
 

 

 

 

 

 

 

University of Southern Denmark

Artificial intelligence-based versus manual assessment of prostate cancer in the prostate
gland
a method comparison study
Mortensen, Mike Allan; Borrelli, Pablo; Poulsen, Mads Hvid; Gerke, Oke; Enqvist, Olof; Ulén,
Johannes; Trägårdh, Elin; Constantinescu, Caius; Edenbrandt, Lars; Lund, Lars; Høilund-
Carlsen, Poul Flemming

Published in:
Clinical Physiology and Functional Imaging

DOI:
10.1111/cpf.12592

Publication date:
2019

Document version:
Accepted manuscript

Citation for pulished version (APA):
Mortensen, M. A., Borrelli, P., Poulsen, M. H., Gerke, O., Enqvist, O., Ulén, J., Trägårdh, E., Constantinescu, C.,
Edenbrandt, L., Lund, L., & Høilund-Carlsen, P. F. (2019). Artificial intelligence-based versus manual
assessment of prostate cancer in the prostate gland: a method comparison study. Clinical Physiology and
Functional Imaging, 39(6), 399-406. https://doi.org/10.1111/cpf.12592

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark.
Unless otherwise specified it has been shared according to the terms for self-archiving.
If no other license is stated, these terms apply:

            • You may download this work for personal use only.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying this open access version
If you believe that this document breaches copyright please contact us providing details and we will investigate your claim.
Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 11. Jan. 2025

https://doi.org/10.1111/cpf.12592
https://doi.org/10.1111/cpf.12592
https://portal.findresearcher.sdu.dk/en/publications/95b8ca8d-b41f-44de-b683-ebb29fcc0917


A
cc

ep
te

d
 A

rt
ic

le

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process, which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1111/cpf.12592 
This article is protected by copyright. All rights reserved. 

DR MIKE ALLAN  MORTENSEN (Orcid ID : 0000-0002-7065-9623) 
DR ELIN  TRÄGÅRDH (Orcid ID : 0000-0002-7116-303X) 
 
Article type      : Original Article 
 

Artificial intelligence-based versus manual assessment of prostate 

cancer in the prostate gland: a method comparison study 
 

Mortensen, Mike Allan 1,2; Borrelli, Pablo 3; Poulsen, Mads Hvid 1; Gerke, Oke 4; Enqvist, Olof 

5; Ulén, Johannes 6; Trägårdh, Elin 7,8; Constantinescu, Caius 4; Edenbrandt, Lars 3; Lund, Lars 

1,2; Høilund-Carlsen, Poul Flemming 2,4  

 

1: Department of Urology, Odense University Hospital, Odense, Denmark 

2: Department of Clinical Research, University of Southern Denmark, Odense, Denmark  

3: Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden  

4: Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark  

5: Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, 

Sweden 

6: Eigenvision AB, Malmö, Sweden 

7: Department of Medical Imaging and Physiology, Skåne University Hospital, Sweden 

8: Department of TranslaƟonal Medicine, Lund University, Malmö, Sweden 

 

 

Short title: CNN for prostate cancer 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Corresponding author 

Mike A. Mortensen 

Department of Urology 

Odense University Hospital 

J. B. Winsløwsvej 4, 5000 Odense C, Denmark 

E-mail: Mike.allan.mortensen@rsyd.dk 

Tel: 0045 40239441 

 

Summary  

Aim: To test the feasibility of a fully automated artificial intelligence-based method 

providing PET measures of prostate cancer (PCa).  

 

Methods: A convolutional neural network (CNN) was trained for automated measurements 

in 18F-choline (FCH) PET/CT scans obtained prior to radical prostatectomy (RP) in 45 patients 

with newly diagnosed PCa. Automated values were obtained for prostate volume, maximal 

standardized uptake value (SUVmax), mean standardized uptake value of voxels considered 

abnormal (SUVmean) and volume of abnormal voxels (Volabn). The product SUVmean x Volabn 

was calculated to reflect total lesion uptake (TLU). Corresponding manual measurements 

were performed. CNN-estimated data were compared with the weighted surgically removed 

tissue specimens and manually derived data and related to clinical parameters assuming 

that 1 g ≈ 1 ml of tissue. 
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Results: The mean (range) weight of the prostate specimens was 44 g (20-109), while CNN-

estimated volume was 62 ml (31-108) with a mean difference of 13.5 g or ml (95% CI: 9.78 – 

17.32).  The two measures were significantly correlated (r=0.77, p<0.001). Mean differences 

(95% CI) between CNN-based and manually derived PET measures of SUVmax, SUVmean, 

Volabn (ml) and TLU were 0.37 (-0.01 - 0.75), -0.08 (-0.30 – 0.14), 1.40 (-2.26 – 5.06) and 9.61 

(-3.95 – 23.17), respectively. PET findings Volabn, and TLU correlated with PSA (p<0.05), but 

not with Gleason score or stage.  

