allow to conclude that computing the GR amplitudes for the β → ∞
initial data gives the same result as taking the limit β →∞ of the GR amplitudes.

Let ΩΣ,β be the GR amplitudes for the initial data (Aβ ,Bβ ,Cβ ,Dβ). We do not have a priori a
closed formula for ΩΣ,β , as rescaling all lengths in (62) – including the lengths of the curve on which
we glue when excising a pair of pants – does not have an obvious geometric interpretation. However,
we can describe the outcome of this rescaling after integration over the moduli space. Let us introduce

Vg,n,β(L) = ∫
MΣg,n(L)

ΩΣg,n,β ⋅ νΣg,n

and the following initial data for the strict GR

Aβ(L1, L2, L3) = 1,

Bβ(L1, L2, `) = Bβ(L1, L2, `),
Cβ(L1, `, `

′) = Cβ(L1, `, `
′),

Dβ(L1) = π2

6β2
+ L

2
1

24
. (83)

Lemma 12.1 For any β > 0 and 2g − 2 + n > 0, we have

Vg,n,β(L1, . . . , Ln) = β−(6g−6+2n)Vg,n(βL1, . . . , βLn) (84)

which is also equal to the strict GR amplitude for the initial data (Aβ ,Bβ ,Cβ ,Dβ).

Proof. The (g, n) = (0,3) case is obvious. We first consider the case (g, n) = (1,1). We integrate (83)
and find

∫
MΣ1,1

(L)
Dβ ⋅ νΣ1,1 = ∫R>0

d` `Cβ(L1, `, `) = β−2 ∫
R>0

d` `C(βL1, `, `) = β−2(π2

6
+ β2L2

1

24
)

where we have used the change of variable ` ↦ β`, and the result of integration is given (or directly
recomputed) by β−2D(βL1) = Dβ(L1). This justifies that V1,1,β is equal to Dβ(L1), which is also equal
by definition to the strict GR amplitude for (g, n) = (1,1).

We then prove the result by induction on 2g − 2 + n ≥ 2. Assume it holds for any g′, n′ such that
2g′ − 2 + n′ < 2g − 2 + n. The strict GR amplitude for (g, n) is equal to

n

∑
m=2

∫
R>0

d` `Bβ(L1, L2, `)Vg,n−1,β(`,L2, . . . , L̂m, . . . , Ln)

+1

2
∫
R2
>0

d`d`′ ` `′Cβ(L1, `, `
′)(Vg−1,n+1,β(`, `′, L2, . . . , Ln) + ∑

g1+g2=g
J1∪J2={L2,...,Ln}

Vg1,1+∣J1∣,β(`, J1)Vg2,1+∣J2∣,β(`′, J2))

We use the induction hypothesis by substituting (84) for all V’s in this expression, and perform the
change of variable of integration (`, `′)→ (β`, β`′). As we have

Bβ(L1, L2, `) = B(βL1, βL2, β`), Cβ(L1, `, `
′) = C(βL1, β`, β`

′),

we recognise the formula for the strict GR amplitude for the initial data (A1,B1,C1,D1), multi-
plied by an overall factor β−(6g−6+2n). As explained in Section 10.1 it is also the expression for
β−(6g−6+2n)Vg,n(L). This concludes the proof.

Note that 3g − 3+n is the number of interior curves which bound pair of pants in a decomposition
of Σg,n. The factor of β−(6g−6+2n) comes from the fact that we have to integrate over length of all the
curves the measure `d`. ∎
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Corollary 12.2 For 2g − 2 + n > 0, we have equality of the three following quantities.

(1) the integration, against the Weil-Petersson volume form νΣ,

Vg,n,∞(L1, . . . , Ln) = ∫
MΣg,n(L)

ΩΣg,n,∞ ⋅ νΣg,n

over the moduli space of bordered surfaces of the GR amplitudes for the initial data

AP,∞(σ) = 1

BbP,∞(σ) = 1

2`σ(b1)
{G(`σ(b1) − `σ(b) − `σ(b′)) −G(−`σ(b1) + `σ(b) − `σ(b′)) +G(`σ(b1) + `σ(b) − `σ(b′))}

CP,∞(σ) = 1

`σ(b1)
G(`σ(b1) − `σ(b) − `σ(b′))

Here P is a pair of pants with boundary components ∂−P = b1 and ∂+P = {b, b′}, and D is
induced by Lemma 4.3.

(2) the strict GR amplitudes for the initial data

A∞(L1, L2, L3) = 1

B∞(L1, L2, `) = 1

2L1

(G(L1 −L2 − `) −G(−L1 +L2 − `) +G(L1 +L2 − `))

C∞(L1, `, `
′) = 1

L1
G(L1 − ` − `′)

D∞(L1) = L2
1

24

(3) the generating series of ψ-classes intersections on the moduli space of curves,

∑
d1,...,dn≥0

d1+⋯+dn=3g−3+n

(∫
Mg,n

n

∏
i=1

ψdii )
n

∏
i=1

L2di
i

2didi!
.

Proof. The equality of (1) and (2) comes from the variant of Proposition 9.4 for M-bounded stated
in Proposition 10.7, and we already stressed that taking the β →∞ limit in the initial data of GR due
to the uniformity of estimates. The last equality comes from the observation that taking the limit
β → ∞ in Vg,n,β(L) amounts to selecting the top degree (= 3g − 3 + n) term from the ψ-classes in
Theorem 10.2. ∎

12.2 Witten-Kontsevich model in Laplace variable

Section 11 does not apply to initial data which are M-admissible but maybe not admissible, because
in such a case B and C fails to satisfy (78). We now explain how to treat the fundamental example
of the Witten-Kontsevich model in Laplace variables, starting from Corollary 12.2. This will allow us
in the next paragraphs to lift any initial data of TR (in Laplace variable) to an initial data of GR (in
length variables), such that integration of the GR amplitudes over the moduli spaces retrieves, after
Laplace transform, the TR amplitudes.

Recall from Section 12.1 the definitions

B∞(L1, L2, `) = 1

2L1

(G(L1 −L2 − `) −G(−L1 +L2 − `) +G(L1 +L2 − `)), (85)

C∞(L1, `, `
′) = 1

L1
G(L1 − ` − `′), (86)

where G(x) = max(x,0). We first evaluate separately the Laplace transform of each term.
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Lemma 12.3 Let fm ∈ C0
poly(Rm>0) for m ∈ {1,2}. For Re z1 > 0 and Re z2 > 0, we have

∫
R2
>0

dL1 dL2L1L2 e
−z1L1−z2L2 ∫

R>0
d` `

G(L1 +L2 − `)
L1

f1(`) = −∂z2(
z−2

1 f̂ ′1(z1) − z−2
2 f̂ ′1(z2)

z1 − z2
),

∫
R2
>0

dL1 dL2L1L2 e
−z1L1−z2L2 ∫

R>0
d` `

G(L1 −L2 − `)
L1

f1(`) = ∂z2(
f̂ ′1(z1)

z2
1(z1 + z2)

),

∫
R2
>0

dL1 dL2L1L2 e
−z1L1−z2L2 ∫

R>0
d` `

G(−L1 +L2 − `)
L1

f1(`) = ∂z2(
f̂ ′1(z2)

z2
2(z1 + z2)

),

∫
R>0

dL1L1 e
−z1L1 ∫

R2
>0

d`d`′ ` `′
G(L1 − ` − `′)

L1
f2(`, `′) = z−2

1 ∂1∂2f̂2(z1, z1).

