
 

 

 

 

 

 

 

University of Southern Denmark

Supply chain network design under uncertainty

A comprehensive review and future research directions
Govindan, Kannan; Fattahi, Mohammad; Keyvanshokooh, Esmaeil

Published in:
European Journal of Operational Research

DOI:
10.1016/j.ejor.2017.04.009

Publication date:
2017

Document version:
Final published version

Document license:
CC BY

Citation for pulished version (APA):
Govindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under uncertainty: A
comprehensive review and future research directions. European Journal of Operational Research, 263(1), 108-
141. https://doi.org/10.1016/j.ejor.2017.04.009

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark.
Unless otherwise specified it has been shared according to the terms for self-archiving.
If no other license is stated, these terms apply:

            • You may download this work for personal use only.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying this open access version
If you believe that this document breaches copyright please contact us providing details and we will investigate your claim.
Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 11. Jan. 2025

https://doi.org/10.1016/j.ejor.2017.04.009
https://doi.org/10.1016/j.ejor.2017.04.009
https://portal.findresearcher.sdu.dk/en/publications/4b773bab-d643-41ff-925f-f88bbf224149


European Journal of Operational Research 263 (2017) 108–141 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Production, Manufacturing and Logistics 

Supply chain network design under uncertainty: A comprehensive 

review and future research directions 

Kannan Govindan 

a , ∗, Mohammad Fattahi b , Esmaeil Keyvanshokooh 

c 

a Center for Sustainable Supply Chain Engineering, Department of Technology and Innovation, University of Southern Denmark, Campusvej 55, Odense, 

Denmark 
b School of Industrial Engineering and Management, Shahrood University of Technology, Shahrood, Iran 
c Department of Industrial and Operations Engineering, The University of Michigan, Ann Arbor, MI 48109, USA 

a r t i c l e i n f o 

Article history: 

Received 16 October 2015 

Accepted 4 April 2017 

Available online 9 April 2017 

Keywords: 

Supply chain management 

Supply chain network design 

Uncertainty 

Stochastic programming 

Risk consideration 

Robust optimization 

a b s t r a c t 

Supply chain network design (SCND) is one of the most crucial planning problems in supply chain man- 

agement (SCM). Nowadays, design decisions should be viable enough to function well under complex 

and uncertain business environments for many years or decades. Therefore, it is essential to make these 

decisions in the presence of uncertainty, as over the last two decades, a large number of relevant pub- 

lications have emphasized its importance. The aim of this paper is to provide a comprehensive review 

of studies in the fields of SCND and reverse logistics network design under uncertainty. The paper is or- 

ganized in two main parts to investigate the basic features of these studies. In the first part, planning 

decisions, network structure, paradigms and aspects related to SCM are discussed. In the second part, 

existing optimization techniques for dealing with uncertainty such as recourse-based stochastic program- 

ming, risk-averse stochastic programming, robust optimization, and fuzzy mathematical programming are 

explored in terms of mathematical modeling and solution approaches. Finally, the drawbacks and missing 

aspects of the related literature are highlighted and a list of potential issues for future research directions 

is recommended. 

© 2017 The Authors. Published by Elsevier B.V. 
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. Introduction 

In the early 1980s, SCM was introduced in order to respond

o fierce competition among companies ( Oliver & Webber, 1982 ).

ver time, a growing number of corporations realized the signif-

cance of integrating their operations into key supply chain (SC)

rocesses instead of managing them separately, thus extending

he SCM evolution ( La Londe, 1997 ). As pointed out by Handfield

nd Nichols (1999) , SCM is "The holistic management approach

or integrating and coordinating the material, information and fi-

ancial flows along a supply chain." In accordance with Simchi-

evi, Kaminsky, and Simchi-Levi (2004) and the Council of Supply

hain Management Professionals, Melo, Nickel, and Saldanha-Da-

ama (2009) also defined SCM to be "The process of planning, im-

lementing and controlling the operations of the supply chain in

n efficient way." Several issues, such as appearance of short-life

roducts, fierce competitions in today’s markets, increasing expec-

ations and changing customers’ preferences, the development of

ew technologies, and globalization have led business enterprises

o make large investments in their SCs ( Simchi-Levi et al., 2004 ). 

A SC, a complex network of organizations and facilities which

re mostly settled in a vast geographical area or even the globe,

ynchronizes a series of interrelated activities through the network

 Christopher, 1999 ). The SC network is also referred to as the logis-

ics network by Simchi-Levi et al. (2004) , and Ghiani, Laporte, and

usmanno (2004) defines the SC as "a complex logistics system in

hich raw materials are converted into finished products and then

istributed to final users (consumers or companies)." On the other

and, Hugos (2011) points out that some differences exist between

ogistics management and SCM. In essence, logistics management,

s a portion of SCM, focuses on activities such as inventory man-

gement, distribution, and procurement that are usually made on

he boundaries of a single organization, while SCM includes other

ctivities such as marketing, customer service, and finance as well.

SCND, also called strategic supply chain planning , is a part of the

lanning process in SCM, which determines the infrastructure and

hysical structure of a SC. Over the last two decades, SCND has

een considered as a suitable application for facility location (FL)

odels. Revelle, Eiselt, and Daskin (2008) characterized existing FL

odels into four main types: continuous , network , analytic , and dis-

rete . In spite of many differences among these models, they all

nclude a set of customers with known locations and a set of facil-

ties whose locations should be specified. Most SCND models be-

ong to the category of discrete location models ( Melo et al., 2009 ).
Several review papers exist on FL models, (e.g., Daskin, 2011;

wen & Daskin, 1998 ) and some surveys focus particularly on dis-

rete location models (e.g., Klose & Drexl, 2005; Mirchandani &

rancis, 1990; Revelle et al., 2008 ). However, FL models in the con-

ext of SCM have been reviewed by only a few papers, including

askin, Snyder, and Berger (2005), Shen (2007b) , and Melo et al.

2009) . Therefore, there is still ample room to survey SCND mod-

ls and methods. 

Large investments are usually required to make strategic de-

isions in SCND. These decisions are very difficult to change and

ave long-term effects on SC’s performance. The most common

trategic decisions consist of determining locations and number of

acilities, capacities and sizes of facilities, technology and area al-

ocation for production and process of products at different facil-

ties, selection of suppliers, and so on ( Simchi-Levi et al., 2004 ).

ver time (generally between three and five years), when a com-

any has been influenced by these decisions, many parameters,

ncluding demand, capacity, and costs of its SC network, can

ave major fluctuations. Further, the parameters associated with

CND involve an enormous volume of data, often resulting in

rong estimations due to inaccurate forecasts and/or poor mea-

urements in the modeling process (e.g., aggregation of demand

oints and products). Thus, SCND under uncertainty has obtained

ignificant attention in both practice and academia over recent

ears. 

Designing reverse logistics (RL) networks is another type of op-

imization problem based on the FL models. The RL networks are

ften designed for the purpose of collecting used, refurbished, or

efective products from customers and then carrying out some re-

overy activities. Due to the stringent pressures from environmen-

al regulations, many companies have been confronted with the

hallenge of designing RL networks. Locating facilities to perform

ecovery activities is one of the key strategic decisions to be made

n this problem. Indeed, these facilities should operate properly

ver many years under uncertain business environments. Thus, the

ask of dealing with existing uncertainty in the return quantities

nd other parameters of RL networks plays a significant role in de-

igning them. RL network design under uncertainty has attracted

 great deal of attention and, as a result, an investigation into this

roblem is included in our review paper as well. It is noteworthy

hat this problem has many similarities to the SCND in terms of

ptimization approaches. Further, the forward and reverse logistics

etworks are often integrated, also known as closed-loop supply

hain (CLSC) network. 
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The main purpose of this paper is to review the studies and

optimization approaches developed for designing SC, CLSC, and RL

networks under uncertainty. Briefly, our major research questions

in this field are: 

i. Which SCM paradigms and issues are addressed? 

ii. What sources of uncertainty are considered? 

ii. How are uncertain parameters modeled and integrated into the

existing mathematical formulations? 

iv. Which optimization techniques and tools are mostly utilized? 

v. Which real-world case studies are investigated? 

In this regard, Snyder (2006) represented a survey on stochastic

and robust FL problems without consideration of SCM aspects. Re-

liable FL models for SCND with disruptions were studied by Snyder

and Daskin (2007) . Furthermore, a critical review on optimization

models for robust design of SC networks was represented by Klibi,

Martel, and Guitouni (2010) . They categorized existing uncertain-

ties in the SCND problem and investigated their impacts on the

network as well. Moreover, SCND has been the subject of many

recent review papers focusing on other SC features (e.g., Farahani,

Rezapour, Drezner, & Fallah, 2014; Eskandarpour, Dejax, Miemczyk,

& Péton, 2015 ). However, to the best of our knowledge, there has

not been any review paper in the area of SC and RL network design

under uncertainty that focused on both SCM aspects and optimiza-

tion techniques. Therefore, in the presented survey on this area: 

� A comprehensive and categorized review is provided in ac-

cordance with network structure, planning decisions and main

SCM issues. 

� Various uncertainty sources and different uncertainty modeling

approaches for developing an optimization model are studied. 

� Optimization techniques, including modeling and solution ap-

proaches to deal with uncertainty, are investigated as a general

framework. 

� Relevant real-life applications and case studies are explored. 

� Finally, significant research gaps are introduced to be investi-

gated as future studies by scholars and researchers. 

The remainder of this paper is organized as follows: In

Section 2 , the scope and our research procedure are introduced.

In Section 3 , different related decision-making environments are

discussed. The associated papers are categorized consistent with

the SCM issues in Section 4 . Optimization aspects in the related

literature are investigated in Section 5 . The studies addressing

real-world applications are introduced in Section 6 . Finally, in

Section 7 , a discussion, conclusions and possible future research

directions are explicated. 

2. Scope and review methodology 

In this paper, peer-reviewed articles published over the last two

decades in ISI indexed journals in the context of SCND (including

RL and CLSC network design as well) under uncertainty are stud-

ied. We consider three criteria for these papers, including: (1) the

paper must be written in English; (2) one of the decision variables

is location or selection of facilities from potential candidates for at

least one layer of SC; and finally, (3) at least one of the problem’s

parameters is uncertain. Published papers in international journals

among electronic bibliographical sources including Scopus and Web

of Science have been searched by using a combination of different

keywords. 

Firstly, we searched on 12 June 2015 by using keywords ( sup-

ply chain network design OR strategic supply chain planning ) AND

( stochastic OR uncertain OR robust OR risk OR fuzzy OR reliable OR

resilient ), and we came up with 33 and 24 journal papers from

Scopus and Web of Science , respectively. Then, using wider com-

binations of keywords, ( Supply chain OR logistic OR supply network
R recovery network OR distribution network ) AND ( design OR plan-

ing ) AND ( stochastic OR uncertain OR robust OR risk OR fuzzy OR

eliable OR resilient ), we obtained 259 journal papers from Scopus.

owever, many of them were not published in ISI indexed journals

r more specifically, they did not satisfy the second or third cri-

eria, which are the key considerations in this study. Further, the

cope of this survey was addressed with other keywords such as

ransportation–production, and transportation–inventory networks

y a few studies in the past. Therefore, to resolve the limitations of

ur search keywords and provide a comprehensive review, we have

ompleted our survey by utilizing other survey and review papers

n the area of SCND, FL, and SCM. 

Using all afore-mentioned search strategies, 170 journal papers,

ublished from 20 0 0 up to now, are explored. We refer to them

s reference papers from now on. The distribution of these refer-

nce papers in terms of their publication date is shown in Fig. 1 . In

ig. 1 , more than 50% of these papers were published from 2012 up

o now where many developments and much progress have been

ade in the area of optimization, and this recent trend reveals the

mportance of uncertainty in the area of SCND problem. 

In addition, Fig. 2 elucidates the share of international journals

hat have the highest contributions in publishing the reference pa-

ers: European Journal of Operational Research and Transportation

esearch Part E: Logistics and Transportation Review occupy first and

econd rank by publishing 17 and 15 papers, respectively. 

Additionally, Table 1 displays existing review papers in the rel-

vant literature. Note that all these papers are in the area of SCM,

ut some of them explored the FL or logistics network design mod-

ls in SCM, specifically. Their scope and special features are re-

orted in Table 1 . Moreover, the numbers of reference papers that

ave some overlapping with our review paper are put in the last

olumn of Table 1 . 

As shown by Table 1 , while there are overlapping areas between

ther review papers and ours, to our knowledge, no review pa-

er has examined the aspects taken into account in this paper.

n summary, the purpose of this paper is to explore the studies

hat have been made in the area of SCND (including CLSC and

L network design as well) under uncertainty to highlight the re-

earch gaps and future research directions. Therefore, the reference

apers are investigated in terms of different uncertain decision-

aking environments, network structures, planning decisions, var-

ous paradigms and aspects of SCM. Further, we examine different

ptimization approaches to deal with uncertainty in these studies.

he papers that have addressed a SC of a real-life case study or

pecific industry are also discussed. 

. Decision-making environments for SCND under uncertainty 

Several parameters of a SCND problem, such as costs, de-

and, and supply, have inherent uncertainty. Moreover, SC net-

orks can be affected by major man-made or natural disrup-

ions such as floods, terrorist attacks, earthquakes, and economic

rises. However, these kinds of disruptions usually have a low

ikelihood of occurrence, but their impacts on SC network are

rominent. 