 

Conclusion: Automated CNN-segmentation provided in seconds volume and simple PET 

measures similar to manually derived ones. Further studies on automated CNN-

segmentation with newer tracers such as radiolabelled prostate-specific membrane antigen 

are warranted. 

Keywords: Prostatic Neoplasms, -Diagnostic imaging, -Positron emission tomography, -

Choline, -Convolutional neural network, -Agreement. 

 

INTRODUCTION 

Prostate cancer (PCa) is a heterogeneous disease with an often unpredictable outcome after 

radical prostatectomy (RP) (Reese et al., 2012). Preoperative risk stratification is often based 

on prostate specific antigen (PSA) level, Gleason score and clinical stage as suggested by 

D’Amico (D'Amico et al., 1998). Recurrence-free survival after surgery for clinically localized 

low risk disease is high. Despite this, around 1 in 4 operated patients will experience 

biochemical recurrence defined as a rising PSA despite definite therapy (Han et al., 2003). It 

is well known that PSA in itself is a sub-optimal marker for PCa stage and that determination 
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of both Gleason score, and especially clinical stage, is somewhat subjective. In order to 

improve appropriate treatment planning and inform patients and relatives better about 

prognosis, objective and reproducible risk biomarkers are needed. In patients with bone 

metastases, the use of the automated bone scan index is now a validated prognostic 

biomarker (Armstrong et al., 2018). With the increasing use of positron emission 

tomography/computed tomography (PET/CT), methods for automated volumetric 

calculations of bone metastatic burden are emerging (Lindgren Belal et al., 2017) and direly 

needed as manual segmentation and determination is both very time consuming and 

observer-dependent. Imaging is frequently known as a biomarker in patients with 

disseminated disease, but little is known about this approach in patients undergoing 

treatment with curative intent. Among multiple PCa tracers, 18F-Choline (FCH) is the one 

that has been studied most intensively. According to a recent review, the use of PET/CT for 

prognostication in patients undergoing RP has primarily focused on diagnosing lymph node 

metastases (Giovacchini et al., 2017), whereas evaluation of the prostate gland itself, 

correlation with histopathological findings, and impact on outcome have only been touched 

in relatively few studies (Farsad et al., 2005, Kwee et al., 2006, Kwee et al., 2008, Beheshti et 

al., 2010).  Common for all PET-studies of PCa, is the reliance on visual evaluation 

susceptible to subjective interpretation. In recent years, however, artificial intelligence (AI) 

has made its advent into the field of medical imaging (LeCun et al., 2015). By means of AI, it 

is possible to perform automated pattern recognition and image interpretation within 

seconds, which is exactly what is required in medical imaging (Litjens et al., 2017). The aim 

of this study was to compare a fully automated artificial intelligence-based method to 

manual measurements for measurement of prostatic FCH uptake and to study its 

correlation with clinical data and post-operative outcome in patients undergoing RP. 
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METHODS 

PATIENTS 

Training Group 

The training group comprised 145 male patients, who had undergone PET/CT at either 

Sahlgrenska University Hospital, Gothenburg, Sweden or Odense University Hospital, 

Odense, Denmark. Ethical approval for the training group was granted by the Regional 

Ethical Review Boards in Sweden (295-08; 2016/103) and Denmark (3-3013-1692/1). 

 

Study Group 

From January 2013 to May 2016, 45 patients underwent FCH-PET/CT prior to RP at Odense 

University Hospital in Denmark. The included patients had a median age of 67 years (53-75) 

and pre-operative disease characteristics with a median PSA of 11.0 ng/ml (1.4-43.0) and a 

median Gleason score of 7 (6-9). Nearly three quarters had palpable tumours in the prostate 

staged as clinical T2 or T3 (Amin et al., 2017). All patients underwent robot-assisted radical 

prostatectomy within 3 months of FCH-PET/CT with surgical approach in accordance with 

current European guidelines (Mottet et al., 2017).  