Proof. The last equality is easy, since the left-hand side is equal to

∫
R2
>0

d`d`′ ` `′ f2(`, `′) ∫
∞

`+`′
dL1 e

−z1L1 (L1 − ` − `′) = ∫
R2
>0

d`d`′ ` `′ f2(`, `′) z−2
1 e−z1(`+`

′)

= z−2
1 ∂1∂2f̂2(z1, z1)

The first three equalities require more computations. We introduce:

J+(z1, z2; `) = ∫
R2
>0

dL1dL2 e
−z1L1−z2L2 G(L1 +L2 − `),

J−(z1, z2, `) = ∫
R2
>0

dL1 dL2 e
−z1L1−z2L2 G(L1 −L2 − `).

The left-hand sides of the three first lines of the claim are respectively equal to

−∂z2(∫R>0
d` ` J+(z1, z2, `) f1(`)), −∂z2(∫R>0

d` ` J−(z1, z2, `) f1(`)) and −∂z2(∫R>0
d` ` J−(z2, z1, `) f1(`)).

We compute

J+(z1, z2; `) = ∫
`

0
dL1 e

−z1L1 ∫
∞

`−L1

dL2 e
−z2L2 (L1 +L2 − `) + ∫

∞

`
dL1 e

−z1L1 ∫
∞

0
dL2 e

−z2L2(L1 +L2 − `)

= ∫
`

0
dL1 e

−z1L1
e−z2(`−L1)

z2
2

+ ∫
∞

`
dL1 e

−z1L1(L1 − `
z2

+ 1

z2
2

)

= e−z1` − e−z2`
(z1 − z2)z2

2

+ z1 + z2

z2
1z

2
2

e−z1L

= − 1

z1 − z2
(e

−z1`

z2
1

− e
−z2`

z2
2

) ,

and

J−(z1, z2; `) = ∫
∞

0
dL2 e

−z2L2 ∫
∞

L2+`
dL1 e

−z1L1 (L1 −L2 − `) = ∫
∞

0
dL2 e

−z2L2
e−z1(L2+`)

z2
1

= e−z1`

z2
1(z1 + z2)

from which the identities follow. ∎

We can then supplement the equivalences stated in Corollary 12.2.

Proposition 12.4 We have equality of the three following quantities, for 2g − 2 + n > 0

(1) the Laplace transforms, defined for Re zi > 0 by the formula

∫
Rn
>0

n

∏
i=1

dLiLi e
−ziLi Vg,n,∞(L1, . . . , Ln); (87)
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(2) the generating series of ψ-classes intersections

∑
d1+⋯+dn≥0

d1+⋯+dn=3g−3+n

(∫
Mg,n

n

∏
i=1

ψdii )
n

∏
i=1

(2di + 1)!!
z2di+2
i

;

(3) the functions
ωWK
g,n (z1, . . . , zn)

dz1⋯dzn

where ωWK
g,n are the TR amplitudes for the spectral curve

S = P1, x(z) = z2

2
, y(z) = −z, ω0,1 = ydx, ω0,2(z1, z2) =

dz1dz2

(z1 − z2)2
. (88)

Proof. This identity between (2) and (3) is one of the equivalent form of the Virasoro constraints
conjectured in [54] and proved in [36], and it has a long history. It was first obtained in this form in
[38], see also [19, 21]. The equivalence between (1) and (2) is straightforward from Corollary 12.2.
Here, we want to give a direct proof of the equivalence between (1) and (3). We already know from
Corollary 12.2 that Vg,n,∞ ∈ Q[L2

1, . . . , L
2
n]. Therefore, its Laplace transform (87)

wg,n(z1, . . . , zn) = ∫
Rn
>0

n

∏
i=1

dLiLi e
−ziLi Vg,n,∞(L1, . . . , Ln) = (−1)n∂z1 ⋯∂zn V̂g,n,∞(z1, . . . , zn)

is a rational function of z2
1 , . . . , z

2
n with poles only at zi = 0.

We apply Lemma 12.3 to functions f1 and f2 in this class, and compute for Re zi > 0

∫
Rn
>0

n

∏
i=1

dLiLi e
−ziLi ∫

R>0
d` `B∞(L1, L2, `)Vg,n−1,∞(`,L3, . . . , Ln)

= ∂z2{( −
1

2z2
1(z1 + z2)

+ 1

2z2
1(z1 − z2)

)wg,n−1(z1, z3, . . . , zn)

+ ( 1

2z2
2(z1 + z2)

− 1

2z2
2(z1 − z2)

)wg,n−1(z2, z3, . . . , zn)}

= ∂z2(
z2

2wg,n−1(z1, z3, . . . , zn) − z2
1wg,n−1(z2, z3, . . . , zn)

z2
1z2(z2

1 − z2
2)

)

= Res
z→0

dz

2
( 1

z1 − z
− 1

z1 + z
) 1

2z2
( 1

(z − z2)2
+ 1

(z + z2)2
)wg,n−1(z, z3, . . . , zn).

The last line can be seen to coincide with the previous line by moving the contour to pick the residues
at z = ±z1,±z2 and using that wg,n−1(z, . . .) is an even function of z. With the notations of (88) and

ωg,n(z1, . . . , zn) = wg,n(z1, . . . , zn)
n

∏
i=1

dzi

we therefore recognise, after multiplication by dz1⋯dzn,

Res
z→0

1
2 ∫

z
−z ω0,2(⋅, z1)

ω0,1(z) − ω0,1(−z)
(ω0,2(z, z2)ωg,n−1(−z, z3, . . . , zn) + ω0,2(−z, z2)ωg,n−1(z, z3, . . . , zn)).

The last identity in Lemma 12.3 gives, for 2g − 2 + n > 1

∫
Rn
>0

n

∏
i=1

dLiLi e
−ziLi ∫

R2
>0

d`d`′ ` `′ 1
2

C∞(L1, `, `
′)Vg−1,n+1,∞(`, `′, L2, . . . , Ln)

= 1

2z2
1

wg−1,n+1(z1, z1, z2, . . . , zn)

= Res
z→0

d z

2
( 1

z − z1
− 1

z + z1
) 1

2z2
wg−1,n+1(z,−z, z2, . . . , zn), (89)
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and we recognise, after multiplication by dz1⋯dzn,

Res
z→0

1
2 ∫

z
−z ω0,2(⋅, z1)

ω0,1(z) − ω0,1(−z)
ωg−1,n+1(z,−z, z2, . . . , zn).

The Laplace transform of the other terms in the strict GR formula (50) are treated similarly, and
we obtain exactly the residue formula of the topological recursion (34). The identities for the case
(g, n) = (1,1) can be checked by hand. ∎

12.3 Four generating series

As a preliminary to the next paragraph, we consider four generating series

t(u) ∈ C[[u]], T (u) ∈ uC[[u]], y(z) ∈ zC[[z2]] and Υ(z) ∈ C[[z2]]

which are determined from one another by

t(u) = ln(Υ0) − ln(1 − T (u)), T (u) = 2

(2π) 1
2u

3
2
∫

∞

0

y1z − y(z)
y1

e−
z2

2u z dz and y(z) = − z

Υ(z) .

This makes sense under the following assumptions on leading coefficients

y1 ≠ 0, Υ0 ≠ 0 .

The second equality should be understood coefficient-wise

y(z) = ∑
k≥0

y2k+1 z
2k+1 Ô⇒ T (u) = −∑

k≥1

(2k + 1)!! y2k+1 u
k.

12.4 Translations of Witten-Kontsevich

Given a polynomial
Υ(z) = ∑

k≥0

Υ2k z
2k ∈ C[z2],

we introduce an initial data for strict GR, which depends on a parameter β ≥ 1.