The objective of SCND under uncertainty is to achieve a con-

guration so that it can perform well under any possible real-

zation of uncertain parameters. But, this measure of perform-

ng well for different SC networks under uncertain environments

ould be quite different according to the viewpoints of decision

akers. 

Based on the definition of different decision-making environ-

ents by Rosenhead, Elton, and Gupta (1972) and Sahinidis (2004) ,

ncertain environments for the SCND problem can be categorized

ccording to the following groups: 



K. Govindan et al. / European Journal of Operational Research 263 (2017) 108–141 111 

Fig. 1. Publication date distribution of reference papers. 

Fig. 2. Share of international journals with the highest contributions in publishing the reference papers. 

Table 1 

Scope and special features of relevant review papers. 

Articles Facility location/ 

logistics network 

design focus 

Scope and special features Number of shared 

reference papers 

Akçalı, Çetinkaya, and Üster (2009) × Network design for Reverse and Closed loop supply chains 2 

Melo et al. (2009) × Facility location models in the context of SCM 16 

Klibi et al. (2010) × Optimization approaches, key random environmental 

factors and disruptive events in SCND under uncertainty 

7 

Elbounjimi, Abdulnour, and Ait-KadiI (2014) × Green closed loop supply chain network design 5 

Farahani et al. (2014) × Competitive SCND 26 

Eskandarpour et al. (2015) × Sustainable SCND 7 

Heckmann et al. (2015) Supply chain risk 6 

Govindan, Soleimani, and Kannan (2015) Reverse logistics and Closed loop supply chains 16 
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Group 1 (G1) : Decision-making environments with random pa-

ameters in which their probability distributions are known for the

ecision maker. Here, these parameters are called stochastic pa-

ameters. Stochastic parameters in SCND are described by either

ontinuous or discrete scenarios. 

In a smaller part of Group 1, the stochastic parameters are de-

cribed using a known continuous probability distribution. This

ype of SCND problem – except for simple networks with one loca-

ion layer – engenders intractable optimization models. Addition-

lly, the customers’ demand is the most popular stochastic param-

ter in these studies, which is modeled through the normal distri-

ution with known mean and variance. A discussion about these

tudies is provided in Section 5.2 . 

Sheppard (1974) was one of the seminal authors who used

 scenario approach for a FL problem; gradually, this approach

as been exploited for SCND. The scenario approach leads to

ractable optimization models. By this approach, we can describe

arious stochastic parameters having different probability distribu-

ions with consideration of dependency among them. Therefore,

his approach is quite common for describing stochastic parame-

ers ( Snyder, 2006 ). A complete review of this group of uncertain

ecision-making environments is provided in Section 5.4 . 
Group 2 (G2) : Decision-making environments with random pa-

ameters in which the decision maker has no information about

heir probability distributions. Under this setting, robust optimiza-

ion models are usually developed for SCND with the purpose of

ptimizing the worst-case performance of SC network. The random

arameters in this decision-making group are divided into either

ontinuous or discrete. To model discrete uncertain parameters, the

cenario approach has been used. However, for continuous uncer-

ain parameters, some pre-specified intervals are defined. This ap-

roach is also called interval-uncertainty modeling. Optimization

odels for SCND under this group of decision-making environ-

ents are studied in detail in Section 5.6 . 

Group 3 (G3) : Fuzzy decision-making environments. In gen-

ral, there exist two types of uncertainties including ambiguity and

agueness under the fuzzy decision-making environment. Ambigu-

ty denotes the conditions in which the choice among multiple

lternatives is undetermined. However, vagueness states the situ-

tions in which sharp and precise boundaries for some domains

f interest are not delineated. In this context, fuzzy mathematical

rogramming handles the planner’s expectations about the level

f objective function, the uncertainty range of coefficients, and

he satisfaction level of constraints by using membership functions
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Fig. 3. Frequency of reference papers with respect to different uncertain decision-making environments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Defined abbreviations for uncertain parameters. 

Uncertain parameter Abbreviation 

Demand D 

Cost of activities (e.g., transportation, production) C 

Capacity of network facilities/ transportation links CA 

Supply quantity for network facilities S 

Required capacity for producing products CR 

Capacity coefficients for holding products/materials in SC 

facilities 

CS 

Parameters of demand distribution function DP 

Selling price of finished products P 

Buying price of raw materials PR 

Conversion rates of materials/components/products to process 

other materials/components/products in network facilities. 

CP 

Safety-stock levels for products in SC facilities SS 

Processing/production time for network facilities PT 

Transportation time through entities of SC network TT 

Supply time for network facilities ST 

Fuzzy goals to represent aspiration levels of multiple objectives FG 

Availability of network facilities AF 

Availability of transportation links/modes between network’s 

entities 

AT 

Disrupted products/supply/commodities in SC facilities DC 

Return quantities in a RL or CLSC network R 

Disposal rate of returns in a RL or CLSC network DR 

Buying price of returns in a RL or CLSC network BP 

Proportion of returned products/components for different 

activities (e.g., remanufacturing, recycling, refurbishing) in a 

RL or CLSC network 

PA 

Profit of recycling/remanufacturing returned products in RL or 

CLSC network 

PP 

Selling price of RL outputs (products/components/raw 

materials) to customers in a RL or CLSC network 

SP 

Demand for RL outputs (products/components/raw materials) 

in a RL or CLSC network 

DS 

Financial parameters such as tax, exchange, and interest rate FP 

Environmental parameters such as environmental impacts of 

SC’s activities and facilities 

EP 

Social parameters related to designing logistics networks PS 
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(see Inuiguchi & Ramık, 20 0 0; Sahinidis, 20 04 ). The studies be-

longing to this group are discussed in Section 5.7 . 

Fig. 3 presents the frequency of reference papers according to

the above-mentioned uncertain decision-making environments. 

4. SCM issues in designing SC networks 

In this section, the relevant papers are categorized based on the

main aspects of SCM including the structure of network, decision

variables, and SCM’s paradigms. 

4.1. Network structure and uncertain parameters 

A SC network converts raw materials into final products and

then delivers them to customers. It includes various types of fa-

cilities, and each type plays a specific task in the network. A set of

facilities with the same task and type is called a layer or echelon.

A crucial aspect of SCND studies is the number and type of lay-

ers and the layers in which location decisions are determined. The

usual layers of SC networks are composed of suppliers, plants, dis-

tribution centers, warehouses, and customers and the typical ma-

terial flows are often from suppliers to customers. It is noteworthy

that another issue driven by real-life applications is the necessity

to deal with multi-product problems. 

Regarding the material and product flows in a SC network,

some studies have the assumption of being single-sourcing, which

means a facility or a customer can be served by only one facil-

ity from its upstream layer (e.g., Georgiadis, Tsiakis, Longinidis,

& Sofioglou, 2011; Shen & Daskin, 2005 ). Moreover, some stud-

ies have regarded the material/product flows in one layer of SC,

called intra-layer flows (e.g., Aghezzaf, 2005; Mousazadeh, Torabi,

& Zahiri, 2015 ). Furthermore, direct flows from upper layers to

customers have been taken into account in the literature (e.g.,

Govindan, Jafarian, & Nourbakhsh, 2015; Vila, Martel, & Beauregard,

2007 ). In Fig. 4 , different types of these material flows for a typical

SC network are shown. 

In this paper, the studies related to RL network design un-

der uncertainty are also reviewed. Several studies in the rele-

vant literature have focused on designing only a RL network (also

called a recovery network) and some others have integrated for-

ward and reverse networks, named a CLSC network. As stated by

Melo et al. (2009) , the strategic planning for RL networks has

many similarities with forward logistics networks. The main dif-

ferences are the type of facilities they use and the direction of

flows. In RL networks, the reverse flows are often started by col-

lecting used and defective products from customers and their final

destination is usually recovery, remanufacturing, disposal centers,

or secondary markets ( Keyvanshokooh, Fattahi, Seyed-Hosseini, &

Tavakkoli-Moghaddam, 2013 ). 
i
Another important feature of SCND problem is that it is some-

imes assumed that there is a primary structure for a SC network

nd then the goal is to redesign it (e.g., Aghezzaf, 2005 ). 

The most uncertain parameters that have been assumed in de-

igning logistics networks in the reference papers are listed in

able 2 . Here, we present some abbreviations for these parameters,

hich are used in the following sections of the paper. 

In Appendix A , the reference papers are characterized based on

he structure of the forward SC network in Table A.1. CLSC and RL

etwork design models are categorized according to the structure

f RL network in Table A.2. The uncertain parameters and their

lassification on the basis of different decision-making environ-

ents are also illustrated in Tables A.1 and A.2. In these tables, we

ssign numbers to the reference papers, which have been utilized

n the following sections to analyze them. 
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Fig. 4. A SC network structure with different types of product flows. 

Fig. 5. Frequency of uncertain parameters in the forward logistics network of reference papers. 

Fig. 6. Frequency of uncertain parameters in the RL network of reference papers. 
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By analyzing tables in Appendix A , we highlight many key facts

bout logistics network design models under uncertainty. One of

he most significant factors is the frequency of uncertain parame-

ers assumed in designing forward and RL networks, which is il-

ustrated by Figs. 5 and 6 , respectively. 

In Table 3 , the forward SC and CLSC network design models are

ategorized according to the forward network structure and the

ype of decision-making environment under uncertainty. Table 4

epresents this classification for the reverse and CLSC network de-

ign models based on the RL network features. Here, the network

eatures include the number of commodity and the number of lay-

rs in which location decisions are specified. This idea of classifi-

ation has been gained from Melo et al. (2009) . 

From Tables 3 to 4 , we can conclude that most reference papers

ave considered single or two location layers. A few papers have

ealt with RL or CLSC network design problem under uncertainty
nd about 70% of them have explored SCND problem without con-

ideration of RL activities. 

In optimization problems under uncertainty, decision-making

nvironments depend on available information for uncertain pa-

ameters and their source of uncertainty. Klibi et al. (2010) in-

estigated different existing uncertainties in SC as well as their

ources and impacts. Here, G1 and G2 have the highest and low-

st frequencies among the reference papers’ decision-making en-

ironments, respectively. Moreover, a few papers have assumed

ombined uncertain decision-making environments to model their

C network on the basis of type and features of their uncertain

arameters (e.g., Keyvanshokooh, Ryan, & Kabir, 2016; Sadghiani,

orabi, & Sahebjamnia, 2015; Torabi, Namdar, Hatefi, & Jolai, 2016;

ahdani, Tavakkoli-Moghaddam, Modarres, & Baboli, 2012 ). 

Among the reference papers, about 19% of them have addressed

CND problem with disruption. The influences of disruptions on
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Table 3 

Classification of SC and CLSC network design models based on the decision-making environment and features of forward logistics network. 

G1 G2 G3 

1 location layer Single commodity [ 3,4,5,8,9,10,11,13,15,18,19,20,21,22,23,24,29,33,34,42,44,45,50, 

54,55,57,61,62,63,67,70,72,73,75,86,87,88,90,96, 

100,101,104,105,107,112,113,121,122,130,143 ] 

[ 66 ] [ 53,81,128 ] 

Multiple 

commodities 

[ 6,17,25,28,35,38,51,68,69,71,78,80,84,89,99,108, 

124,139,144,145,153 ] 

[ 79,152,154 ] [ 99,138,139,153 ] 

2 location layers Single commodity [ 36,40,46,74,85,114,115,118,120,126,127,137,149,150,156 ] [ 133,137,146,156 ] [ 27,77,82,94,110,146,149,150,151 ] 

Multiple 

commodities 

[ 1,2,7,12,26,32,37,43,47,48,52,56,58,59,60,64,91,93,95,98, 

109,125,136,159 ] 

[ 92,159 ] [ 31,65,116,123,131] 

3 location layers Single commodity [ 106,155 ] [ 41,103 ] 

Multiple 

commodities 

[ 14,16,30,39,76,97,111,132,134,157 ] [ 141,148,157 ] [ 140,142 ] 

> 3 location layers Single commodity [ 49 ] 

Multiple 

commodities 

[ 129 ] [ 158 ] 

Table 4 

Classification of RL and CLSC network design models based on the decision-making environment and features of RL network. 

G1 G2 G3 

1 location layer Single commodity [ 23,70,162,164 ] [ 81,128,135,163 ] 

Multiple commodities [ 25,38,83 ] [ 79, 83,148, 160 ] [ 65,83,167 ] 

2 location layers Single commodity [ 85,156, 161,165 ] [ 156 ] [ 110 ] 

Multiple commodities [ 26, 28,47,84,91,99,102,139,147,168 ] [ 92,154 ] [ 99,102,123,138, 139 ] 

3 location layers Single commodity [ 40,137, 149, 150 ] [ 137,146, 166 ] [ 53, 119,146,149,150,151 ] 

Multiple commodities [ 97,169, 170 ] [ 117 ] 

> 3 location layers Single commodity 

Multiple commodities [ 129,134 ] 
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the physical structure of a SC network may result in having un-

certainty in some parameters. Facilities’ capacity, availability of

facilities and their connections, and amount of disrupted prod-

ucts in SC facilities are the most frequent parameters, which have

been assumed uncertain because of disruption events. It must be

noted that disruptions can deeply fluctuate costs, demand and

supply parameters, which should be of more interest to future

researchers. 

4.2. Planning horizon and decisions for SCND 

Due to the complexity of SC networks in today’s business en-

vironment, it is important to consider several planning decisions

along with the classical location-allocation decisions to achieve

an integrated system. These planning decisions remain constant

for different time spans and may be divided into three cate-

gories, including strategic (long-term), tactical (mid-term), and

operational (short-term) level decisions according to their time

spans. 