 

Included patients were part of a larger study of 145 patients undergoing FCH-PET/CT as 

initial staging in newly diagnosed PCa (Mortensen et al., 2019). Ethical approval for the 

study group was granted by the Regional Ethical Review Board (S-20120047). The study was 

approved by the Danish Data Protection Agency and registered at clinicaltrials.gov 

(NCT02232685). Written informed consent was obtained from all participants. 
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PET/CT IMAGING 

Training group 

PET/CT data were acquired using an integrated PET/CT scanner (Siemens Biograph 64 

Truepoint or Discovery VCT, GE Healthcare). A low dose CT scan (64-slice helical, 120 kV, 30 

mAs, 512x512 matrix) was obtained from the base of the skull to mid-thigh. The CT slice 

thickness was 5 mm.  

Study Group 

PET/CT data were acquired using an integrated PET/CT scanner (Discovery VCT, Discovery 

STE, Discovery RX or Discovery 690, GE Healthcare). A helical diagnostic CT-scan was 

acquired with in-vivo contrast (ultravist 370 I/ml) using a standard CT protocol (64-slice 

helical, 120 kV, ‘smart mA’ maximum 400 mA). Attenuation correction was based on the CT-

scan. Patients fasted for 6 hours prior to administration of tracer, each patient receiving a 

dose of 4 MBq per kg body weight. FCH was produced on automated synthesis systems via 

alkylation of dimethylaminoethanol with 18F-fluorobromomethane obtaining a 

radiochemical purity >99%.  

 

IMAGE PROCESSING AND INTERPRETATION 

AI-model 

In the last few years, convolutional neural networks (CNNs) have revolutionized the field of 

image analysis, and they are now the first option for image classification, detection and 

segmentation. CNNs have already been trained to accurately segment organs in CT 

(Lindgren Belal et al., 2017, Roth et al., 2018). However, due to misalignment between the 

PET and CT modalities, a direct transfer of a CT-based prostate segmentation to the PET 
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image often leads to voxels in the bladder being incorrectly classified as prostate. As bladder 

voxels have very high uptake, this could lead to an incorrect analysis. In contrast, this work 

uses a CNN that simultaneously estimates the misalignment and computes a segmentation 

that is consistent with both image modalities. We will assume that the misalignment can be 

approximated as a rigid transformation of the prostate gland, that is, rotation plus 

translation. The proposed method requires approximate knowledge of the position of the 

prostate in CT. This is achieved by first running a simple segmentation network on the CT 

image (Lindgren Belal et al., 2017, Roth et al., 2018). Figure 1 shows the overall structure of 

our CNN. Inputs to the model are the PET and CT images. The first part of the CNN, the 

alignment module, takes 50×150×150-subpatches of the PET and CT images roughly centred 

at the prostate as input and computes a rigid transformation (T) that aligns the prostate in the 

PET image to the prostate in the CT image. This part of the model is taken from the spatial 

transformer networks described by Jaderberg et al. (Jaderberg et al., 2015). The resulting 

transformation is applied to the PET image to produce a CT-aligned PET image. Together 

with the CT image, this CT-aligned PET image is input to the second part of the CNN, the 

segmentation module. This is more of a standard segmentation network, with structure as 

explained in Figure 2. The structure is similar to the popular U-Net but modified to minimize 

memory usage during training (Ronneberger et al., 2015) . The final convolutional layer has a 

single output channel with sigmoid activation. For each voxel, the output value describes the 

estimated probability of that voxel belonging to the prostate. As PET-CT misalignment has 

been dealt with, this single prostate probability map should be consistent with both 

modalities. By applying the inverse estimated transformation, T-1, we also get a PET-aligned 

segmentation. Hence, the outputs from our model are consistent segmentations of both the 

PET and the CT image (under the assumption that a rigid transformation is sufficient to 

describe the misalignment).  
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Training the CNN 

The advantage of the proposed architecture is that the network can be trained to focus on 

the motion of the prostate, while ignoring the possibly inconsistent motion of surrounding 

organs. To achieve this, we use manual delineations of the prostate made independently in 

the PET and CT modalities and train the network end-to-end to output segmentations which 

are consistent with these manual delineations. This means that we can train the alignment 

module to detect the correct transformation, without knowing it ourselves and it implicitly 

tells the network to ignore motion in the surrounding tissue. 