A
(Υ)
β (L1, L2, L3) ∶= Υ0

B
(Υ)
β (L1, L2, `) ∶= 1

2βL1
{Υ(∂L1)Fβ(` −L1 +L2) −Υ(∂L2)Fβ(` +L1 −L2)

+Υ(∂L1) +Υ(∂L2)
2

Fβ(` −L1 −L2) −
Υ(∂L1) −Υ(∂L2)

4(∂L1 − ∂L2)
(F′′β(` −L1)L1 + F′′β(` −L2)L2)}

C
(Υ)
β (L1, `, `

′) ∶= 1

βL1
Υ(∂L1)Fβ(` + `′ −L1)

D
(Υ)
β (L1) ∶= ∫

∞

0
d` `C

(Υ)
β (L1, `, `) = Υ(∂L1)Dβ(L1) = ( π2

6β2
+ L

2
1

24
)Υ0 +

Υ2

12

where we have used the value of Dβ given by (83). We recall that Fβ(x) = 2 ln (1 + e− βx2 ). Note that

Υ(∂L1) −Υ(∂L2)
∂L1 − ∂L2

= ∑
k1,k2≥0

Υk1+k2+1 ∂
k1

L1
∂k2

L2

is a polynomial in ∂L1 and ∂L2 , with the convention that Υ2k+1 = 0 for all k ≥ 0. We denote V
(Υ)
g,n,β the

strict GR amplitudes for this initial data.
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We lift them to initial data for GR

X
(Υ)
P,β(σ) = X

(Υ)
β (`σ(∂P )), X ∈ {A,B,C},

D
(Υ)
T,β(σ) = ∑

γ∈Ŝ○
T

C
(Υ)
β (`σ(∂Pγ)).

Lemma 12.5 Let Υ(z) be a fixed even polynomial. For any β ∈ [1,+∞), the above initial data for
GR is M-bounded, uniformly so when β remains bounded. In particular, D

(Υ)
β is well-defined.

Proof. First observe that B
(Υ)
β and C

(Υ)
β only involve finitely many derivatives of derivatives of order

≥ 2 of Fβ . We already know from Section 12.1 that the terms without derivatives are M-bounded –
in fact uniformly so for β ∈ [1,+∞]. The other terms only involve derivatives of Fβ of order greater
of equal to 2. Therefore, it is enough to show the existence of constants Mk,β > 0 such that, for any
β ≥ 1 and k ≥ 0,

∣F(k+2)
β (x)∣ ≤Mk,β ln (1 + e− x2 ). (90)

If this is granted, on the one hand we can specialise this inequality to x = `−L1 −L2, and on the other
hand the specialisation to x = ` −L1 +L2 and monotonicity yields

∣F(k+2)
β (` −L1 +L2)∣ ≤Mk,β ln (1 + e

L1−L2−`

2 ) ≤Mk,β ln (1 + e
L1+L2−`

2 ).

By exchanging the role of L1 and L2 we get the same bound for ∣F((k+2)
β (` + L1 − L2)∣. Therefore all

the terms in B
(Υ)
β and C

(Υ)
β are M-bounded and the proof would be complete.

To justify (90), we compute

F′′β(x) =
β2

8 cosh2(βx
4
)

and by induction, one can prove the existence of universal polynomials pm and p̃m of degree m such
that, for any k ≥ 2

F
(k+2)
β (x) = βk+2

22k+3coshk+2(βx
4
)
⋅
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p k−1
2

[cosh2(βx
4
)] sinh(βx

4
) if k is odd,

p̃ k
2
[cosh2(βx

4
)] if k is even.

We deduce the existence of a universal constant ck > 0 such that,

∀x ∈ R, ∣F(k+2)
β (x)∣ ≤ βk+2 ck

4 cosh2(βx
4
)
≤ βk+2 ck e

− β∣x∣2 ≤ β
k+2 ck
ln 2

ln (1 + e−
βx
2 ).

Applying these inequalities to x = ` −L1 −L2, we deduce the inequality (90) we need. ∎

We denote Ω
(Υ)
Σ,β the GR amplitudes for this initial data. We know from Proposition 10.7 that

V
(Υ)
g,n,β(L) = ∫

MΣg,n(L)
Ω
(Υ)
Σg,n,β

⋅ νΣg,n .

We introduce the generating series t(u), T (u) and y(z) determined by Υ(z) as described in Sec-
tion 12.3, with obvious notations for their coefficients. The following result compares all these con-
structions.

Theorem 12.6 For 2g − 2 + n > 0, we have equality of the three following quantities
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(1) the β →∞ limit of the Laplace transform of the strict GR amplitudes

lim
β→∞∫R>0

n

∏
i=1

dLiLi e
−ziLi V

(Υ)
g,n,β(L1, . . . , Ln).

(2) the integral over Deligne-Mumford compactification of the moduli space

∑
d1,...,dn≥0

d1+⋯+dk≤3g−3+n

(∫
Mg,n

exp [∑
d≥0

tdκd]
n

∏
i=1

ψdii )
n

∏
i=1

(2di + 1)!!
z2di+2
i

.

By the definition and combinatorics of κ-classes, it can alternatively be written

∑
d1,...,dn≥0

d1+⋯+dn≤3g−3+n

∑
m≥0

t2g−2+n
0

m!
∑

d′1,...,d
′

m≥1

(∫
Mg,n+m

n

∏
i=1

ψdii

m

∏
j=1

ψ
d′j
n+j)

n

∏
i=1

(2di + 1)!!
z2di+2
i

m

∏
j=1

Td′j .

(3) the functions
ωg,n(z1, . . . , zn)

dz1⋯dzn

where ωg,n are the TR amplitudes for the spectral curve

S = P1, x(z) = z
2

2
, ω0,1 = y(z)dx(z), ω0,2(z1, z2) =

dz1 dz2

(z1 − z2)2
.

Proof. The equality between (2) and (3) was obtained in [19]. Here we focus on proving the equality
between (1) and (3).

We first evaluate the β → ∞ limit of the strict GR initial data. Recalling (82), it amounts to
replacing Fβ(−x)

β
with G(x). This limit should be understood in the distributional sense, because

the function G(x) is not continuously differentiable at 0. Indeed G′(x) is the Heaviside distribution,
G′′(x) = δ(x) is the Dirac distribution, etc. The effect of the derivative ∂L in Laplace variable is
obtained via integration by parts. If f(L) is a polynomial in L, we have

f̂(z) = f(0)
z

+O( 1
z2 )

and

∫
∞

0
dLe−zL ∂Lf(L) = f(0) − zf̂(z) = −[zf̂(z)]−

where [g(z)]− is the negative part in the Laurent expansion in z. More generally, if q is a polynomial

∫
∞

0
dLe−zLq(∂L) f(L) = [q(−z)f̂(z)]−.

In intermediate computations, one can omit to write explicitly the terms coming from the boundary
in integration by parts, and only remember at the very end to take the negative part of the Laurent
expansion.