In the strategic level, there are usually several crucial SC de-

cisions to be made such as the number, locations, and capacity

of facilities. While it depends entirely on the nature of the SC,

strategic decisions typically hold for about three to five years. Tac-

tical decisions are usually made for three months to three years

and operational decisions (e.g., vehicle routing decisions) are often

constant for one hour to one trimester ( Vidal & Goetschalckx,

1997 ). It should be noted that holding these decisions for a cer-

tain time span is mostly dependent on the nature of SC and thus

it can vary for different SCs. 

Fig. 7 illustrates different SC decisions (except location-

allocation, production, and inventory decisions that are considered

in the majority of the related literature), which have been deter-

mined in SCND problems. 

As shown by Fig. 7 , the decisions associated with different plan-

ning levels are taken into account in the related literature. How-

ever, several decisions such as products’ price and routing deci-

sions have been addressed by a few studies. Pricing decisions are

usually put at the tactical planning level and routing decisions be-
ong to the operational planning level, which are rarely integrated

ith SCND under uncertainty in the related literature. 

Distribution networks, often the ending part of a SC network,

onsist of products flows from depots to customers or retailers.

he design of such network requires solving two hard combina-

orial optimization problems including determining the depots’ lo-

ations and vehicle routes to serve customers. For the first time,

alhi and Rand (1989) revealed numerically that solving the FL

nd routing problems separately leads to suboptimal solutions.

hen, the location-routing problem gained substantial attention.

ecently, Prodhon and Prins (2014) presented a survey paper in

his area. In the context of SCND under uncertainty, Ahmadi-Javid

nd Seddighi (2013), Javid and Azad (2010) , and Azad and Davoud-

our (2013) addressed the FL and routing decisions simultaneously

nder uncertainty. 

In the majority part of literature, the decisions have been made

or a single period. As explained by Melo et al. (2009) , these single-

eriod SCND models may be enough to obtain a robust configura-

ion for a network and also a robust set of operational and tactical

ecisions. Moreover, another part of the literature has addressed

CND problem with a planning horizon including multiple peri-

ds. In these studies, the periods can be divided into (1) tacti-

al/operational time periods, or (2) strategic time periods. 

In the studies with multiple tactical or operational periods (e.g.,

chütz, Tomasgard, & Ahmed, 2009; Tsiakis, Shah, & Pantelides,

001 ), strategic decisions are made at the beginning of planning

orizon while tactical or operational decisions, such as products al-

ocation to customers and inventory levels, are able to be changed

n different periods throughout the planning horizon. 

In addition, some studies consider the possibility of applying

uture adjustments in the SC strategic decisions. These kinds of ad-

ustments are typically made for location and/or capacity of facili-

ies, for example, due to unstable condition of target markets, ex-

ansion opportunities for new markets, and budget limitations for

nvestments. Thus, a planning horizon divided into several strate-

ic periods is assumed (e.g., Aghezzaf, 2005; Nickel, Saldanha-da-

ama, & Ziegler, 2012 ). 
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Fig. 7. Main planning decisions (except location-allocation, production, and inventory) in the reference papers. 

Fig. 8. Frequency of reference papers in terms of their planning horizon. 
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Fig. 8 classifies the SCND models under uncertainty that con- 

idered a planning horizon with multiple strategic periods or mul-

iple tactical/operational periods. It also compares the frequency of

ingle-period SCND models with multiple-periods ones. It can be

rawn from Fig. 8 that most SCND models under uncertainty are

ingle-period. 

There exist some practical features related to SCND problems

ith multiple strategic periods. Sometimes, it is presumed that fa-
ilities can be closed, opened, or reopened more than once over a

lanning horizon. Further, expanding, reducing, or relocating facil-

ties’ capacities are another key issue. Melo, Nickel, and Da Gama

2006) investigated different approaches to make capacity planning

or a deterministic dynamic FL problem. However, the papers that

ddressed these concerns in multi-period SCND problem under un-

ertainty are still scarce. It is worth mentioning that a limited

umber of studies in deterministic SCND problems (e.g., Correia

 Melo, 2016; Fattahi, Mahootchi, & Husseini, 2016; Fattahi, Ma-

ootchi, Govindan, & Husseini, 2015; Salema, Barbosa-Povoa, & No-

ais, 2010 ) have used a planning horizon including interconnected

trategic and tactical periods, but no study has yet regarded this

ssue under an uncertain environment. 

.3. Risk management in SCND problem 

Risk management in SCM has gained considerable attention in

oth practice and academia recently. Unfortunately, there is not a

lear and comprehensive consensus for definition of supply chain

isk . Sodhi, Son, and Tang (2012) explored researchers’ perspectives

n this area and emphasized that their perspectives are widely

iverse. Moreover, Heckmann, Comes, and Nickel (2015) asserted

hat no unique definition has been provided for the SC risk. Fur-

her, the term risk is still a rather vague concept and generally,

isk comprehension is based on the fear of losing (business) value.

eckmann et al. (2015) , after examining various relevant research

orks, defined the supply chain risk as the potential loss for a

C in terms of its objectives caused by uncertain variations in SC

eatures due to occurrence of triggering-events. Further, they pro-

ided some major characteristics of SC risk that one can refer to

his study for more details. 

In SCND problem under uncertainty, consistent with a pre-

ented classification by Tang (2006a) , SC risks can be divided into

perational and disruption risks based on the source of uncertain-

ies. As pointed out by Behdani (2013) and Snyder, Atan, Peng,
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Table 5 

Reference papers dealing with operational or disruption risks in SCND problem under uncertainty. 

Reference papers Share (%) 

Operational risks Azad and Davoudpour (2013), Azaron, Brown, Tarim, and Modarres (2008), Baghalian et al. (2013), Franca et al. (2010), Gebreslassie, Yao, 

and You (2012), Goh et al. (2007), Guillén et al. (2005), Guillén, Mele, Bagajewicz, Espuña, and Puigjaner (2003), Huang and 

Goetschalckx (2014), Jabbarzadeh et al. (2014), Jin et al. (2014), Kara and Onut (2010b), Kazemzadeh and Hu (2013), Madadi, Kurz, 

Taaffe, Sharp, and Mason (2014), Nickel et al. (2012), Pan and Nagi (2010), Pasandideh, Niaki, and Asadi (2015), Ramezani, Bashiri, and 

Tavakkoli-Moghaddam (2013a), Sabio, Gadalla, Guillén-Gosálbez, and Jiménez (2010), Sadghiani et al. (2015), Soleimani and Govindan 

(2014), Soleimani, Seyyed-Esfahani, and Kannan (2014) , and Govindan and Fattahi (2017) 

14% 

Disruption risks Jabbarzadeh, Naini, S., Davoudpour, and Azad (2012), Mak and Shen (2012) , Ahmadi-Javid and Seddighi (2013), Azad et al. (2014), Baghalian 

et al. (2013), Jabbarzadeh et al. (2014), Klibi and Martel (2012a), Klibi and Martel (2013), Noyan (2012) , and Sadghiani et al. (2015) 

5% 
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Rong, Schmitt, and Sinsoysal (2016) , supply chain disruption is an

event that may occur in a part of SC due to natural disasters (e.g.,

earthquakes and floods) or through intentional/unintentional hu-

man actions (e.g., war and terrorist attacks), which have unde-

sired effects on SC’s goal and performance. Moreover, the opera-

tional risks are rooted in intrinsic uncertainties of SC, such as un-

certainty in supply, demand, lead-time, transportation times and

costs. This risk type usually has no influence on functionality of

SC’s elements, while it affects the operational factors, which are

basically assumed to be uncertain. However, the disruption risks

evoked by SC disruptions can affect functionality of SC’s elements

either completely or partially for uncertain time duration. 

In Table 5 , the studies that dealt with risk management (either

operational or disruption risk) in the context of SCND problem un-

der uncertainty are classified. 

In most studies in Table 5 , risk measures have been utilized in

an optimization problem to cope with the existing risk. We discuss

these risk measures in detail in Section 5.5 . 

4.4. Resilient SCND 

It is crucial to regard SC disruptions while designing a SC net-

work since there are a few recourses for making strategic decisions

when a disruption happens. However, firms can adjust their tac-

tical and operational decisions under disruptions. Planning for SC

networks with disruptions was studied by Snyder, Scaparra, Daskin,

and Church (2006) in terms of mathematical modeling. This issue

is discussed on Section 5.8 . 

For a SC under uncertainty, there exist a number of strategies

that can be utilized to manage the risk associated with disruptions.

In accordance with Tomlin (2006) , mitigation strategies are those

where a SC takes some preventive actions in advance of a disrup-

tion and also pays their related costs regardless of whether a dis-

ruption takes place, while contingency strategies are those where

a SC takes several actions merely when a disruption happens with

the aim of returning SC to its original condition. As pointed out by

Christopher and Peck (2004) and Tang (2006a) , resilience is a sys-

tem or firm’s capability to return to its initial condition or even to

a more desirable state after disruption. In SCM, this ability is di-

rectly affected by SC resources and design of its network. Indeed,

a resilient supply chain network should operate efficiently both nor-

mally and in the face of a disruption. Regarding resilient SCND un-

der disruption events, a few papers employed mitigation strategies.

These strategies are discussed in detail on Section 5.8 . 

Measuring the resiliency of SCs is still a questionable task and

different resilience indicators have been defined in the existing lit-

erature. In this regard, Cardoso, Barbosa-Póvoa, Relvas, and Novais

(2015) investigated the performance of different resilience met-

rics and indicators for various types of SC networks and Spiegler,

Naim, and Wikner (2012) presented an assessment framework of

resilience. In fact, the choice of approaches for designing resilient

SC networks is contingent upon many factors such as availability

of financial resources, network structure, risk preference of deci-

sion maker, and so on. 
.5. Different paradigms in SCM 

In a SC, the initial goals include meeting demand of customers,

unctionality of SC’s processes, and accessibility of SC’s resources

 Heckmann et al., 2015 ). SCND was seeking traditionally to achieve

hese goals economically. However, the business goals of a com-

any affect its SCND problem and, in fact, a suitable design of SC

etwork enables the company to attain its goals and competitive

dvantages. If a corporation wants to become successful in today’s

arket, both its SC and competitive strategies should fit together

o have aligned goals. Over the last decade, various paradigms have

een proposed in SCM that influence designing a SC network. In

his section, we explore these paradigms briefly. 

.5.1. Responsive SCND 

Besides economic goals, several companies consider responsive-

ess of their SC as another goal to attain competitive advantages.

ifferent definitions exist for the SC responsiveness: the ability

f a SC to produce innovative products, meet short lead-times,

ope with a wide range of products, and meet a high service level

 Chopra & Meindl, 2013 ). Gunasekaran, Lai, and Cheng (2008) de-

ned the SC responsiveness as a paradigm that has emerged in re-

ponse to the volatile and competitive business environment; thus,

 responsive SC has to be highly flexible to changes of market or

ustomer requirements. 

In a optimization problem for designing responsive SC net-

orks, several studies considered objective functions such as min-

mizing service time of customers (e.g., Cardona-Valdés, Álvarez, &

zdemir, 2011; Mirakhorli, 2014; You & Grossmann, 2011 ), maxi-

izing fill rate of customers’ demands (e.g., Shen & Daskin, 2005 ),

nd minimizing lateness of products’ delivery to customers (e.g.,

ishvaee & Torabi, 2010 ). Fig. 9 represents the studies that dealt

ith responsive SCND models under uncertainty. Recently, Fattahi,

ovindan, and Keyvanshokooh (2017) presented a stochastic model

or designing responsive and resilient supply chain networks with

elivery lead-time sensitive customers. 

.5.2. Green SCND 

The increasing importance of environmental issues for SCs has

esulted in integrating different environmental factors in SCND

odels instead of only focusing on pure economic models. This in-

egration can be applied as either environmental measures in ob-

ective functions or environmental constraints in the mathematical

odel. Green SCND is another paradigm that aims to merge eco-

omic and environmental goals/factors in designing SC networks.

ig. 9 specifies studies that regarded environmental concerns. It is

orth noting that the effects of SC activities on the environment

ave been considered as uncertain parameters in Guillén-Gosálbez

nd Grossmann (2010), Guillén-Gosálbez and Grossmann (2009),

ishvaee, Razmi, and Torabi (2014), Pishvaee, Torabi, and Razmi

2012) , and Babazadeh, Razmi, Pishvaee, and Rabbani (2017) . 

Furthermore, mitigating the environmental disruptions via

astes of used products is another significant environmental issue
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Fig. 9. Classification of different paradigms in SCND problem under uncertainty. 
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f  
 Farahani et al., 2014 ). In this regard, many researchers (see stud-

es in Table A.2 of Appendix A ) have studied designing RL networks

or recovery of used products. 

.5.3. Sustainable SCND 

A definition for sustainable development was made by the World

ommission on Environment and Development (WCED) as "a de-

elopment that satisfies present needs without compromising the

apability of future generations to meet their own resources and

eeds" ( Brundtland, 1987 ). As mentioned by Farahani et al. (2014) ,

ustainable SCs play an essential role in conserving natural re-

ources for the next generation and gaining the attention of many

esearchers over recent years. Based on this paradigm, several

cholars have tried to design SC networks consistent with eco-

omic aspects, environmental performance, and social responsibil-

ty that are called sustainable SCND ( Eskandarpour, et al., 2015 ) . We

ave identified that the majority of studies in this area presumed a

eterministic decision-making environment such as Mota, Gomes,

arvalho, and Barbosa-Povoa (2015) and You, Tao, Graziano, and

nyder (2012) . Recently, Eskandarpour et al. (2015) have presented

 survey on sustainable SCND and investigated existing approaches

or assessment of the environmental impact and social responsibil-

ty performance of SCs. 