 

Since the urinary bladder has very high PET uptake, overlap with the bladder is 

especially problematic. To avoid this, the urinary bladder was manually delineated in the 

PET images and we use a negative log-likelihood loss with an auxiliary loss for false positives 

overlapping with the urinary bladder. More exactly, if P is the set of voxel indices that were 

labelled as prostate in the PET image, Pc is its complement, B is the set of voxels labelled as 

bladder and pi is the network output probability for pixel i, then the loss over the PET image 

can be written  

 

The same loss but without the bladder part is used for the CT image and the two are added 

to form the total loss.  

 

The annotated data was divided with 80% in a training group and 20% in a validation 

group used to tune the training. The optimization was performed using the Adam method  

with Nesterov momentum (Kingma & Ba, 2014). The learning rate was initialized to 0.0001 
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and reduced when the validation loss reached a plateau. After a few hours of training, the 

model was evaluated on the training group and false positives where stored in a special 

group of hard examples that were sampled more frequently (10% of the samples) when the 

training was restarted. Training and execution were performed using the Tensorflow and 

Keras frameworks on a high-end desktop computer. 

 

Biomarkers 

Standardized uptake value (SUV) on PET-images was automatically calculated in voxels 

determined to belong to the prostate by the CNN. SUVs above 2.65 were considered 

abnormal (Reske et al., 2006). Automated measures were obtained for prostate volume, 

maximal SUV within the prostate (SUVmax), mean SUV of voxels considered abnormal 

(SUVmean) and volume of abnormal voxels in ml (Volabn). To reflect total lesion uptake (TLU), 

the product SUVmean x Volabn was calculated. The non-automated SUVmax and SUVmean values 

were recorded by an experienced nuclear medicine physician (PB) for comparison with 

automated measurements.  

 

Results of the CNN were both numerical and graphical. Figure 3 illustrates the graphical 

output of the CNN. 

 

HISTOLOGICAL EXAMINATION 

Pre-operative core biopsies of the prostate were processed according to department 

procedures including description of Gleason score (Epstein et al., 2016). Prostatectomy 

specimens were all processed according to routine department procedure and in 

concordance with recommendations from the International Society of Urological Pathology 
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(Samaratunga et al., 2011). Specimen weight after removal of the seminal vesicles was 

recorded. Based on estimated tumour extension on whole-mount sectioning of the prostate 

and weight of the prostate, an estimated tumour burden was calculated assuming that 1 g ≈ 

1 ml of tissue. 

 

STATISTICS 

An analysis of agreement between manual and automated measurements was done using 

Bland-Altman plots for SUVmax, SUVmean, Volabn and TLU (Bland & Altman, 1986, Kottner et 

al., 2011). Association between automated PET measurements and tumour characteristics 

was examined for using Spearman's rank correlation coefficient. Level of significance was 

5%. All analyses were performed using STATA/IC 15.1 (StataCorp, College Station, Texas, 

USA). 

  

RESULTS 

The median weight of the prostate specimen after removal of the seminal vesicles was 44 g 

(range 20-109). The median automatically calculated prostate gland volume based on 

automated segmentation of CT-images was 62 ml (range 31-108). We found significant 

correlation between the automated volume measurement and the manual weight 

measurement (r=0.77, p<0.01). Automated prostate volume measurements were generally 

higher than their corresponding manual weight measurements with a mean difference of 

13.5 g or ml (95% CI: 9.78 – 17.32). Bland-Altman difference plots for manual weight 

measurements and automated volume measurements can be seen in Figure 4. 
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Automated and manually recorded PET measurements are displayed in Table 1. Good 

agreement between manual and automated measures was seen for SUVmax and SUVmean 

with estimated mean differences around zero as well as limited scatter on Bland-Altman 

difference plots (Figure 5, upper figures). When comparing automated and manual SUVmean, 

the automated algorithm tended to overestimate automated SUVmean at low values and 

underestimate automated SUVmean at high values, compared to manual SUVmean. 

 

For the slightly more complex measurements of Volabn and TLU, the mean difference 

between automated and manual measurements were, on average 1.40 and 9.61, 

respectively (Table 1), and differences were more scattered with increasing mean values on 

Bland-Altman difference plots (Figure 5 lower figures). 

 

The processing time with the CNN-based method was less than one minute in all cases. 