We find in Lemma 12.3 all the ingredients to compute the Laplace transform of C(Υ)∞ and of the
three first terms in B

(Υ)
∞ . Only the last term in B(Υ)∞ requires a separate evaluation

−∫
R2
>0

dL1 dL2L1L2 e
−z1L1−z2L2

1

L1

Υ(∂L1) −Υ(∂L2)
4(∂L1 − ∂L2)

(δ(` −L1)L1 + δ(` −L2)L2)

= ∂z2{
Υ(z1) −Υ(z2)

4(z1 − z2)
(e

−z1`

z2
1

+ e
−z2`

z2
2

)} + boundary terms

79



Hence

∫
R2
>0

dL1 dL2L1L2 e
−z1L1−z2L2 ∫

R>0
d` `B(Υ)∞ (L1, L2, `) f(`)

= ∫
R>0

1

2
∂z2{ −

Υ(z1) e−z1`
z2

1(z1 + z2)
+ Υ(z2) e−z2`
z2

2(z1 + z2)
+ Υ(z1) +Υ(z2)

2(z1 − z2)
(e

−z1`

z2
1

− e
−z2`

z2
2

)

+Υ(z1) −Υ(z2)
4(z1 − z2)

(e
−z1`

z2
1

+ e
−z2`

z2
2

)} + boundary terms

= [∂z2(
z2

2Υ(z1)(−f̂ ′(z1)) − z2
1Υ(z2)(−f̂ ′(z2))

z2
1z2(z2

1 − z2
2)

)]
−

= Res
z→0

dz

2
( 1

z1 − z
− 1

z1 + z
)Υ(z)
z2

( 1

(z − z2)2
+ 1

(z + z2)2
)(−f̂ ′(z))

Likewise, if f(`, `′) is a polynomial in ` and `′, we compute

1

2
∫
R2
>0

dL1L1 e
−z1L1 ∫

R2
>0

d`d`′ ` `′ C(Υ)∞ (L1, `, `
′) f(`, `′)

= [Υ(z1)
z2

1

∂1∂2f̂(z1, z1)]
−

= Res
z→0

dz

2
( 1

z1 − z
− 1

z1 + z
) Υ(z)

z2
∂1∂2f̂(z, z).

Let us introduce

ωg,n(z1, . . . , zn) = (∫
R>0

n

∏
i=1

dLiLi e
−ziLi V(Υ)g,n,∞(L1, . . . , Ln))

n

∏
i=1

dzi.

Then, the previous computations shows, as in the end of the proof of Proposition 12.4, that the
Laplace transform of the strict GR formula (50) is exactly the original topological recursion residue
formula (34) for the claimed spectral curve. ∎

12.5 Generalisation to arbitrary ω0,2

As before, we fix Υ(z) ∈ C[z2] with Υ0 ≠ 0. Let us fix a generating series Φ(z1, z2) ∈ C[z2
1 , z

2
2]S2 . We

assume here it is a polynomial in order to avoid discussing convergence issues. A simple way to include
formal series in z1, z2 with infinitely many terms at the same time is to consider the coefficients of Φ

as independent formal variables.
We introduce initial data for strict GR generalising the one of Section 12.4

A
(Υ,Φ)
β (L1, L2, L3) = A

(Υ)
β (L1, L2, L3) = Υ0

B
(Υ,Φ)
β,η (L1, L2, `) = B

(Υ)
β (L1, L2, `) +∑

k≥0

Φ2k,0

F
(2k+2)
β (η − `)

β
A
(Υ)
β (L1, L2,0)

C
(Υ,Φ)
β,η (L1, `, `

′) = C
(Υ)
β (L1, `, `

′)

+ ∑
j,k≥0

Φ2j,2k (
F
(2j+2)
β (η − `′)

β
∂
(2k)
L2

B
(Υ)
β (L1,0, `) +

F
(2j+2)
β (η − `)

β
∂2k
L2

B
(Υ)
β (L1,0, `

′))

+ ∑
j,k≥0

Φ2j,0 Φ2k,0

F
(2j+2)
β (η − `)

β

F
(2k+2)
β (η − `′)

β
A
(Υ)
β (L1,0,0)

and induce D via (19). Here η > 0 is a parameter used for regularisation, and will later be sent to 0.
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We lift them to initial data for GR

X
(Υ,Φ)
P,β,η (σ) = X

(Υ,Φ)
β,η (`σ(∂P )), X ∈ {A,B,C}

D
(Υ,Φ)
T,β,η (σ) = ∑

γ∈Ŝ○
T

C
(Υ)
β (`σ(∂Pγ)).

Lemma 12.7 For any β ∈ [1,+∞) and η ≥ 0, this initial data is M -bounded, and uniformly so when
β remains bounded and η ∈ [0,1].

Proof. Given Lemma 12.5, we only have to prove that the extra terms involving Φ are M-bounded.
From the proof of Lemma 12.5 we know there exists universal constants ck > 0 such that, for any
k ≥ 0, x ∈ R and L1, L2, ` ≥ 0,

∣F(2k+2)
β (x)∣ ≤ βk+2 ck e

− β∣x∣2 ≤ βk+2 ck e
− ∣x∣2 ,

∣∂2k
L2

B
(Υ)
β (L1, L2, `)∣ ≤ Mβ,k ln (1 + e

L1−`

2 )

where Mβ,k is uniform when β and k remain bounded. With x = `′ − η, using the inequality

∀a > 0, ∀b < 1,
b ln(1 + a)
ln(1 + ab) ≤ 1 (91)

with a = e
L1−`

2 and b = e− `
′

2 , we deduce that

∣F(2j+2)
β (η−`′)∂2k

L2
B
(Υ)
β (L1,0, `)∣ ≤Mβ,k β

j+2 cj ln (1+e
L1−`

2 ) e−
∣`′−η∣

2 ≤Mβ,k β
j+2 cj ln (1+q(η, `′) e

L1−`−`
′

2 )

where q(η, `′) = e
`′−∣`′−η∣

2 . We also have

∀η ∈ [0,1], ∀`′ ∈ R≥0, q(η, `′) ≤ e 1
2

and using again the inequality (91) with a = q(η, `′)e
L1−L2−`

2 and b = q−1(η, `′) one gets

∣F(2j+2)
β (η − `′)∂2k

L2
B
(Υ)
β (L1,0, `)∣ ≤Mβ,k β

j+2 cj e
1
2 ln (1 + e

L1−`−`
′

2 ).

The other terms in B
(Υ,Φ)
β,η and C

(Υ,Φ)
β,η are treated similarly, and yield the conclusion. ∎

We denote Ω
(Υ)
Σ,β (respectively V

(Υ,Φ)
g,n,β,η) the (strict) GR amplitudes for this initial data. We know

from Proposition 10.7 that

V
(Υ,Φ)
g,n,β,η(L) = ∫

MΣg,n(L)
Ω
(Υ,Φ)
Σg,n,β,η

⋅ νΣg,n .

Let Divg,n be the set of boundary divisors of Mg,n. If d ∈ Divg,n, we denote id ∶ ∂Mg,n → Mg,n

the natural inclusion, and ψ○, ψ● the first Chern class of the cotangent line bundle attached to the two
nodes appearing on the divisor d. We introduce the formal combination of these classes

[Φ] ∶= exp(1

2
∑
k,l≥0

d∈Divg,n

(2k − 1)!! (2l − 1)!! Φ2k,2l id∗(ψk○ψl●))

where g and n are specified by the context.