In Fig. 9 , the reference papers based on the above-mentioned

aradigms are categorized. It should be noted that in Fig. 9 , the

tudies that have considered environmental issues directly in their

onstraints or objective function(s) are reported and we do not re-

ort all studies related to RL and CLSC. 

From Fig. 9 , a small percentage of papers (about 19%) have ad-

ressed the responsiveness goals, environmental performance or

ocial responsibility. Further, Pishvaee et al. (2014) and Dayhim, Ja-

ari, and Mazurek (2014) among the reference papers of our study

egarded the social responsibility and environmental performance

oncurrently for designing a sustainable SC network under uncer-

ainty. 

.6. Humanitarian SCND 

Studies in SCND are not limited only to business SCs. Non-

usiness SCs such as public and governmental ones have been

uch attracted over recent years (e.g., Jabbarzadeh, Fahimnia, &

euring, 2014; Jeong, Hong, & Xie, 2014; Liu & Guo, 2014; Noyan,

012 ). A humanitarian SC , also called relief SC , often designed to

lleviate suffering of vulnerable people in the event of a disaster

r even after that, is one of the most popular non-business SCs.

s pointed out by Najafi, Eshghi, and Dullaert (2013) , a disaster is

n event that often leads to destruction, damage, human suffering,

oss of human life, and/or deterioration of health service. Human-

tarian logistics network design is usually placed in the category

f pre-disaster planning; naturally, it is under uncertainty associ-

ted with the impact of different types and magnitude of disasters

 Özdamar & Ertem, 2015 ) . It should be noted that optimization

pproaches for pre-disaster FL are reviewed by Caunhye, Nie, and

okharel (2012) . 
.7. Other SC characteristics 

In this section, two important issues regarding SCND problem

re briefly discussed. It should be emphasized that these presented

acets have not been widely investigated in the related context. 

Financial factors: There are a limited number of papers in the

rea of SCND under uncertainty in which financial factors are taken

nto account. International financial factors have strong impact on

he structure of global SCs and several studies, such as Goh, Lim,

nd Meng (2007) and Hasani, Zegordi, and Nikbakhsh (2015) , dealt

ith this issue. As the second category, a few studies such as

onginidis and Georgiadis (2013) and Longinidis and Georgiadis

2011) assumed that the financial cycle of a corporation is also af-

ected by the operations related to its SC; hence, they presented

nancial operation constraints to model the financial cycle. In the

ast category, budget constraints are embedded into SCND prob-

em to limit investment on designing SCs. In this regard, Nickel

t al. (2012) considered budget constraints for designing a SC un-

er stochastic demand and interest rates. They also presumed that

here are different alternative investment options and thereby im-

osing a target for the return on investment. 

Moreover, there are a few reference papers in which financial

arameters such as tax, exchange, and interest rates are assumed

o be uncertain. These studies include Goh et al. (2007), Nickel et

l. (2012) , and Longinidis and Georgiadis (2013) . 

Competition: Recently, Farahani et al. (2014) presented a survey

aper on competitive SCND. In general, the competitive environ-

ents for designing a SC network can be categorized into three

rimary groups: (1) competition among facilities in the same ech-

lon of SC, (2) competition among facilities in different echelons

f SC, and (3) competition among multiple SCs. However, the un-

ertain models that addressed FL under a competitive environment

re presented only in the context of pure FL, so this area has a high

otential for future research directions. 

. Optimization under uncertainty for SCND 

In this section, optimization aspects of the related literature are

nvestigated in separate subsections. Moreover, the reference pa-

ers belonging to Groups 1, 2, and 3 (based on the definitions in

ection 3 ) are studied in terms of mathematical modeling, solution

ethods, and optimization techniques. 

.1. Optimization criteria for evaluation of SC networks’ performance 

To design a SC network under uncertainty, single or multiple

bjectives are often considered for a numerical optimization pro-

edure based on SC goals. Heckmann et al. (2015) , in accordance

o Borgström (2005) , defined efficiency as "a way to attain the SC’s

oals through taking minimal resources and thereby achieving the

ost-related advantages." Further, they defined effectiveness as "ob-

aining pre-determined SC goals even in the face of inverse condi-

ions or unexpected events." 

In SCND, most studies have assumed a single objective function

or their optimization models, which usually seeks to achieve eco-
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Table 6 

Objective function’s terms in logistics network design under uncertainty. 

Objective function terms Explanation Abbreviation 

Location costs of facilities The fixed costs of opening/closing facilities. The fortification costs of facilities are put in this category as well. 

Further, some papers utilized a single parameter for both opening and operating costs of facilities, and so 

we have also used C1 for this case. In a few studies, closing facilities led to cost saving in the objective 

function that are represented by C1’ . 

C1 

Operating costs of active facilities The operating costs of facilities after opening them. In some studies, facilities’ operating cost is assumed as a 

fixed cost and in some others, it depends on the volume of products, which a facility can handle based on 

its capacity. Moreover, in some studies some fixed costs for active facilities are considered based on the 

products they handle or the processes they perform. We put these fixed costs in this category as well. 

C2 

Inventory costs The holding costs of working inventory, safety stock, or extra inventory in SC facilities are regarded as 

inventory costs. 

C3 

Transportation/shipment costs The transportation or shipment costs of products among different entities of a SC network. Moreover, the fixed 

shipment costs are considered in some studies. 

C4 

Production/manufacturing costs The costs of producing or manufacturing products in entities of a SC network. C5 

Processing costs in facilities The costs of handling products in warehouses, distribution centers, or other facilities of a SC network. C6 

Capacity costs of facilities The costs of establishing, expanding, or relocating the capacity of different facilities in a SC network. C7 

Procurement costs The costs of procuring raw materials, required components or finished products from corresponding suppliers. 

Further, the buying costs of used products in a CLSC or RL network are put in this category. 

C8 

Fixed ordering costs The fixed costs of placing an order from a SC facility to another one. C9 

Supplier selection costs The fixed costs for selecting the suppliers, which include establishing business with them. C10 

Technology selection costs The costs of selecting the technology for SC’s facilities. C11 

Costs of selection/establishment 

transportation links 

The costs of establishing transportation links. C12 

Capacity costs of transportation links The costs of establishing or expanding capacity of transportation links in a SC network. C13 

Shortage/backorder costs The penalty costs related to not satisfying the customers’ needs. Back order costs are also considered in this 

category. 

C14 

Sales tax costs The costs related to the tax of sales’ products. C15 

Recovery activities costs The costs related to recovery activities in a RL network, which may include inspection, recycling, 

remanufacturing, repairing, or disposal costs. These costs are dependent on the type of activities in a RL 

network. 

C16 

Routing costs The costs related to transporting the products from one layer of a SC network to another one, which are 

calculated based on routing decisions. 

C17 

Penalty costs in RL networks The penalty costs related to not collecting the returned products in a RL network. C18 

Cost saving from integrating facilities The cost saving due to integrating some facilities in a CLSC network. C19 

Penalty costs for not utilizing installed 

capacities 

The penalty costs related to not utilizing the existing capacity in SC’s facilities C20 

Salvage values of products The salvage values of unsold products in SC’s facilities. SA 

SC’s income The income of SC network, usually calculated as multiplication of the amount of sold products and their 

related prices. 

I 

SC’s responsiveness Different criteria exist for defining the responsiveness of a SC network, which has been discussed in Section 

4 . 5 . 1 . We put all these criteria in this category. 

R 

SC’s flexibility There are many criteria for measuring the flexibility of a SC network in the related literature. We put all these 

criteria in this category. 

F 

SC’s environmental impacts The effects of a SC network on the environment are often measured as its environmental impacts, which may 

include different terms. 

E 

SC’s social responsibility The influences of a SC network on the social issues are measured as its social responsibility, which may 

include different terms. 

S 

Risk/Robustness measures Some studies have regarded the risk or robustness measures in their objective functions. M 
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nomic goals for SC in terms of either cost minimization or profit

maximization ( Melo et al., 2009 ). In the profit maximization, a SC’s

profit is calculated based on revenues minus costs. Sometimes, par-

ticularly for designing a global SC, the after-tax profit is presumed

as an objective function (e.g., Goh et al., 2007 ). Moreover, for a

profit-maximization problem, it is often not necessary to serve all

potential customers; indeed, SC prefers to lose some potential cus-

tomers whose service costs are high compared with their revenues

( Melo et al., 2009 ). 

To measure SC’s performance in terms of economic goals, a

SC’s costs are usually made of some components like inventory

costs, transportation costs, FL costs and so on. These components

can be different in various optimization problems and have direct

relation with the planning decisions. We provide a list of these

components used in the objective functions of reference papers in

Table 6 . 

Besides the economic goals, some studies consider other objec-

tives in this area. Usually, these studies result in multi-objective

optimization problems. In Table 6 , other types of common objec-

tives are also listed. In the following sections, we present objective

function(s) of reference papers based on Table 6 . 
.2. SCND problems with continuous stochastic parameters 

Daskin, Coullard, and Shen (2002) developed a location-

nventory model for the situation where retailers’ demands have

ormal distribution with known daily mean and variance. In re-

ponse to the retailers’ demands, distribution centers (DCs) fol-

ow the inventory policy ( Q, r ) for ordering their required products

rom a plant. Both the reorder point and safety stock are spec-

fied so that the stock-out probability is not greater than a pre-

etermined value. The final mixed-integer nonlinear programming

MINLP) model is solved by Lagrangian Relaxation (LR) embed-

ed into the Branch and Bound (B&B) algorithm. This problem is

lso solved using column generation by Shen, Coullard, and Daskin

2003) . The paper presented by Daskin et al. (2002) has been put

s a foundation for many studies in the area of SCND where the

etailers’ demands have normal distribution with known mean and

ariance (e.g., Park, Lee, & Sung, 2010; Shen & Daskin, 2005 ). 

In complex SCND models with more than one location layer,

here location decisions are made along with other strategic or

actical planning decisions, assuming continuous distribution func-

ion for stochastic demand often results in intractable nonlinear
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roblems. In such a SCND problem, the solution approaches pro-

osed by Daskin et al. (2002) and Shen et al. (2003) based on the

tructure of mathematical models are not applicable. In fact, few

apers coped with this issue. 

Another popular situation of modeling continuous stochastic

arameters is the case where the availability or reliability of fa-

ilities (e.g., Cui, Ouyang, & Shen, 2010; Qi & Shen, 2007 ) or

ransportation links (e.g., Azad, Davoudpour, Saharidis, & Shiripour,

014 ) are considered with a pre-determined probability. Typically,

he aim of these studies is to design a reliable or resilient SC net-

ork against disruption events. Several models in this area are in-

estigated by Snyder and Daskin (2007) and Snyder et al. (2006) .

n Table 7 , SCND models with continuous stochastic parameters are

ategorized according to their solution approaches, mathematical

odels, and objective functions. 

It is worth noting that, the LR algorithm is categorized as a

euristics approach in this paper. However, some studies utilized

he LR algorithm embedded in the B&B algorithm (e.g., Daskin

t al., 2002 ), which guarantees achieving the optimal solution;

hus, this method, called LR-based exact algorithm, is characterized

s an exact solution approach. 

As shown by Table 7 , the variety of stochastic parameters that

ave been modeled continuously in SCND is limited. Further, most

xisting models are MINLP and due to the structure of the mathe-

atical models, the LR algorithm has been widely used compared

ith other solution approaches. 

.3. Chance-constrained programming for SCND 

Sometimes, in optimization problems, one or multiple con-

traints are not required to be always satisfied. Indeed, these con-

traints need to be held with some probability or reliability level.

robabilistic or chance-constrained programming is usually applied

o model such a situation and it is often employed when the dis-

ribution probabilities of the uncertain parameters are known for

ecision makers. Consider A , x , and b are m ×n matrix, n -vector,

nd m -vector, respectively. Let Ax ≥ b be a deterministic linear

onstraint in which x is decision variables vector. Assuming uncer-

ainty for matrix A and right-hand side vector b , then P (Ax ≥ b) ≥
is a probabilistic linear constraint saying that Ax ≥ b should be

atisfied with a pre-specified probability α ∈ (0 , 1) . 

As pointed out by Laporte, Nickel, and da Gama (2015) , there

xists a particular case of chance-constrained FL problem with

tochastic demand. Let I and J be sets of potential locations for

acilities and demand nodes, respectively. The decision variable

 i j (i ∈ I, j ∈ J) equals to one if customer j is assigned to facility

 , and y i (i ∈ I) equals to one if facility i is opened. The stochastic

emand of customer j ( d j ) follows a pre-specified probability dis-

ribution. To guarantee that the amount of demand assigned for

ach facility i with known capacity q i does not exceed the facil-

ty’s capacity with a pre-determined probability αi , the following

robabilistic constraints should be considered: 

 

( ∑ 

j∈ J 
d j x i j ≤ q i y i 

) 

≥ αi , i ∈ I 

The most challenging issue is to attain a deterministic equiv-

lent formulation for chance-constrained programs. For example,

in (2009) obtained a deterministic equivalent formulation for a FL

roblem with the above type of probabilistic constraints in which

ustomers’ demands are independent and follow Poisson or Gaus-

ian probability distribution. 