 

Manually calculated Volabn significantly correlated with the estimated tumour weight 

based on the histopathological examination (r=0.32, p=0.04) whereas the automated 

measurements of Volabn did not (r=0.15, p=0.32). We did, however, also find that the 

agreement between automated measurements of Volabn and the estimated tumour volume 

did not differ significantly from the agreement between the manually calculated Volabn and 

the estimated tumour volume; mean difference 6.9 ml (95% CI: 2.55 – 11.25) and 5.5 ml 

(95% CI: 2.58 – 8.42), respectively, p=0.45. Both the automated and manually calculated 

Volabn overestimated the size of the tumour compared with the estimated tumour volume 

based on the histopathological examination. When comparing clinical findings with PET-

measurements, only pre-operative PSA correlated with automated calculations of Volabn 
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(r=0.37, p=0.01) and TLU (r=0.40, p=0.01), but not with other automated PET measures. PSA 

correlated significantly with manually calculated TLU (r=0.36, p=0.01), but not with other 

manual PET measures.  No correlation between Gleason score or stage and PET 

measurements (automated or manual) was found.  

 

DISCUSSION 

The present study indicates that the CNN used correctly identifies and segments the 

prostate gland allowing for volumetric determination and uptake measurements 

comparable to those obtained by manual reading. We found significant correlation between 

the CT-based estimated volume of the prostate and actual weight of the pathological 

specimen. The general overestimation of median volume on automated measurements 

compared to median weight of the specimens could potentially be explained by the fact that 

the volume estimates represent in vivo whereas the weight measures represent bloodless 

ex vivo conditions. The removal of the seminal vesicles in the preparation of the pathology 

specimen as well as the chemical fixation of the prostate could also affect the results 

(Lukacs et al., 2014).  

 

Manual and automated SUVmax measurements were identical in most cases and, 

similarly, automated and manually obtained SUVmean values did not differ much, cf. Figure 5. 

The reason why the automated method tends to over- and underestimate SUVmean at low 

and high values, respectively, is unclear and needs further exploration. The few cases with 

non-identical SUVmax values could all be explained by uptake falsely detected as inside the 

prostate – a problem that could potentially be solved with further training of the CNN. 
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Larger discrepancies between manual and automated analysis were seen, when 

comparing the more complex measures Volabn and TLU.  

 

When comparing PET-measurements of the prostate to findings after prostatectomy we 

found a weak, although significant correlation between the manually calculated Volabn and 

the estimated tumour burden in the prostate specimen. No correlation was found between 

automated measurements and the estimated tumour burden in the prostate. Common for 

both the automated method and the manual calculations was a tendency to overestimate 

the Volabn compared to the actual tumour burden in the prostate. Whether this is caused by 

the above-mentioned factors, that areas in the prostate defined as pathological are in fact 

not diseased, or perhaps both, is so far also unclear. The SUVmax value of 2.65 chosen to 

define pathological tissue was the one given by Reske and colleagues (Reske et al., 2006). 

Their study found an AUC of 0.89 in ROC analysis when using an SUVmax value of 2.65 and 

11C-choline as PET-tracer. Similar studies on FCH are not available, although results from a 

more recent study suggested a need for a higher SUVmax to distinguish cancer from benign 

lesions (Schaefferkoetter et al., 2017). The CNN was not able to predict the actual tumour 

burden of the prostate when compared to histopathological findings after RP. Other 

alternatives need to be studied in the future where also thresholds relative to tracer uptake 

in other organs or to SUVmax could be of interest. SUVmax as a metric is both resolution 

dependent and quite susceptible to patient movement, since it only represents one voxel. 

Furthermore, differences in SUV calculations by different scanners may also have an impact 

on methods based on fixed SUV thresholds (Adams et al., 2010). Metrics as peak SUV 

defined as the hottest cubic centimeter might be more robust in those regards. The reason 

for choosing SUVmax in the present study was that it is a tried and tested measure, albeit 
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with obvious shortcomings. Partial volume correction has also not been assessed in this 

study, something that could be done in further prostate PET/CT studies (Alavi et al., 2018).  

 

 We found a significant association between pre-operative PSA and several automated 

measurements, whereas the automated measurements did not significantly correlate with 

other clinical features. Our study population was rather homogenous primarily comprising 

less aggressive tumours (predominantly Gleason score 7). With the homogeneous nature of 

our population and its limited size, subgroup analysis to assess whether FCH would perform 

differently in more aggressive tumours, could not be performed.  