Theorem 12.8 For 2g − 2 + n > 0, we have equality of the three following quantities
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(1) the (limit of) of the Laplace transform of the strict GR amplitudes

lim
η→0+

lim
β→∞∫R>0

n

∏
i=1

dLiLi e
−ziLi V

(Υ,Φ)
g,n,β,η(L1, . . . , Ln)

(2) the integrals over Deligne-Mumford compactification of the moduli space

∑
d1,...,dn≥0

d1+⋯+dk≤3g−3+n

(∫
Mg,n

[Φ] e∑d≥0 tdκd
n

∏
i=1

ψdii )
n

∏
i=1

(2di + 1)!!
z2di+2
i

(3) the functions

Res
z′1→0

⋯ Res
z′n→0

ωg,n(z′1, . . . , z′n)
∏n
i=1(zi − z′i)

(92)

where ωg,n are the TR amplitudes for the spectral curve

S = P1, x(z) = z
2

2
, ω0,1 = y(z)dx(z) + non odd

and
ω0,2(z1, z2) =

dz1 dz2

(z1 − z2)2
+ ∑
k1,k2≥0

Φ2k1,2k2 z
2k1

1 z2k2

2 dz1dz2 + non odd

where the non-odd (separately in each variable) parts in zi are arbitrary. Note that (92) extracts
the divergent part of the ωg,n(z1, . . . , zn).

Proof. Again, the equality between (2) and (3) was obtained in [20]. We only sketch the proof of the
equality between (1) and (3), as many computations are similar to the proof in Theorem 12.6. The
limit β →∞ of the strict GR initial data we propose exists at the distribution level

B(Υ,Φ)∞,η (L1, L2, `) = B(Υ)∞ (L1, L2, `) +∑
k≥0

δ(2k)(` − η)A
(Υ)
β (L1, L2,0)

C(Υ,Φ)∞,η (L1, `, `
′) = C(Υ)∞ (L1, `, `

′) + ∑
j,k≥0

Φ2j,2k(δ(2j)(`′ − η)∂2k
L2

B(Υ)∞ (L1,0, `) + δ(2j)(` − η)∂2k
L2

B∞(L1,0, `
′))

+ ∑
j,k≥0

Φ2j,0 Φ2k,0 δ
(2j)(` − η) δ(2k)(`′ − η)A(Υ)∞ (L1,0,0)

When we compute the integral

∫
R>0

d` `B(Υ,Φ)∞,η (L1, L2, `) f(`)

the effect of δ(2k)(`−η) is to evaluate the derivative of f(`) at ` = η. Taking the limit η → 0+ therefore
amounts to take the derivative5 at η = 0. In Laplace variable, it amounts to multiply by z2k up to
boundary terms.

On the other hand, in the topological recursion, the replacement of ω0,2

dz1 dz2

(z1 − z2)2
Ð→ dz1 dz2

(z1 − z2)2
+Φ(z1, z2)dz1dz2

amounts in the notation of Section 7.4 to replacing the 1-forms ξk

(2k + 1)dz

z2k+2
Ð→ (2k + 1)dz

z2k+2
+∑
l≥0

Φ2k,2l z
2l dz. (93)

5It was necessary to introduce η as the integration range is only the half-real line, so simply taking the β → ∞ of
β−1F(2k+2)

β
(−`) would rather produce a half of the desired result.
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It has for effect to replace the coefficients of the Airy structure (A,B,C)→ (Ã, B̃, C̃) with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ãij,k = Aij,k
B̃ij,k = Bij,k +∑a≥0 Φ2k,2aA

i
j,a

C̃ij,k = Cij,k +∑a≥0 Φ2k,2aB
i
a,j +Φ2j,2aB

i
a,k +∑a,b≥0 Φ2j,2aΦ2k,2bA

i
a,b

Recalling that

∫
R>0

dLLe−zLL2k = (2k + 1)!
z2k+2

, ∂2k
L (L2k) = (2k)! = (2k + 1)!

2k + 1

and transporting the modifications of B and C induced by Φ in Laplace transform, one identifies with
(93)-(94) the additional terms in the strict GR initial data. The identity relating D to the topological
recursion’s ω1,1 can be checked separately. ∎

12.6 General spectral curves

For spectral curves possibly having several simple branchpoints, a similar theorem can be formulated
and proved, by considering the target

E(Σ) = C0(TΣ,A)

where A is the Frobenius algebra given by the Jacobi ring, equipped with its canonical basis given
by the branchpoints. Now the initial data (A,B,C) – respectively D – will be valued in A∗ ⊗A⊗2 –
respectively A∗ – and we use the product of functions which appear all over our formulas now also
involve the product in the Frobenius algebra, and the pairing to identify A ≅ A∗.

In many application of the topological recursion, one need to consider Υ(z) and Φ(z1, z2) which
are formal series with complex coefficients, rather than just polynomials. In doing so, one should then
address the question of convergence of the series which define the corresponding (strict) GR initial
data. There should be however be no surprise, in the sense that once the series are guaranteed to be
convergent the result of Theorems 12.6 and 12.8 continue to hold.

12.7 Comments

Interestingly, the GR amplitudes ΩΣ we have described in the previous paragraphs give actual func-
tions on the moduli space MΣ(L), whose integration results in intersection numbers of ψ-cohomology
classes, and this formula was derived without constructing differential form representatives for these
cohomology classes. Even in the simplest case of the Witten-Kontsevich model, we do not know of a
simple expression for ΩΣ,β and ΩΣ,∞ other than their definition by the geometric recursion. There-
fore, the lift from TR amplitudes to GR amplitudes, which we have described for an arbitrary spectral
curve, seems rather non-trivial.

Our results apply in particular to cohomological field theory H on a semi-simple Frobenius algebra
A, modulo solving the convergence question for initial data raised in Section 12.6 for the examples
one is interested in – see (94) below. Indeed, Teleman [49] has proved that the action of the Givental
group [31, 32] on cohomological field theories on A is transitive. Therefore,

H ∈H●(Mg,n)⊗A⊗n

can be obtained by action on the trivial cohomological field theory

⊕
a

[1]
Mg,n

⊗ 1⊗n ∈H●(Mg,n)⊗A⊗n
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whose correlation functions are captured by a sum of Witten-Kontsevich models. The Givental group
element is described by a generating series R(u) ∈ (EndA)[[u]] such that R(u)R†(−u) = Id. It
specifies two generating series

T (u) = u(Id −R(u)) ⋅ 1 Φ̃(u1, u2) =
b† −R(u1)⊗R(u2) ⋅ b†

u1 + u2
∈ (A⊗A)[[u1, u2]]

where 1 is the unit and b† is the element of A⊗2 specified by the pairing. T (u) together with Υ0 = 1

determines a generating series Υ(z) ∈ A[[z2]] as in Section 12.3, and Φ̃ determines a generating series
Φ(z1, z2) ∈ (A⊗A)[[z1, z2]] via

Φ̃(u1, u2) =
2

π(u1u2)
3
2
∫
R2
>0

dz1 dz2 z1 z2 e
− z21

2u1
− z22

2u2 Φ(z1, z2) ⇐⇒ Φ2k,2l = Φ̃k,l(2k − 1)!!(2l − 1)!!

(94)
[17] proved that for 2g − 2 + n > 0, the correlation functions of the cohomological field theory

ωg,n(z1, . . . , zn) = ∑
d1,...,dn≥0

d1+⋯+dn≤3g−3+n

(∫
Mg,n

H
n

∏
i=1

ψdii ) ⋅
n

⊗
i=1

⎡⎢⎢⎢⎣
(2di + 1)!!1dzi

z2di+2
i

+ (2di − 1)!!
∞
∑
li≥0

Φ2di,liz
li
i dzi

⎤⎥⎥⎥⎦
(95)

are then computed by the topological recursion for the local spectral curve consisting of several copies
of the formal neighbourhood of 0 ⊂ C equipped with the branched cover x(z) = z2

2
, with ω0,1 and ω0,2

given as in Theorem 12.8. It is understood in (95) we multiply H with the A⊗n-valued multidifferential
to its right, factorwise and using the product in the Frobenius algebra. We refer to [3, Section 4] for
a precise statement close to our notations. Our results show that one can approximate (95) by the
Laplace transform of the integral over MΣg,n(L) of GR amplitudes against Weil-Petersson volumes.