Note that it is not always straightforward to convert probabilis-

ic constraints into their equivalent deterministic ones (see Birge

nd Louveaux (2011) and Sahinidis (2004) for more details about

his issue). In SCND problem, these probabilistic constraints have
een developed in a few research studies, such as Guillén-Gosálbez

nd Grossmann (2009), You and Grossmann (2008a) , and Vahdani

t al. (2012) . 

.4. Scenario-based stochastic programs for SCND 

In this category of SCND problem under uncertainty, stochas-

ic parameters are usually modeled via a set of discrete sce-

arios with known probabilities. Here, the problems are divided

nto two main groups: (1) two-stage stochastic programs and (2)

ulti-stage stochastic programs ( Birge & Louveaux, 2011 ). Both

pproaches have been employed for SCND problems. As stated

y Snyder (2006) , there are some difficulties in using these ap-

roaches to design a SC network. First, creating scenarios and ob-

aining their associated probabilities could be a problematic and

umbersome task, especially in real-life SCND problems. Second,

n adequate number of scenarios could lead to a large-scale opti-

ization problem. 

.4.1. Two-stage stochastic programs 

Two-stage stochastic programs are quite popular due to the

wo-stage nature of decisions in SCND problems. Indeed, SC strate-

ic or long-term decisions such as location and capacity should be

ade before knowing the realization of random parameters as the

rst-stage decisions. However, when random parameters are dis-

losed, the operational and tactical decisions such as inventory,

roduction, transportation and routing have to be determined as

he second-stage decisions. The general formulation of a two-stage

tochastic program can be presented as: 

in 

x ∈ X 
c T x + Q ( x ) , (1) 

here c ∈ R 

n 1 is a known vector, x ∈ R 

n 1 is first-stage decisions vec-

or, X ⊂ R 

n 1 is a non-empty set of feasible combinations for first-

tage decisions, and Q(x ) is a recourse function. Here, first-stage

ecisions are made by considering the effect of stochasticity, mea-

ured by this recourse function. 

In two-stage stochastic program (1) , if we assume ζ as the

tochastic parameters vector with finite and discrete support, it can

e expressed as a finite number of realizations, called scenarios.

ere, S is a set of all scenarios and | S| is the number of scenar-

os. Then, ζ s , ∀ s ∈ S , is a given realization of stochastic parameters,

nd set { ζ 1 , ζ 2 , ..., ζ | S| } is the sample space for stochastic parame-

ers with corresponding probabilities π1 , π2 , ... , π | S| . The recourse

unction can be defined as: 

 ( x ) = E ζ ( Q ( x , ζ s ) ) = 

∑ 

s ∈ S 
π s × Q ( x , ζ s ) . (2) 

For a given scenario s , the optimal objective function value of

he second-stage problem is: 

 ( x , ζ s ) = min 

y s 

{
( q 

s ) 
T 
y s : W 

s y s = h 

s − T s x , y s ≥ 0 

}
. (3) 

here y s ∈ R 

n 2 , ∀ s ∈ S is the second-stage decisions vector for

cenario s . Further, for each scenario s , q 

s ∈ R 

n 2 , W 

s ∈ R 

m 1 ×n 2 , T s ∈
 

m 1 ×n 1 , and h 

s ∈ R 

m 1 are a realization of stochastic components,

hich can be pieced together as ζ s = ( q 

s , W 

s , T s , h 

s ) ( Birge & Lou-

eaux, 2011 ). 

Here, second-stage problem ( 3 ) is written for a general case

here all components q , W , T , and h are assumed to be stochas-

ic. Nonetheless, in a SCND problem, only one or multiples of these

omponents may be stochastic consistent with its assumptions. In

able 8 , scenario-based stochastic programs in the area of SCND

roblems are investigated in terms of optimization aspects. 

It is worth mentioning that several studies (e.g., Georgiadis

t al., 2011; Schütz et al., 2009 ) modeled their stochastic problems

n such a way that the second stage includes multiple periods and,
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Table 7 

Solution approach and specifications of the mathematical model for problems with continuous stochastic parameters. 

Articles Solution approach Mathematical 

model 

Continuous 

stochastic 

parameters 

Objective 

Exact algorithm Heuristic algorithm Meta-heuristic Commercial 

solver 

Sabri and Beamon (20 0 0) An iterative approach 

by solving two 

sub-models 

MINLP D, ST, PT Max F, Min 

(C1 + C3 + C4 + C6 + C8) 

Daskin et al. (2002) LR-based exact 

algorithm 

MINLP D Min (C1 + C3 + C4 + C9) 

Hwang (2002) Improved Genetic 

Algorithm (GA) 

MILP AF Min C1 + Min C17 

Shen et al. (2003) Column generation MINLP D Min (C1 + C3 + C4 + C9) 

Miranda and Garrido 

(2004) 

LR algorithm MINLP D Min (C1 + C3 + C4 + C9) 

Shen (2005) LR-based exact 

algorithm 

MINLP D Min (C1 + C3 or 

C11 + C4 + C9) 

Shen and Daskin (2005) GA MINLP D Min(C1 + C3 + C4 + C9), Max 

R 

Avittathur, Shah, and Gupta 

(2005) 

GAMS [1] MINLP D Min(C1 + C3 + C4 + C15) 

Shu, Teo, and Shen (2005) Column generation MINLP D Min(C1 + C3 + C4 + C9) 

Romeijn, Shu, and Teo 

(2007) 

Branch & Price 

algorithm 

MINLP D Min (C1 + C2 + C3 + C4 + C9) 

Lieckens and Vandaele 

(2007) 

GA MINLP Inter-arrival 

time of 

returns, PT 

Max(I-C1-C3-C4-C14-C16- 

C18) 

Qi and Shen (2007) LR algorithm 

[2] MINLP D, AF Max(I + SA-C1-C3-C4-C9- 

C14) 

Shen and Qi (2007) LR-based exact 

algorithm 

MINLP D Min(C1 + C3 + C4 + C9) 

Shen (2007a) [3] Column generation MINLP D Min(C1 + C3 + C4 + C9) 

Miranda and Garrido 

(2008) 

LR algorithm MINLP D Min(C1 + C3 + C4 + C9) 

You and Grossmann 

(2008a) 

A heuristic based on 

the model’s 

convexification 

MINLP D Max(I -C1-C3-C4 

-C6-C7-C8-C11-C12), Max R 

You and Grossmann 

(2008b) 

LR algorithm MINLP D Min(C1 + C3 + C4 + C9) 

Tanonkou, Benyoucef, and 

Xie (2008) 

LR algorithm MINLP D, ST Min(C1 + C3 + C4 + C9) 

Rappold and Van Roo 

(2009) 

A two-step heuristic 

by fixing binary 

variables 

MINLP D, PT Min(C1 + C3 + C4 + C7 + C14) 

Guillén-Gosálbez and 

Grossmann (2009) 

A decomposition 

method based on 

outer approximation 

MINLP EP Max(I-C1-C3-C4-C6-C7-C8- 

C11-C12), Min 

E 

You and Grossmann (2009) LR algorithm MINLP D Min(C1 + C3 + C4 + C9) 

Javid and Azad (2010) Hybrid tabu search 

(TS) & simulated 

annealing (SA) 

MINLP D Min(C1 + C3 + C4 + C9 + C17) 

Qi et al. (2010) LR-based exact 

algorithm 

MINLP D, AF Min(C1 + C3 + C4 + C9 + C14) 

Park et al. (2010) LR algorithm MINLP D Min(C1 + C3 + C4 + C9) 

Guillén-Gosálbez and 

Grossmann (2010) 

A heuristic by using 

spatial B&B 

MINLP EP Max (I-C1 

-C3-C4-C6-C7-C8 

-C11-C12), Max 

(Environmental 

performance) 

You and Grossmann (2010) Piece-wise linear 

approximation & LR 

algorithm 

MINLP D Min(C1 + C3 + C4) 

Nasiri, Davoudpour, and 

Karimi (2010) 

LR algorithm MINLP D Min(C1 + C3 + C4 + C7 + C9) 

Cui et al. (2010) LR-based exact 

algorithm 

MINLP [4] AF Min(C1 + C4) 

You and Grossmann (2011) GAMS MINLP D Min (C1 + C3 + C4), Min 

(Customers’ service time) 

Abdallah, Diabat, and 

Simchi-Levi (2012) 

GAMS MINLP D, R Min(C1 + C3 + C4 + C9) 

Vahdani et al. (2012) GAMS MILP AF Min(C1 + C4 + C5 + C6 + C16), 

Min(Disruption cost) 

( continued on next page ) 
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Table 7 ( continued ) 

Articles Solution approach Mathematical 

model 

Continuous 

stochastic 

parameters 

Objective 

Exact algorithm Heuristic algorithm Meta-heuristic Commercial 

solver 

Benyoucef et al. (2013) LR algorithm MINLP D, ST Min(C1 + C3 + C4 + C8 + C9) 

Kumar and Tiwari (2013) LR algorithm MINLP D Min(C1 + C3 + C4 + C5 + C9) 

Azad and Davoudpour 

(2013) 

Hybrid TS & SA MINLP D Min(C1 + C4 + C6 + C7 + C17), 

Min M 

Baghalian et al. (2013) LINGO MINLP [5] D Max(I-C1-C3-C4-C5-C6- 

C14 + S), Min 

M 

Vahdani, 

Tavakkoli-Moghaddam, 

and Jolai (2013) 

GAMS MILP AF Min(C1 + C4 + C5 + C6 + C16), 

Min(Disruption cost) 

Vahdani, 

Tavakkoli-Moghaddam, 

Jolai, and Baboli (2013) 

GAMS MILP AF Min(C1 + C4 + C5 + C6 + C16), 

Min(Disruption cost) 

Li et al. (2013) LR algorithm MINLP AF Min(C4) 

Azad et al. (2013) Benders’ 

decomposition 

MILP CA, AT Min(C1 + C4 + Disruption 

cost) 

Nasiri, Zolfaghari, and 

Davoudpour (2014) 

LR algorithm MINLP D Min(C1 + C3 + C4 + C9) 

Mari, Lee, and Memon 

(2014) 

LINGO MILP AF Min(C1 + C4 + C5 + C6 + C8), 

Min E, Min (Disruption 

cost) 

Jeong et al. (2014) CPLEX MILP AF Min C4, Min (Disruption 

cost) 

Marufuzzaman et al. (2014) Benders’ 

decomposition 

MILP AF Min (C1 + C4 + C7 + C12) 

Azad et al. (2014) Hybrid TS & SA MINLP CA,AT Min(C1 + C4 + Disruption 

cost) 

Rodriguez, Vecchietti, 

Harjunkoski, and 

Grossmann (2014) 

Piece-wise linear 

approximation 

MINLP D Min(C1 + C2 + C3 + C4 + C5 

+ C6 + C7 + C14) 

Yongheng, Rodriguez, 

Harjunkoski, and 

Grossmann (2014) 

LR algorithm MINLP D Min(C1 + C2 + C3 + C4 + C5 

+ C6 + C7 + C14) 

Li and Savachkin (2016) Piece-wise linear 

approximation & LR 

algorithm 

MINLP AF Min(C1 + C4) 

Pasandideh et al. (2015) NSGA II & NRGA MINLP D, C, PT Min(C1 + C2 + C3 + C4 + C14), 

Min M 

Hatefi et al. (2015a) CPLEX MILP CA Min (C1 + C4 + C5 + C6 + C16 

+ Disruption cost) 

Hatefi et al. (2015b) CPLEX MILP CA Min (C1 + C4 + C5 + C6 + C16 

+ Disruption cost) 

Table’s summary: Exact algorithms: 22% , Heuristic 

algorithms: 42% , Meta-heuristics: 14% , 

Commercial solvers: 22% 

MILP: 20% 

MINLP: 80% 

Single objective (Minimization: 66% , Maximization: 8 %) 

Multiple objectives: 26% 

[1] In this study, MINLP model is approximated by an MILP model. [2] In designing the algorithm, insights from bidirection search algorithm and outer approximation 

algorithm were drawn. 

[3] This study presented different models for integrated SC netwrok design under uncertainty. Furthermore, the author extended the model for the situation in which mean 

and variance of demand are dependent to scenarios. [4] In this study the MINLP model is linearized. [5] The MINLP model is linearized by using regression. 
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ence, the variation of stochastic parameters over a planning hori-

on is captured. Additionally, first stage decisions are determined

or a planning horizon with multiple periods in some papers (e.g.,

ghezzaf, 2005; Poojari, Lucas, & Mitra, 2008 ). 

In most two-stage stochastic SCND problems, the second stage

ecisions are continuous and positive variables; therefore, the

alue of recourse function for each feasible solution of first stage

ecisions can be obtained through solving a linear program for

ach scenario. Thus, as shown by Table 8 , decomposition tech-

iques such as Benders’ decomposition have been widely applied

or solving them. 

.4.2. Multi-stage stochastic programs 

SCND problems with stochastic parameters and a multi-period

etting can result in a multi-stage stochastic program. There are a

imited number of studies in this area such as Albareda-Sambola,

lonso-Ayuso, Escudero, Fernández, and Pizarro (2013), Goh et al.

2007), Nickel et al. (2012) , Fattahi et al. (2017) , and Pimentel, Ma-
eus, and Almeida (2013) . In general, a stochastic problem with

 stages includes a sequence of random parameters ζ1 , ζ2 , ... , ζT −1 

efined on a probability space (refer to Billingsley (2012) for a

igorous definition of a probability space). In a SCND problem,

i , i = 1 , 2 , ... , T − 1 is the vector of stochastic parameters, such as

osts, demand, supply, capacity and so on, at stage i of a multi-

tage stochastic program. 