 

  The use of FCH PET/CT in PCa management is well established in cases with suspected 

recurrence after definitive therapy and in response evaluation in patients with disseminated 

disease. In recent years, the use of tracers targeting prostate-specific membrane antigen 

(PSMA) has emerged as a new promising option. Several studies on the use of PSMA 

targeting tracers have shown superiority over choline-based tracers in a multitude of 

settings with higher detection rates of low volume and low-grade disease and higher 

tumour to background ratios (Eapen et al., 2018). Assessment of medical images 

traditionally relies on the qualitative evaluation by a trained specialist and can be prone to 

inter-observer variability influenced by education and experience of the given specialist. 

Using methods based on computer learning, more objective and reproducible measures can 

be obtained. The AI-based approach used in this study is not in any way applicable to only 

FCH PET/CT imaging but is a generic tool that with appropriate training can be applied with 

any given PET tracer, including the impetuous PSMA probes and with any PET/CT scanner 

for that matter. Also, it is important to notice that the system could with proper training be 
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used to automatically detect and quantify uptake in other regions of interest, e.g. regional 

lymph nodes, which could be of great interest in PCa staging and in many other 

malignancies. The method would also be directly applicable in PET/magnetic resonance 

imaging. As with other methods in machine learning, results may potentially improve with 

further training. In the model used in the present study, further training might very well 

result in even better, i.e. more accurate delineation of the prostate gland and cancerous 

tissue in it, thereby providing a more reliable and clinically more useful tool for the 

management of PCa.  

 

CONCLUSION 

Automated segmentation using an appropriately trained CNN appears to be a feasible and 

robust tool for automatic segmentation of the prostate gland providing valuable PET 

measurements in seconds which are similar to more cumbersome manually derived 

measures. For more accurate and precise measurements, studies applying more highly 

trained networks are warranted. 

 

The AI-based SUV-measurements as well as those obtained manually were in general 

not associated with clinical and histopathological findings. The AI-based method can easily 

be applied with other tracers including PSMA-probes with their higher specificity for PCa 

lesions. 
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Table 1 Comparison of automated and manual measurements 

BA LoA: Bland-Altman Limits of Agreement 

 

 

 

 

 

 

 

Variable Automated,  

median (range) 

Manual, 

median (range) 

Mean difference  

(95% CI) 

BA LoA

SUVmax 8.0 (2.7-15.5) 7.5 (2.7-15.5) 0.37 (-0.01 - 0.75) -2.83 - 2.09

SUVmean 3.6 (2.7-5.5) 3.3 (2.0-7.7) -0.08 (-0.30 – 0.14) -1.37 - 1.53

Volabn (ml) 14.4 (0.1-79.6) 11.1 (1.1-49.3) 1.40 (-2.26 – 5.06) -25.25 - 22.44

TLU  50.6 (0.3-414.2) 40.5 (3.2-202.6) 9.61 (-3.95 – 23.17) -98.07 - 78.84
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Figure Legends 

 

Figure 1: Model structure. The first part of the model obtains sub-patches of the images 

roughly centered at the prostate and uses these to compute a transformation aligning the 

PET image to the CT image. This allows the segmentation module to consider both 

modalities in the segmentation process. 

 

Figure 2: Segmentation module. Blue boxes are 3×3×3 convolutional layers and the number 

indicates the number of filters. Red boxes are 2×-up-sampling layers and yellow boxes are 

average pooling where the number indicates the pool size. The pooling layers mean that the 

segmentation module works on four different resolutions. This allows a large receptive field 

at low memory cost during training. All convolutional layers use rectified linear unit 

activations apart from the last one using a sigmoid activation to produce the final output 

probabilities. 

 

Figure 3: Graphical output of the CNN showing CT-sequence (upper left figure), PET-

sequence (lower left figure), PET/CT-fusion (upper right figure) and CNN output (lower right 

figure) with the segmented prostate (green) and tumour (red).   

 

Figure 4: Bland-Altman difference plots of weight and automated prostate volume estimate 

plotted against the mean of the two methods. The purple line indicates the mean of the 

differences whereas the red lines indicate the upper and lower limits of agreement (BA 

LoA). 
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Figure 5: Bland-Altman difference plots of SUVmax, SUVmean, Volabn and TLU plotted against 

the mean of the two methods. The purple line indicates the mean of the differences 

whereas the red lines indicate the upper and lower limits of agreement (BA LoA). 
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