The correspondence becomes exact at β =∞. However, beyond the Witten-Kontsevich model, the
initial data for β =∞ involve distributions. Introducing β ≥ 1 finite allows their regularisation, so that
ΩΣ,β are continuous functions on the Teichmüller spaces. In principle, one can imagine to construct
target theories from spaces of distributions of Teichmüller space and make sense of these GR initial
data and amplitudes at β =∞. Doing so precisely brings technicalities which we leave out of the scope
of the present article. We can already point two difficulties which should be addressed to achieve this.

First, if we have a smooth function over TΣ, its derivatives with respect to boundary lengths are
not unambiguously defined, because the fibration L ∶ TΣ → Rn>0 does not carry a natural Ehresmann
connection. In fact, the structure of our computations suggests an ad hoc solution: when we need to
differentiate with respect to the length of a boundary component b, we are always in the situation
where we dispose of an embedded pair of pants Pγ in Σ which bounds b. Then, we have a canonical
deformation of the hyperbolic metric on Pγ which varies `σ(b) while keeping the lengths of the other
boundary components of Pγ fixed. In other words, we can use the well-defined vector field ∂Lb on
TPγ ≅ R3

>0 and

(1) Lift it uniquely to the field on T̃Pγ which is invariant under U(1)3 acting transitively on the
fiber of T̃Pγ → TP ;

(2) Extend it to a vector field on T̃Pγ × T̃Σγ by requiring its projection on the tangent space of the
second factor is 0;

(3) Restrict it to the locus (T̃Pγ × T̃Σγ
)= where lengths of curves we glue on match;

(4) Push it forward via the glueing map ϑ̃γ to obtain a well-defined vector field on T̂Σ. This is
enough if we want to work over Teichmüller space of pointed bordered surfaces;
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(5) If we want to work over the Teichmüller space of bordered surfaces, we notice that the outcome
of the previous step is invariant under U(1)n acting on the fibers of T̃Σ → TΣ, therefore is the
lift of a unique vector field on TΣ, which we may denote ∂(γ)Lb

.

A second problem appears for the setting of Section 12.5, as Φ couples to the Taylor expansion at
0 boundary lengths of the function we glue the initial data to. Therefore, in order to run GR, one
would need to control smoothness up to zero boundary lengths and existence of this Taylor expansion,
in the spirit of Sections 9.6 but for boundary components and including derivative controls.

13 Coupling to conformal field theories

In this section, we describe the target theory given by the space of continuous functions from Te-
ichmüller space to the space of states of certain two-dimensional conformal field theories (2d CFT).
The notion of 2d CFT we work with is axiomatised by modular functors. We first need the notion of
labelled and decorated surfaces.

13.1 Decorated bordered surfaces

This is a slight refinement of the category of pointed bordered surfaces, that occurs in TQFTs with
anomalies.

Definition 13.1 A decorated bordered surface is an ordered pair (Σ,L), where Σ is a pointed bordered
surface and L is a Lagrangian sublattice of H1(Σ, ∂Σ;Z) ∶= H1(Σ,Z)/i∗H1(∂Σ,Z) where i ∶ ∂Σ → Σ

is the inclusion.

We form the category of decorated bordered surfaces B̃ord
●
whose objects are decorated bor-

dered surfaces and whose morphisms are pairs (f, ς), where f ∶ Σ1 → Σ2 is a morphism of
pointed bordered surfaces, and ς is a homotopy class of paths from f∗L1 to L2 in the space
{Lagrangian subspace of H1(Σ2,R)/i∗H1(Σ1,R)}. In this case, the composition of morphisms is ob-
vious.

One can use an equivalent description, where one takes as morphisms ordered pairs (f, s) where
s ∈ Z, but the composition of two morphisms (f1, s1) ∶ Σ1 → Σ2 and (f2, s2) ∶ Σ2 → Σ3 is defined as
follows

(f2, s2) ○ (f1, s1) = (f2 ○ f1, s1 + s2 − σ(f2∗f1∗L1, f2∗L2, L3)),

where σ is the Maslov index of the three lagrangians [52].

Centrally extended mapping class group

The automorphism group of an object (Σ,L) in B̃ord
●
is denoted Γ̃Σ, and it is a central extension

1Ð→ ZÐ→ Γ̃Σ Ð→ ΓΣ Ð→ 1. (96)

Glueing operations

There exist glueing operations on decorated bordered surfaces. Let (Σ,L) be a decorated bor-
dered surface, and select an ordered pair γ = (b′, b′′) of boundary components. Choose arbi-
trarily an orientation-reversing (with respect to the induced orientations from Σ) diffeomorphism
ϕ ∶ (∂b′Σ, ob′) → (∂b′′Σ, ob′′). We already know how to construct another pointed bordered surface
Σγ = Σ/ ∼, where ∼ is the equivalence relation generated by ϕ. The projection gives a continuous
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map p ∶ Σ → Σγ . We construct the lagrangian sublattice Lb as follows. Let Σ′ the topological space
obtained from Σ by identifying ∂b′Σ ∪ ∂b′′Σ to a point. We have continuous maps q ∶ Σγ → Σ′, and
n ∶ Σ→ Σ′. On the first homology group relative boundary, n induces an injection and q a surjection,
so we can define Lγ = q−1

∗ (n∗(L)). Note that p∗L is contained in Lγ , and that the homology class of
the (common) image of ∂b′Σ (and ∂b′′Σ) in Σγ is also in Lγ .

As before, a different choice of ϕ yields a canonically up to isotopy diffeomorphic glued surface.
This construction also means there is an operation of cutting a decorated bordered surface along any
pointed oriented multicurve (γ, o) in Σ○, provided the homology classes of the connected components
of γ belongs to L.

The centrally extended mapping class groups Γ̃Σb
and Γ̃Σγ are related by an exact sequence similar

to (3).

13.2 Labelled (decorated) surfaces

Definition 13.2 A label set is a set Λ together an involution † ∶ Λ→ Λ. A pointed label set is a label
set together with a distinguished element 1 ∈ Λ such that 1† = 1.

We will encounter another category B̃ord
●(Λ). Its objects are triples (Σ,L,λ), where (Σ,L) is

a decorated bordered surface, and λ is a “labelling” map from π0(∂Σ) to Λ, and morphisms of Λ-
decorated bordered surfaces are just morphisms of decorated bordered surfaces preserving labellings.

In this category, we only allow glueing operations which identify boundary components b and b′

such that λ(b) = (λ(b′))† – and this piece of information is forgotten in the glued surface. Likewise, we
can specify a cutting operation for any pointed oriented multicurve γ together with a map π0(γ)→ Λ.

Dropping the data of a Lagrangian sublattice, we can form the category Bord●(Λ) whose objects
consist of a pointed bordered surface Σ together with λ ∶ π0(∂Σ)→ Λ as above.