A scenario is defined as a realization of random parameters

1 , ζ2 , ... , ζT −1 and a scenario tree is exploited for discrete represen-

ation of stochastic parameters. Indeed, a scenario tree is an ex-

licit display of branching process for progressive observation of

1 , ζ2 , ... , ζT −1 under the assumption that these stochastic parame-

ers have a discrete support. Fig. 10 illustrates a scenario tree in-

luding nine scenarios for a four-stage stochastic program that can

e employed for a stochastic SCND problem over a planning hori-

on with three periods. 

In a multi-stage stochastic program, the realization of random

arameters ζ1 , ζ2 , ... , ζt−1 at an intermediate stage t has been ob-



122 K. Govindan et al. / European Journal of Operational Research 263 (2017) 108–141 

Table 8 

Solution approach and specifications of the mathematical model for scenario-based stochastic problems (TSSP and MSSP are abbreviations for two-stage stochastic program 

and multi-stage stochastic program, respectively). 

Articles Solution approach Mathematical 

model 

Objective 

Exact algorithm Heuristic Meta-heuristic Commercial 

solver [1] 

Tsiakis et al. (2001) CPLEX MILP-TSSP Min (C1 + C4 + C5 + C6) 

Alonso-Ayuso, Escudero, Garìn, 

Ortuño, and Pérez (2003) 

Branch and fix 

coordination 

algorithm 

MILP-TSSP Max (I-C1-C3-C4-C5-C7-C8) 

Guillén et al. (2003) CPLEX MILP-TSSP Max(I-C1-C3-C4-C5-C6-C15), 

Max R, Min M 

Guillén et al. (2005) CPLEX MILP-TSSP Max(I-C1-C3-C4-C5-C6-C15), 

Max R, Min M 

Santoso et al. (2005) Benders’ 

decomposition 

MILP-TSSP Min(C1 + C4 + C6 + C11) 

Liste ̧s and Dekker (2005) CPLEX MILP-3SSP [2] Max(I-C4-C16) 

Guillen, Mele, Espuna, and 

Puigjaner (2006) 

GA MILP-MSSP Max(I-C1-C2-C3-C8-C14) 

Vila et al. (2007) CPLEX MILP-TSSP Max(I-C1-C3-C4-C5-C6 -C15) 

Snyder, Daskin, and Teo (2007) LR-based exact 

algorithm 

MINLP-TSSP Min(C1 + C3 + C4 + C9) 

Goh et al. (2007) Newton’s method 

combined with 

Moreau–Yosida 

regularization 

MILP-MSSP Max(I-C1-C4-C15) 

Liste ̧s (2007) L-shaped algorithm MILP-TSSP Max(I-C1-C4-C5-C12 -C16-C18) 

Lee et al. (2007) CPLEX MILP-TSSP Min(C1 + C3 + C4 + C5 + C6 + C16-I) 

Salema, Barbosa-Povoa, and 

Novais (2007) 

CPLEX MILP-TSSP Min(C1 + C4 + C5 + C14 + C16 

+ C18) 

Chouinard et al. (2008) CPLEX MILP-TSSP Min(C1 + C4 + C16) 

Poojari et al. (2008) Benders’ 

decomposition 

MILP-TSSP Min(C1 + C4 + C11 + C14) 

Azaron et al. (2008) [3] LINGO MINLP-TSSP Min(C1 + C6 + C15), Min M 1 , Min 

M 2 

Lee and Dong (2009) SA MILP-TSSP Min(C1 + C2 + C4) 

Schütz et al. (2009) LR algorithm MILP-TSSP Min(C1 + C4 + C6 + C5 + C14) 

Pishvaee et al. (2009) LINGO MILP-TSSP Min(C1 + C4 + C5 + C6 + C16 + C20) 

Franca et al. (2010) 
√ 

MILP-TSSP Max (I-C1-C2-C4-C5-C6-C8), 

Min (amount of defective raw 

materials), Min M 

Lee et al. (2010) CPLEX MILP-TSSP Min(C1 + C4 + C6 + C16) 

Sabio et al. (2010) CPLEX MILP-TSSP Min(C1 + C3 + C4 + C5 + C7 + 

C11 + Capital and operating 

costs of transportation 

modes), Min M 

Shu, Ma, and Li (2010) Column generation MINLP-TSSP Min(C1 + C3 + C4 + C9) 

Mo, Harrison, and Barton 

(2010) 

CPLEX MILP-TSSP Min(C1 + C4 + C8) 

Kara and Onut (2010a) CPLEX MILP-TSSP Max (I-C1-C2-C4-C16-C18) 

Bidhandi and Yusuff (2011) Benders’ 

decomposition 

MILP-TSSP Min(C1 + C4 + C5 + C6 + C8 

+ C12 + C14) 

Longinidis and Georgiadis 

(2011) 

CPLEX MILP-TSSP Max (Financial performance 

based on 

(I-C1-C3-C4-C5-C6-C15)) 

Georgiadis et al. (2011) CPLEX MILP-TSSP Min(C1 + C3 + C4 + C5 + C6) 

Shukla, Agarwal Lalit, and 

Venkatasubramanian (2011) 

CPLEX MILP-TSSP Min(C1 + C4 + C6), 

Min(Disruption cost) 

Cardona-Valdés et al. (2011) L-shaped algorithm MILP-TSSP Min(C1 + C4 + C6), Min(Service 

time) 

Shimizu, Fushimi, and Wada 

(2011) 

TS MINLP-TSSP Min(C1 + C4 + C5 + C6 + C8), Min 

M 

Kim, Realff, and Lee (2011) CPLEX MILP-TSSP Max(I-C1-C4-C5-C7-C8-C11) 

Rajgopal, Wang, Schaefer, and 

Prokopyev (2011) 

L-shaped algorithm MILP-TSSP Min(C1 + C4 + C6 + C8 -SA) 

Giarola, Shah, and Bezzo (2012) CPLEX MILP-TSSP Max(I-C1-C4-C5-C7-C8-C11) 

Kiya and Davoudpour (2012) Benders’ 

decomposition 

MILP-TSSP Min(C1 + C4 + C5 + C6 + C7-C1 ’ ) 

Noyan (2012) Benders’ 

decomposition 

MILP-TSSP Min(C1 + C4 + C7 + C8 + C14 + SA), 

Min M 

Jabbarzadeh et al. (2012) GA & LR algorithm MINLP-TSSP Max (I-C1-C3-C4-C9) 

Mak and Shen (2012) LR algorithm MILP-TSSP Min(C1 + C3 + C4 + C8 + C12 + C14) 

Chen and Fan (2012) Progressive hedging 

algorithm 

MILP-TSSP Min(C1 + C4 + C5 + C7 + C14) 

Klibi and Martel (2012a) CPLEX MILP-TSSP Max(I-C1-C4-C6-C8) 

( continued on next page ) 
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Table 8 ( continued ) 

Articles Solution approach Mathematical 

model 

Objective 

Exact algorithm Heuristic Meta-heuristic Commercial 

solver [1] 

Almansoori and Shah (2012) CPLEX MILP-MSSP Min(C1 + C2 + C3 + C4 + C5 + C7 

+ C8 + C11 + Capital and 

operating costs of 

transportation modes) 

Gebreslassie et al. (2012) L-shaped algorithm MILP-TSSP Min(C1 + C4 + C5 + C7 

+ C8 + C11 + C14-Governmental 

incentives), Min M 

Nickel et al. (2012) CPLEX MILP-MSSP Max(I-C1-C4 + Remained 

budget), Max R, Min M 

Amin and Zhang (2013) CPLEX MILP-TSSP Min(C1 + C4 + C5 + C16-Cost 

saving from products’ 

recovery), Max (Environmental 

performance) 

Albareda-Sambola et al. (2013) Fix and relax 

coordination 

algorithm 

MILP-MSSP Min(C1 + Maintenance costs of 

facilities + Assignment costs) 

Kazemzadeh and Hu (2013) CPLEX MILP-TSSP Max(I-C1-C4-C5-C6-C7) or Min 

M 

Pimentel et al. (2013) LR algorithm MILP-MSSP Min (C1 + C2 + C4 + C5 + C7 + C12 

+ C13 + C14) 

Qin et al. (2013) Disjunctive 

decomposition- 

based Branch and 

Cut 

MILP-TSSP Min(C1 + C3 + C4) 

Ramezani et al. (2013a) 
√ 

MILP-TSSP Max(I-C1-C5-C6-C7-C8-C16), 

Max R, Min (amount of 

defective raw materials), Min 

M 

Longinidis and Georgiadis 

(2013) 

DICOPT MINLP-TSSP Max (Financial performance), 

Max (Credit solvency) 

Cardoso, Barbosa-Póvoa, and 

Relvas (2013) 

CPLEX MILP-3SSP Max (I-C1-C3-C4-C6-C7-C8- 

C12-C16) 

Baghalian et al. (2013) LINGO MINLP-TSSP Max(I-C1-C3-C4-C5-C6- 

C14 + SA), Min M 

Ahmadi-Javid and Seddighi 

(2013) 

SA MILP-TSSP Min(C1 + C17 + (production and 

distribution disruption costs)) 

or Min M 

Singh, Jain, and Mishra (2013) LINGO MILP-TSSP Min(C1 + C3 + C6 + C14) 

Tong, Gong, Yue, and You 

(2013) 

CPLEX MILP-TSSP Min(C1 + C2 

+ C4 + C5 + C7 + C8 + C11 + C14- 

Governmental incentives) 

Klibi and Martel (2013) CPLEX MILP-TSSP Max(I-C1-C2-C4-C6-C8) 

Meisel and Bierwirth (2014) [4] Variable 

Neighborhood 

Search (VNS) 

- Min(C1 + C2 + C4 + C5) 

Madadi et al. (2014) GUROBI MILP-TSSP Min(C1 + C2 + C4 

+ C14 + discarding cost of 

tainted products) or Min M 

Li and Hu (2014) GAMS MILP-TSSP Max(I-C1-C4-C6-C7-C14) 

Cardona-Valdés, Álvarez, and 

Pacheco (2014) 

Hybrid GRASP & TS MILP-TSSP Min(C1 + C4), Min(maximum 

travel time through the 

network) 

Liu and Guo (2014) LR algorithm MILP-TSSP Max(Min(fill rate of affected 

areas)-mismatch among 

correlated relief supplies), Min 

(C1 + C4 + C8 + cost of using 

transportation modes) 

Soleimani et al. (2014) CPLEX MILP-TSSP Max(I-C1-C3-C4-C5-C8-C14- 

C16-C20), Min 

M 

Huang and Goetschalckx (2014) Branch & reduce 

algorithm 

MINLP-TSSP Max(I-C1-C4), Min M 

Zeballos, Méndez, 

Barbosa-Povoa, and Novais 

(2014) 

CPLEX MILP-TSSP Min(C1 + C3 + C4) 

Dayhim et al. (2014) CPLEX MILP-TSSP Min(C1 + C3 + C4 + C5 + Carbon 

emission + Energy 

consumption + Risk costs 

+ Capital cost of transportation 

modes) 

( continued on next page ) 
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Table 8 ( continued ) 

Articles Solution approach Mathematical 

model 

Objective 

Exact algorithm Heuristic Meta-heuristic Commercial 

solver [1] 

Subulan, Baykaso ̆glu, Özsoydan, 

Ta ̧s an, and Selim (2014) 

CPLEX MILP Min(C1 + C4 + C5 + C8 + C16-I), 

Max (Coverage of return 

products) 

Kaya, Bagci, and Turkay (2014) CPLEX MILP-TSSP Min(C1 + C3 + C8 + C9 + C16-I) 

Soleimani and Govindan (2014) CPLEX MILP-TSSP Min(C1 + C3 + C4 + C8 + C14 + C16), 

Min M 

Kılıç and Tuzkaya (2015) Linear relaxation-based 

heuristic 

MILP-TSSP Max(I-C1-C3-C4-C6-C8-C14) 

Khatami et al. (2015) Benders’ 

decomposition 

MILP-TSSP Min(C1 + C2 + C3 + C4 + C5 + C6 

+ C7 + C14 + C16) 

Govindan et al. (2015) AMOEMA, 

AMOVNS, NSGA II 

MILP-TSSP Min(C1 + C4 + C5 + C6 + C10 + C11), 

Min E 

Ayvaz et al. (2015) CPLEX MILP-TSSP Max(I-C1-C4-C16) 

Keyvanshokooh et al. (2016) Benders’ 

decomposition 

MILP-TSSP Max(I-C1-C3-C4-C5-C7-C14- 

C16) 

Hasani and Khosrojerdi (2016) Memetic algorithm MINLP-TSSP Max(I-C2-C3-C4-C5-C8-C10- 

C15) 

Govindan and Fattahi (2017) CPLEX MILP-TSSP Min(C1 + C3 + C4 + C5 + C6 

+ C7 + C14), Min M 

Table’s summary: Exact algorithms: 18% , Heuristic algorithms: 

13% , Meta-heuristics: 12% , 

Commercial solvers: 57% 

MILP: 88%, 

MINLP: 12% 

TSSP: 88% 

MSSP: 8% 

3SSP: 2% 

Single objective (Minimization: 42% , 

Maximization: 28 % ) , Multiple objectives: 30% 

[ 1 ]In some papers, the type of commercial solver that has been used is not mentioned and therefore, we have only indicated commercial solver as a solution approach by 

“
√ 

” in these papers. 