13.3 Modular functors

A modular functor is an axiomatic way to specify a two-dimensional conformal field theory. This
notion can be traced back to [43, 46, 51]. Several variants of this notion, which all bear the name
“modular functor”, have been used since then in the literature. Here we adopt the definition spelled
out in [5], which does not assume modular functors come from a modular tensor category. In brief,
a modular functor is the data of a finite pointed label set (Λ, †,1) together with a monoidal functor
Z from (B̃ord

●(Λ),⊔) to the category VectC of finite-dimensional complex vector spaces with ⊗ as
monoidal structure, as well as glueing isomorphisms satisfying a factorisation axiom

Ψγ ∶ Z(Σb,λ) ∼Ð→⊕
µ∈Λ

Z(Σγ , (λ, µ, µ†))

where µ is the label of b′ and µ† the label of b′′, and canonical isomorphisms

Z(disk, λ) ≅ { C if λ = 1
0 otherwise

, Z(cylinder, λ, µ) ≅ { C if λ = µ†

0 otherwise

which all satisfy natural compatibility conditions. Note that the source category in [5] is rather a
category of “marked surfaces”. It is however clear by capping the boundary of our surfaces with
punctured disks that
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Lemma 13.3 The category of decorated bordered surfaces B̃ord
●
together with the glueing operations

described above, is equivalent to the category of marked surfaces with its glueing operations described
in [5].

Physically, Λ is the set of boundary conditions, and Z(Σ,λ) is the space of states of the CFT on the
surface Σ with boundary conditions λ.

As a consequence of the factorisation axioms, the generator of Z in the description of Γ̃Σ by the
exact sequence (96) acts by a scalar on Z(Σ), which is independent of Σ and denoted c̃. Likewise,
the Dehn twist around a boundary component β of Σ acts by a scalar on Z(Σ), which only depends
on the label λ(β) and not on the topology of Σ, and is denoted r̃λ(β).

Definition 13.4 We say that the modular functor has zero central charge when c̃ = 1, and that it has
zero conformal dimensions if r̃λ = 1 for all λ ∈ Λ.

Besides, if Σ,Σ′ are objects of B̃ord
●(Λ) such that Σ′ differs from Σ by addition of marked points

labelled by 1, a modular functor provides canonical isomorphisms Z(Σ) ≅ Z(Σ′). If the modular
functor has central charge zero, it drops to a functor from Bord●(Λ) to VectC that we still denote Z.

We introduce the weaker notion of stable modular functor. It is the data of a finite label set (Λ, †)
together with a monoidal functor from the full subcategory of (B̃ord

●(Λ),⊔) consisting of stable
surfaces, to the category of finite-dimensional vector spaces, that satisfies all the usual axioms of
modular functors, except the one specifying initial conditions for disks and cylinders. There is no
need to assume the data of a distinguished element 1 ∈ Λ in this definition as we do not have to specify
the value of the functor on disks. We say that a stable modular functor is unital if it is supplemented
with the data of a distinguished element 1 ∈ Λ such that 1 = 1†, and with the data, for any ordered
pair of objects ((Σ,λ), (Σ′,λ′)) that differ from each other by addition of marked points labelled 1,
of canonical isomorphisms Z(Σ,λ) ≅ Z(Σ′,λ′) compatible with the union and glueing morphisms.

To allow for infinite-dimensional space of states, we introduce the notion of stable Hilbert modular
functor6. It is the data of a measured space (Λ, ν) with a measure-preserving involution †, together
with a monoidal functor from the full subcategory of (B̃ord

●(Λ),⊔) consisting of stable surfaces, to
the category of separable Hilbert spaces with the completed tensor product as monoidal structure,
satisfying axioms similar to the ones defining stable modular functors, and such that the hermitian
structure is compatible with union and glueing operations. The only difference is that the direct sum
in the glueing axiom is replaced by a direct integral over Λ with respect to ν.

Obviously, a modular functor restricts to a unital stable modular functor, and a stable unitary
modular functor is a special case of Hilbert modular functor where Λ is finite and ν is the counting
measure. Rational 2d CFTs give rise to modular functors, whereas some nonrational 2d CFTs like
quantum Teichmüller theory [50] can give rise to stable Hilbert modular functors.

Tensorial operations

All these notions of modular functors are closed under taking the dual space, and making tensor
products. In particular, if Z is a modular functor of any of the kind above, (Σ,λ) ↦ EndZ(Σ,λ)
is a modular functor of the same kind, but in any case with zero central charge and zero conformal
dimensions. In other words, the representations of Γ̃Σ (see the exact sequence (96)) drops to a
representation of ΓΣ.

6This is called a stable unitary modular functor in [50].
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13.4 Definition of the target theory

Over bordered Teichmüller space

The target theory we are going to construct is an example of the procedure of “fibering over Teich-
müller space” described in Section 10.3. Let Z ∶ Bord●1(Λ)→ VectC be a stable Hilbert modular functor
with zero central charge and zero conformal dimensions. For instance, it could be the endomorphism
theory of any stable Hilbert modular functor. We put

E(Σ) = C0(TΣ,Z(Σ)).

Equivalently, this is the space of continuous sections of the trivial vector bundle TΣ × Z(Σ) → TΣ.
This bundle carries an action of ΓΣ which covers the action of the mapping class group on TΣ.

Let ∣∣ ⋅ ∣∣Σ the Hilbert norm on Z(Σ), which is functorial according to the axioms. We let IΣ = R>0

and for any ε > 0, A ε
Σ is the set of all compacts K ⊂KΣ(ε). We take

Eε(Σ) = C0(KΣ(ε),Z(Σ))

equipped with the seminorms
∣f ∣K = sup

σ∈K
∣∣f(σ)∣∣Σ.

The union morphism is defined using the monoidal structure provided by Z

(f1 ⊔ f2)(σ1, σ2) = f1(σ1)⊗ f2(σ2).

The glueing morphism is defined using the isomorphisms Ψ given along with Z and the glueing
fibration (40)

Θγ(f1, f2)(σ) = Ψ−1
γ ((f1 ⊔ f2)(σ′))

for an arbitrary σ′ ∈ p̃Σγ (ϑ−1(p̃−1
Σ (σ))). The length functions are defined from hyperbolic lengths as

in Section 9.1.
The assumption that the central charge and the conformal dimensions vanish allows to work over

the Teichmüller space instead of the total space of some circle bundles over Teichmüller space. The
assumption of a Hilbert (or unitary) structure is used to induce functorial norms on the vector spaces
E(Σ). A way out of these assumptions will be discussed in another publication.

Tracing

If Z is a stable unitary modular functor, we can apply the previous construction to its endomor-
phism theory. The trace gives a natural transformation of target theories

ηΣ ∶ C0(TΣ,EndZ(Σ))⇒ C0(TΣ) ηΣ(f)(σ) = Tr f(σ)

In our vocabulary, a unitary modular functor has finite-dimensional spaces Z(Σ), so the trace is
well-defined.

14 Geometric structures on moduli spaces of flat connections

14.1 Moduli space of flat connections

Throughout this section, G will be a simple, simply connected, compact Lie group. We denote CG the
space of conjugacy classes of G and kG ∶ G → CG the natural projection. If Σ is a bordered surface,
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we shall consider the moduli space of flat G-connections MG,Σ. We have the natural holonomy map
around the boundary components

H∂ ∶ MG,Σ Ð→ C
π0(∂Σ)
G .

If h ∈ C
π0(∂Σ)
G , we denote

MG,Σ(h) =H−1
∂ (h) .

It is well-known that these spaces are stratified smooth spaces, where the stratification is specified
by the centraliser of the holonomy group of a given flat connection. If now Σ is a pointed bordered
surface, we can consider the based moduli space of flat G-connections M̃G,Σ, meaning that we only
mod out by the subgroup of the gauge group which is based at the marked points on the boundary.
We then have a lift of the holonomy map

H̃∂ ∶ M̃G,Σ Ð→ Gπ0(∂Σ) ,

and of course a natural projection map

π̃Σ ∶ M̃G,Σ Ð→MG,Σ

such that
H∂ ○ π̃Σ = kG ○ H̃∂ .