[ 2 ] 3-stage stochastic programming model. [ 3 ] This paper considered two risk measures. [ 4 ] This paper did not propose a stochastic model for the problem. 
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served and the residual uncertainty includes the random param-

eters ζt , ζt+1 , ... , ζT −1 . However, the distribution of these residual

stochastic parameters is conditioned upon the realization of ran-

dom parameters in previous stages ( Defourny, Ernst, & Wehenkel,

2011 ). If we consider a sequence of decision variables from stages

1 to T as x 1 , x 2 , ..., x T −1 , x T , then Fig. 11 represents the sequence of

decisions and realizations of random parameters for each stage of

a T -stage stochastic program. 

As pointed out by Dupa ̌cová (1995) , in T -stage stochastic pro-

grams, it is also possible to consider random parameters related to

stage T represented by ζT . These parameters usually affect only the

objective function value. 

A policy in a multi-stage stochastic program has to be non-

anticipative , meaning that the decisions cannot depend on outcome

of random parameters in the future. As explained by Dupa ̌cová

(1995) , there are two popular approaches to develop a multi-

stage stochastic programming formulation. The first one is based

on formulating a multi-stage stochastic program as a sequence of

nested two-stage stochastic programs and also inserting the non-

anticipativity settings implicitly. In fact, the total objective func-

tion is calculated through a recursive evaluation in this approach.

However, the second approach imposes the non-anticipativity con-

straints explicitly. 

Generally, multi-stage stochastic programs have been utilized

rarely in the related literature. Thus, there is a high potential to

develop stochastic SCND models with multiple periods using this

approach. For more information about multi-stage stochastic pro-

gramming, see Kali and Wallace (1994) and Birge and Louveaux

(2011) . In Table 8 , the reference papers that used a scenario-

based stochastic programming approach are categorized according

to their solution approaches, mathematical models, and objective

functions. 

As illustrated in Table 8 , most studies have employed two-stage

stochastic programs. In essence, they assumed that their SCND

problem has two-stage nature, which means there is a single mo-

ment for uncertain parameters to become known ( Laporte et al.,

2015 ). Nonetheless, the uncertainty has been realized progressively

in more than one moment in many real-world problems and thus,
 a
he multi-stage stochastic program is often utilized. It should be

ighlighted that all papers that used a multi-stage stochastic pro-

ram have a planning horizon with multiple periods and the un-

ertainty related to stochastic parameters has been realized pro-

ressively in each period. At each period, some decisions have

o be made before uncertainty realization and some others are

ade afterwards. Notice that not all stochastic SCND problems

ith multi-period setting result in multi-stage stochastic programs

ecessarily (e.g., Georgiadis et al., 2011; Schütz et al., 2009 ). 

Furthermore, as shown in Table 8 , most stochastic problems

ave been developed an MILP model, and Benders’ decomposition

lgorithm, called also L-shaped algorithm in stochastic programs,

s relatively popular to solve the two-stage stochastic programs.

o solve multi-stage stochastic programs in this area, Albareda-

ambola et al. (2013) and Pimentel et al. (2013) proposed a fix-

nd-relax coordination and the LR algorithm as a heuristic solution

pproach, respectively. 

.4.3. Scenario generation for stochastic SCND problems 

Compared with continuous stochastic parameters, scenario ap-

roach for modeling stochastic parameters often results in more

ractable models. It is also possible to regard dependency among

tochastic parameters by using the scenario approach. For multi-

tage and two-stage stochastic programs where the parameters are

tochastic over multiple periods, a scenario tree and a scenario fan

re often used, respectively. In this case, not only the parameters

an be correlated with each other, but also they can be correlated

cross the time units and, therefore, it would be more difficult to

enerate an appropriate set of scenarios. 

A main part of research works in stochastic programming con-

ext has been assigned to the task of generating efficient scenar-

os for stochastic programs. For this aim, the substantial concern is

hat a scenario generation method has to be evaluated in terms of

uality and suitability. In this regard, in-sample and out-of-sample

tabilities are two important requirements for an efficient scenario

eneration procedure. To learn more about quality and stability

easures for scenario generation methods, one can refer to Kaut

nd Wallace (2007) . 
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Fig. 10. A scenario tree example (Nodes are indexed by l . The root node is repre- 

sented by index l = 1 and the leaf nodes are represented by indexes l = 11 to l = 19). 
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A few studies (e.g., Fattahi & Govindan, 2016; Govindan & Fat-

ahi, 2017; Keyvanshokooh et al., 2016; Klibi & Martel, 2012b;

chütz et al., 2009 ) developed an appropriate scenario generation

rocedure to obtain a set of scenarios, and typically most reference

apers exploited a pre-determined small set of scenarios with def-

nite probabilities for their stochastic programs. For a single period

LSC network design with stochastic demand and return quanti-

ies, Khatami, Mahootchi, and Farahani (2015) used Cholesky’s fac-

orization method in their scenario generation approach to deal

ith dependency of stochastic parameters. In addition, clustering

ethods have been applied by Khatami et al. (2015) and Pishvaee,

olai, and Razmi (2009) to reduce the number of generated scenar-

os although these studies have not investigated the quality of con-

tructed scenarios. Li and Hu (2014) and Poojari et al. (2008) ap-

lied the moment matching method to construct a set of scenarios

nd obtain their corresponding probabilities. Govindan and Fattahi

2017) and Keyvanshokooh et al. (2016) applied the Latin Hyper-

ube Sampling method instead of Monte Carlo to generate a fan

f scenarios and then reduced the number of generated scenarios

y using backward scenario selection technique. Moreover, there

re different types of scenario reduction techniques in the Stochas-

ic Programming community that can be applied in this research

rea (e.g., Dupa ̌cová, Gröwe-Kuska, & Römisch, 2003; Heitsch &

ömisch, 2003 ). 

In the related area, sample average approximation (SAA)

ethod has been used broadly to reduce the size of stochastic

rograms through repeatedly solving the problem with a smaller

et of scenarios. These studies include: Bidhandi and Yusuff (2011),

houinard, D’Amours, and Aït-Kadi (2008), Kiya and Davoudpour

2012), Klibi and Martel (2012a), Klibi and Martel (2012b), Lee and

ong (2009), Lee, Dong, and Bian (2010), Lee, Dong, Bian, and

seng (2007), Santoso, Ahmed, Goetschalckx, and Shapiro (2005),

chütz et al. (2009) , and Ayvaz, Bolat, and Aydın (2015) . 

.5. Risk measures in the context of SCND 

Traditionally, the stochastic SCND problem is on the basis of

he expected value criterion. However, this criterion might be in-
ppropriate specifically when the stochastic parameters vary no-

iceably. In a stochastic program where we have the random pa-

ameters with known probability distributions, the amount of a

C’s profit/cost (or more generally SC’s outcome) is often a ran-

om variable. Its probability distribution depends on the values of

ecision variables. In a numerical optimization procedure, it is of-

en required to quantify the risk in order to make decisions in such

 way that they can limit the level of SC’s risk. To this aim, some

ispersion statistics are defined as risk measures in the related lit-

rature. 

A risk measure ρ maps a random outcome Y to a real value

(Y ) . Here, the allowable random outcomes are shown by Y . Gen-

rally, ρ is a risk mapping function that assigns a certain family of

andom outcomes to a set of real numbers ( Fábián, 2013 ). Further,

 precise definition for the concepts of risk measures and their

roperties are explicated in terms of a mathematical framework

y Ruszczynski and Shapiro (2006) . 

In a SCND problem, the random objective relies on the values of

ecision variables. Formally, it can be stated as Y = F (x ) , F : X → Y

here x ∈ R 

n is decision variables vector and X ⊆ R 

n is a non-

mpty set of feasible decisions, and in this case, ρ(F (x )) is a risk

unction. Then, the level of risk aversion can be incorporated into

 stochastic program using two main approaches ( Fábián, 2013 ). In

 stochastic optimization problem with cost/loss minimization ob-

ective, a risk constraint, ρ(F (x )) ≤ θ , where θ is a constant num-

er, is inserted into the problem as the first approach. The second

ne is a weighted mean-risk criterion defined for the problem such

hat the objective function is written as Min 
x ∈ X 

E(F (x )) + λρ(F (x ))

here λ is a risk aversion factor. 

In SCND literature, many risk measures firstly developed in the

rea of finance and insurance have been applied. The most widely

pplicable ones are variance, standard deviation, absolute devia-

ion, conditional value at risk (CVaR), and central semideviation.

nother worthwhile approach for incorporating risk into a SCND

roblem is by assuming a constant target for SC’s outcome and

hen, the risk measure is defined as a semideviation of SC’s out-

omes from the predetermined target. In Appendix B , Table B.1 ,

he aforementioned risk measures are defined mathematically for

 cost/loss minimization problem. In addition, Fig. 12 demonstrates

he frequency of applying these risk measures in the reference pa-

ers. For more information about computational complexity of dif-

erent risk measures, one can refer to Ahmed (2006) and Fábián

2013) . 

Furthermore, Guillén, Mele, Bagajewicz, Espuna, and Puigjaner

2005) and Franca, Jones, Richards, and Carlson (2010) computed

he probability of SC’s profit being less than a pre-determined tar-

et level as a risk measure. Recently, a review paper is represented

y Heckmann et al. (2015) in which a variety of risk measures

nd risk modeling techniques in SCM have been reviewed. It is

orth noting that all risk measures introduced in this section are

xploited based on economical objective functions, such as SC’s

ost/profit, in SCND studies. 

.6. Robust optimization in the context of SCND 

According to a robust optimization (RO) framework presented

y Mulvey, Vanderbei, and Zenios (1995) , there exist two kinds

f robustness including solution robustness and model robustness

eaning that the solution of a RO problem is "nearly" optimal and

nearly" feasible in all possible realizations of uncertain parame-

ers, respectively. The definition of "nearly" is dependent upon the

odeler’s viewpoint. In an uncertain environment where a deci-

ion maker does not know probability distributions of uncertain

arameters, it is not possible to use expected value criterion or

ther ones applied for the studies in Sections 5.4 and 5.5 . In such
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Fig. 11. Order of observations and decisions in a T -stage stochastic program. 

Fig. 12. The frequency of applying different risk measures in the reference papers. 
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an uncertain environment, RO is applicable through defining dif-

ferent robustness measures for the optimization problem. In RO

problems, uncertain parameters may be continuous or specified

via some discrete scenarios. For continuous ones, it is often as-

sumed that these uncertain parameters could be varied within a

pre-defined interval called interval-uncertainty. 

5.6.1. Robust models with discrete scenarios 

Different robustness measures with or without probability dis-

tributions are defined for the studies in this category. Two com-

mon measures for scenario-based RO programs are minimax cost

and minimax regret. The minimax cost measure obtains a solution

minimizing maximum cost over all scenarios. However, in the min-

imax regret , (absolute or relative) regret is determined as the (ab-

solute or percentage) difference between the cost of a solution and

the cost of the optimal solution for a scenario. Snyder (2006) re-

viewed various minimax models in the area of FL problem. 

The minimax absolute regret measure is utilized by Realff, Am-

mons, and Newton (2004) and Ramezani, Bashiri, and Tavakkoli-

Moghaddam (2013b) to design a RL and CLSC network, respec-

tively. It should be mentioned that a study minimizing the ex-

pected relative regrets for all scenarios in a situation where the

probabilities of scenarios are available is presented by De Rosa,

Gebhard, Hartmann, and Wollenweber (2013) . Further, Ahmadi-

Javid and Seddighi (2013) and Govindan and Fattahi (2017) exam-

ined a SCND problem with minimax cost measure. 

Another approach for obtaining solution robustness is pre-

sented by Kouvelis, Kurawarwala, and Gutierrez (1992) . By adding

some constraints, they made sure that the relative regret is not

greater than p, where p > 0 is a pre-determined parameter, for

each scenario. Snyder and Daskin (2006) called this method as p -

robustness in the area of FL. In the related literature, some stud-

ies including Hatefi and Jolai (2014), Li, Liu, Zhang, and Hu (2015),

Peng, Snyder, Lim, and Liu (2011), Tian and Yue (2014) , and Torabi
t al. (2016) utilized this approach. This method could lead to in-

easibility for some values of p . 

Several studies have applied the risk measures for SCND prob-

em and called them as robustness measures. In this regard, vari-

nce is used by Jin, Ma, Yao, and Ren (2014) and absolute devia-

ion is applied by Jabbarzadeh et al. (2014), Kara and Onut (2010b),

an and Nagi (2010) , and Sadghiani et al. (2015) . It is worth not-

ng that only Aghezzaf (2005), Jin et al. (2014) , and Sadghiani et al.

2015) examined model robustness measures for a SCND problem.

n Table 9 , all studies in the area of scenario-based robust SCND

re categorized with respect to their solution approaches, objective

unctions, and mathematical models. 

As demonstrated in Table 9 , most studies applied commercial

olvers to solve the proposed mathematical models and consider-

ng robustness measures usually led to multi-objective optimiza-

ion problems in several studies. 