14.2 Lattice gauge theory approach

Strategy

The moduli spaces MG,Σ(h) for bordered surfaces admit the structure of a stratified symplectic
space [47, 35]. The symplectic form on these spaces was first constructed by Narasimhan from a
complex geometry point of view and then from an infinite dimensional symplectic reduction perspective
by Atiyah and Bott [6] and finally from a representation variety point of view by Goldman [33, 34].
There is in fact a further fourth point of view due to Fock and Rosly [30], who construct a Poisson
structure P on MG,Σ whose symplectic leaves are exactly the MG,Σ(h) with their Narasimhan-Atiyah-
Bott-Goldman symplectic structures. The construction of Fock and Rosly requires the choice of an
embedded fatgraph G in Σ, in such a way that Σ deformation retracts onto G. If V (G) and E(G) are
the set of vertices and edges of G, then we have a homeomorphism

MG,Σ ≅ GE(G)/GV (G) .

This setting directly adapts to pointed bordered surfaces Σ. We introduce the set HΣ of homotopy
class relative to the boundary of fatgraphs G embedded in Σ such that each of the marked point
on the boundary components of Σ is a univalent vertex of G, all other vertices of G being at least
trivalent, and Σ deformation retracts onto G (see Figure 21). Note that the definition forces Σ ∖ G

to be homeomorphic to a disjoint union of open disks, one for each boundary component of Σ. In
particular, those fatgraphs are different from the ones considered in Section 3.5. For each G ∈ HΣ, we
have homeomorphisms

M̃G,Σ ≅ GE(G)/GV
′(G) . (97)

where V ′(G) is the set of non-univalent vertices of G. In particular, the holonomy around a boundary
component b based at its marked point ob ∈ b can be directly read in this representation. Indeed, the
based oriented loop going along b ∈ π0(Σ) following its orientation in ∂Σ – that is, negative orientation
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if b ∈ ∂−Σ, positive orientation if b ∈ ∂+Σ – deformation retracts onto a unique based loop on G which
we decompose as a succession of oriented edges of G. If x ∈ GE(G)/GV ′(G), H̃∂(x)(b) is then the
order-preserving product of the group elements x(e) attached to each of the oriented edges e met,
with the convention that the group elements on an oriented edge and on the oppositely oriented one
are inverse of each other.

The advantage of considering this lattice gauge theory description of the space, is that even though
M̃G,Σ is singular, we can simply consider various geometric structures on M̃G,Σ as the corresponding
GV

′(G)-invariant geometric structures on GE(G). For a large class of geometric structures, it has
already been proved that the notion is independent of the fatgraph G. This is certainly the case for
Poisson bivectors [30]. In particular we can define

C0(M̃G,Σ,Λ
2TM̃G,Σ

) ∶= ∑
G∈HΣ

C0(GE(G),Λ2TGE(G))
GV

′
(G)

/ ∼ , (98)

where the equivalence relation is induced by the natural identification of the spaces (97) for two
different fatgraphs. In fact, (98) is merely a trick to avoid the specification of a fatgraph. In practice,
one often chooses a fatgraph G ∈ HΣ and then work with

C0(M̃G,Σ,Λ
2TM̃G,Σ

) ≅ C0(GE(G),Λ2TGE(G))
GV

′
(G)

.

Pre-target theory.

We will apply the idea of fibering (Section 10.3), and therefore start our description with a pre-
target theory. For an object Σ in Bord●1 we let

F(Σ) = C0(M̃G,Σ,Λ
2TM̃G,Σ

) .

It is equipped with a Banach norm induced by the supremum of the norm on Λ2T induced by the
G-bi-invariant metric on the tangent space, normalized so that G has volume 1. Here we use the
assumption that G is compact. We remark that different choice of fatgraphs give the same norms.

The disjoint union morphisms is obtained as follows. We have the following natural projection
maps of moduli spaces

pi ∶ M̃G,Σ1∪Σ2 Ð→ M̃G,Σi .

Then there is a natural isomorphism

TM̃G,Σ1∪Σ2
≅ p∗1TM̃G,Σ1

⊕ p∗2TM̃G,Σ2
.

Thus we can define
⊔ ∶ F(Σ1) ×F(Σ2)Ð→ F(Σ1 ∪Σ2)

by
Π1 ⊔Π2 = p∗1(Π1) + p∗2(Π2) .

We now describe the glueing morphisms. Let Σ1 and Σ2 be objects in Bord●1 and Σ be the object
of Bord●1 obtained from glueing Σ1 and Σ2 along a subset b ⊂ π0(∂Σ1)×π0(∂Σ2). Given two fatgraphs
Gi ∈ HΣi , for each γ = (γ1, γ2) ∈ b, γi deformation retracts to an oriented path e1

γ on Gi for i ∈ {1,2}.
We identify e1

γ and e2
γ with opposite orientation so as to obtain a well-defined homotopy class of

fatgraphs G ∈ HΣ. Let us denote V bi the set of edges of Gi which are incident to pri(b) ⊂ π0(∂Σi). We
consider the smooth subvariety

(GE(G1) ×GE(G2))= = {(x1, x2) ∈ GE(G1) ×GE(G2), x1∣V b1 = x2∣V b2 } ,
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and we see that
(GE(G1) ×GE(G2))= ≅ GE(G) .

Besides, we have a diffeomorphism

GE(G) ×Gπ0(γ) ≅ GE(G1) ×GE(G2) , (99)

which induces a smooth principal Gπ0(γ)-bundle

qb ∶ GE(G1) ×GE(G2) Ð→ GE(G) ,

obtained by multiplying in G on all edges corresponding to the second factor in the left-hand side of
(99). From this we see that there is a unique morphism

Θb ∶ F(Σ1) ×F(Σ2)Ð→ F(Σ)

such that, for any fi ∈ C0(GE(Gi))V ′(Gi) we have

Θb(Π1,Π2)(f1, f2) = (Π1 ⊔Π2)(q∗b f1, q
∗
b f2) .

Target theory

We now set
E(Σ) = C0(TΣ × M̃G,Σ , m

∗
G,ΣΛ2TM̃G,Σ

) , (100)

where
mG,Σ ∶ TΣ × M̃G,Σ Ð→ M̃G,Σ

is the projection onto the second factor. The structures we have described on F(Σ) make (100) a
target theory using the remarks of Section 10.3.

Figure 21: A uni-trivalent fatgraph in HP. Note that the procedure of glueing of such graphs will a
priori produce vertices of valency higher than 3.

14.3 Application to Fock-Rosly Poisson structure

We shall now give an application of this setup. If P is a pair of pants and T a torus with one boundary
component, we denote ΠP ∈ F(P) and ΠT ∈ F(T) the Fock-Rosly Poisson structures on M̃G,P and
M̃G,T [30].
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Theorem 14.1 Recall the functions on Teichmüller spaces (A,B,C,D) defining Mirzakhani initial
data in Section 10.1. The initial data

AP = m∗
G,P(ΠP) ,

Bb,b1P = Bb,b1P ⋅m∗
G,P(ΠP) ,

Cb1P = Cb1P ⋅m∗
G,P(ΠP) ,

DT = DT ⋅m∗
G,T(ΠT) ,

is M-admissible. For any object Σ in Bord●1, the corresponding GR amplitude ΩΣ coincides with the
Fock-Rosly Poisson structure on M̃G,Σ.

Proof. This result follows directly from the Mirzakhani-McShane identities and the compatibility of
the Fock-Rosly construction under glueing. ∎
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