.6.2. Robust models with interval-uncertainty 

Generally, RO with interval-uncertain parameters has been ap-

lied in order to protect optimization problems against infeasibil-

ty due to perturbations of uncertain parameters and also to retain

omputational tractability. The primary step in RO with interval-

ncertain parameters was done by Soyster (1973) . The general idea

as to convert the uncertain optimization problem into a deter-

inistic counterpart program so that each feasible solution should

e feasible for all realizations of uncertain parameters within their

re-defined uncertainty sets. However, Soyster’s approach mostly

chieves over-conservative solutions. In essence, by using this ap-

roach, we actually give up optimality for the nominal problem

where uncertain parameters are fixed to their nominal quantities)

o ensure robustness. This means to guarantee the robustness, we

eed to lose optimality. 

Then, E.l. Ghaoui, Oustry, and Lebret (1998), El Ghaoui and Le-

ret (1997) , and Ben-Tal and Nemirovski (1998, 1999 ) addressed

he over-conservatism of this robust solution. Their approaches led
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Table 9 

Solution approach and specifications of the mathematical model for scenario-based robust problems. 

Articles Solution approach Mathematical 

model 

Objective 

Exact algorithm Heuristic Meta-heuristic Commercial 

solver 

Realff et al. (2004) AIMMS MILP-TSSP Min(Max(Regret(I-C1-C2-C3-C4- 

C16))) 

Aghezzaf (2005) [1] LR algorithm MILP-TSSP Min M 1 + M 2 

Pan and Nagi (2010) A heuristic based on 

k-shortest path 

algorithm 

MILP-TSSP Min(C1 + C3 + C4 + C6 + C12 

+ C14), Min M 

Kara and Onut (2010b) CPLEX MILP-TSSP Max(I-C1-C4-C16-C18), Min M 

Peng et al. (2011) GA MILP-TSSP Min(C1 + C4) 

De Rosa et al. (2013) CPLEX MILP-TSSP Min M 

Ramezani et al. (2013b) CPLEX MILP-TSSP Min(Max(Regret(I-C1-C4-C5-C6- 

C7-C16))) 

Ahmadi-Javid and Seddighi 

(2013) 

SA MILP-TSSP Min(Max(C1 + C17 + (production 

and distribution disruption 

costs))) 

Tian and Yue (2014) Benders’ 

decomposition 

MILP-TSSP Min(C1 + C4 + C5 + C6 + C7 

+ C8 + C10 + C14) 

Jabbarzadeh et al. (2014) LINGO MILP-TSSP Min(C1 + C3 + C4 + C6), Min M 

Jin et al. (2014) TS MINLP-TSSP Min(C1 + C4 + C5 + C6 + C8), Min 

M 

Hatefi and Jolai (2014) CPLEX MILP Min(C1 + C4 + C5 + C6 + C14 + C16) 

Li et al. (2015) artificial fish swarm 

algorithm 

MILP-TSSP Min(C1 + C4 + C6 + C12 + C14) 

Torabi et al. (2016) CPLEX MILP Min(C1 + C4 + C5 + C6 + C14 + C16) 

Sadghiani et al. (2015) [2] CPLEX MILP Min(C1 + Capital costs of 

transportation modes), Min 

M 1 , Min M 2 

Govindan and Fattahi (2017) CPLEX MILP-TSSP Min(Max(C1 + C3 + C4 + C5 

+ C6 + C7 + C14)) 

Table’s summary: Exact algorithms: 6% , Heuristic algorithms: 

12% , Meta-heuristics: 18% , 

Commercial solvers: 64% 

MILP: 92%, 

MINLP: 6% 

Single objective (Minimization: 60% , Maximization: 0 % ) , 

Multiple objectives: 40% 

[ 1 ], [ 2 ], These papers considered two robustness measures including solution’s and model’s robustness measures. 
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o less conservative solutions through allowing the uncertainty sets

o be ellipsoids. Nonetheless, their robust formulations resulted in

onlinear but convex models, and thereby being difficult to solve

s compared to Soyster’s method. Bertsimas and Sim (20 03, 20 04 )

resented a different robust approach in which the conservatism

evel of robust solutions could be controlled and resulted in a lin-

ar optimization model. This approach is also applied for discrete

ptimization models. 

However, Ben-Tal, Goryashko, Guslitzer, and Nemirovski

2004) pointed out that in all above conventional RO approaches,

ll decisions have to be made before uncertainty realization. Nev-

rtheless, most real-world problems, in particular SCND problem,

ave multi-stage nature, and hence some decisions have to be

etermined after realization of all or part of existing uncertainties.

o this aim, they presented a multi-stage RO approach, called

ffinely Adjustable Robust Counterpart (AARC). This idea allows

or making adjustable decisions that are affinely contingent on the

rimitive uncertainties. 

In practice, even though the exact distributions of uncertain

arameters are often not known in advance, moment informa-

ion or uncertainty about the distribution itself is usually known.

o deal with this situation, Distributionally Robust Optimization

DRO) was firstly proposed by Scarf, Arrow, and Karlin (1958) and

hen extended by Delage and Ye (2010), Goh and Sim (2010) , and

iesemann, Kuhn, and Sim (2014) . In DRO, an uncertain parameter

ollows a distribution which is itself subject to uncertainty. 

In the area of SCND problem, a few studies proposed ro-

ust counterpart formulations where interval-uncertain parame-

ers are taken into account. In Table 10 , these studies are listed

n which robust problems are solved after proposing their equiv-

lent tractable formulations. The specifications of these equivalent

ormulations are also highlighted in Table 10 . 

l  
As illustrated in Table 10 , there are a few studies about ro-

ust SCND with interval-uncertainty. Most of these reference pa-

ers used commercial solvers to solve the equivalent models for

heir robust counterparts. It is worth noting that in Keyvanshokooh

t al. (2016) and Hatefi and Jolai (2014) , some uncertain param-

ters have interval-uncertainty and some others are modeled by

sing discrete scenarios. This approach is applicable whenever we

ave different types of uncertainty in the SCND problem. 

.7. Fuzzy mathematical programming in the context of SCND 

Fuzzy mathematical programs have been commonly used

o design SC networks under uncertainty. In general, the

uzzy mathematical programming can be divided into flexi-

le and possiblistic programming. Consider the classical linear

rogram Min c T x, s.t. Ax ≥ b, x ≥ 0 . In accordance with Tanaka,

kuda, and Asai (1973) and Zimmermann (1991) , a flexible pro-

ramming problem can be written as ˜ Min c T x, s.t. Ax ̃  ≥b, x ≥ 0

here fuzzy goals and sets are utilized to characterize the vague-

ess related to decision maker’s aspirations and constraints, re-

pectively. In other words, this approach is applicable to deal with

exible target value of goals and elasticity of soft constraints. 

On the other hand, a possiblistic programming problem can

e expressed as ˜ Min ˜ c T x, s.t. ˜ A x ≥ ˜ b , x ≥ 0 where the imprecise or

mbiguous data is modeled through possibility distributions (see

anaka & Asai, 1984 ). The application of this approach is to manage

eficiency of information for the exact values of a model’s param-

ters. Moreover, in fuzzy mathematical programming, it is possible

o take care of ambiguous coefficients and also vague preferences

f decision makers. 

All studies in this area have two major phases to solve a prob-

em modeled using a fuzzy mathematical programming. Firstly,
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Table 10 

Solution approach and specifications of the equivalent formulations for robust counterpart of RO problems. 

Articles Solution approach Equivalent model for robust counterpart of 

problems 

Exact algorithm Heuristic Meta-heuristic Commercial 

solver 

Mathematical 

model 

Objective 

Pishvaee, Rabbani, and Torabi 

(2011) 

CPLEX MILP Min(C1 + C4 + C14) 

Hasani, Zegordi, and Nikbakhsh 

(2012) 

LINGO MINLP Max(I-C1-C3-C4-C5-C8-C10- 

C14-C16) 

Vahdani et al. (2012) GAMS MILP Min(C1 + C4 + C5 + C6 + C16), 

Min(Disruption cost) 

Zokaee, Jabbarzadeh, Fahimnia, 

and Sadjadi (2014) 

LINGO MILP Min(C1 + C4 + C14) 

Hatefi and Jolai (2014) CPLEX MILP Min(C1 + C4 + C5 + C6 + C14 + C16) 

Tong, You, and Rong (2014) Parametric approach 

based on Newton’s 

method, 

Reformulation- 

linearization 

method 

DICOPT, 

BARON, SBB 

MINLP Min((C1 + C4 + C5 + C6 + C7 + C11- 

Governmental incentives)/ 

Sales’ amount) 

Hasani et al. (2015) Combined memetic 

algorithm and 

adaptive VNS 

MINLP Max(I-C2-C3-C4-C5-C8-C10- 

C15-C16) 

Akbari and Karimi (2015) CPLEX MILP Min(C1 + C3 + C4 + C5 + C6 + C7) 

Dubey, Gunasekaran, and 

Childe (2015) 

CPLEX MILP Min(C1 + C4 + C5 + C6 + C7 + C16), 

Min(Delivery time + Collection 

time) 

Keyvanshokooh et al. (2016) Benders’ 

decomposition 

MILP Max(I-C1-C3-C4-C5-C7-C14- 

C16) 

Hasani and Khosrojerdi (2016) Memetic algorithm MINLP Max(I-C2-C3-C4-C5-C8-C10- 

C15) 

Table’s summary: Exact algorithms: 9% , Heuristic algorithms: 

9% , Meta-heuristics: 18% , 

Commercial solvers: 64% 

MILP: 72%, 

MINLP: 28% 

Single objective (Minimization: 46% , Maximization: 36% ) , 

Multiple objectives: 18% 
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a fuzzy model is converted into a crisp and usual mathematical

model in which the existing uncertainties are handled according to

assorted interpretation of the problem. Then in the second phase,

this transformed mathematical model is solved by using an opti-

mization approach or tool ( Inuiguchi & Ramık, 20 0 0 ). 

SCND problems under a fuzzy environment are categorized in

Table 11 based on their fuzzy uncertainties, transformed mathe-

matical models, and solution approaches. It should be noted that

in Table 11 , we report the optimization tools or techniques for

solving the crisp transformed mathematical models as solution ap-

proaches. Here, the techniques used for handling multi-objective

problems or transforming fuzzy models are not considered. In

Table 11 , in the column for mathematical model, the dashes mean

that no crisp transformed model is presented in related studies. 

As shown by Table 11 , most studies in this area considered am-

biguous input data to present a possiblistic programming model

and used commercial solvers to solve the transformed equivalent

crisp models. Moreover, many studies dealt with multi-objective

problems in this area. 

5.8. Optimization approaches for SCND with disruptions 

As SCND with disruptions has received much attention recently,

we discuss different optimization approaches to cope with this

problem in this section. Lately, Snyder et al. (2016) provided a

review paper regarding the management science and operation

research models for handling SC disruptions. Further, Laporte et al.

(2015) examined the existing FL models under disaster events. 

SCND studies with disruptions can be divided into business and

non-business SCs. The goal of a business one is to design a SC such

that it can perform well even after disruption occurrence. The non-

business SCs such as Liu and Guo (2014), Noyan (2012) , and Jeong

et al. (2014) are often designed to deliver relief items to the es-
ablished demand points after disasters and is called humanitarian

C. 

While SC disruptions can have substantial influence on key SC

arameters such as demand, supply, delivery time of products, and

osts, they may also result in reducing capacity of SC facilities and

ransportation links or even eliminating them. In addition, in hu-

anitarian SCs, the demand for relief supplies has a great deal of

ncertainty, depending on the type, magnitude, and location of a

isaster. 

In this area, most studies assume a failure probability for

 facility or transportation link in the face of disruption as a

re-specified parameter. They are also called reliable SCND mod-

ls . These studies include Azad et al . (2014), Azad, Saharidis,

avoudpour, Malekly, and Yektamaram (2013), Cui et al. (2010),

atefi, Jolai, Torabi, and Tavakkoli-Moghaddam (2015a), Li and

avachkin (2016), Li, Zeng, and Savachkin (2013), Marufuzza-

an, Eksioglu, Li, and Wang (2014), Vahdani et al. (2012), Vah-

ani, Tavakkoli-Moghaddam, Jolai, and Baboli (2013), Vahdani,

avakkoli-Moghaddam, and Jolai (2013) , and Hatefi, Jolai, Torabi,

nd Tavakkoli-Moghaddam (2015b) . In Cui et al. (2010) , customers

re assigned to more than one facility and hence in the face of dis-

uption, each customer can be served by the nearest operational

non-disrupted) facility. Azad et al. (2014) presumed that if a fail-

re occurs for a facility of SC, then the percentage of its disrupted

apacity is a stochastic parameter. They also presented an opti-

ization model by using the CVaR measure. 

Sometimes, the uncertainty related to disruptions is modeled

s a finite set of discrete scenarios. In this regard, Hatefi and Jo-

ai (2014), Peng et al. (2011) , and Li et al. (2015) utilized the

 -robustness approach. Also, Ahmadi-Javid and Seddighi (2013),

oyan (2012), Sadghiani et al. (2015) , and Baghalian, Rezapour,

nd Farahani (2013) developed some risk-averse scenario-based

tochastic models by using well-known risk measures in the

tochastic programming context. It is worth noting that most SCND
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Table 11 

Optimization aspects related to the studies under fuzzy environment. 

Articles Fuzzy mathematical programming Crisp transformed mathematical model 

Ambiguous 

data 

Vagueness of 

constraints 

Vagueness of 

goals 

Mathematical 

model 

Solution 

approach 

Objective 

Xu, Liu, and Wang (2008) 
√ 

MINLP Spanning tree 

based GA 

Min(C1 + C4 + C14), Max R 

Selim and Ozkarahan (2008) 
√ 

MILP CPLEX Min(C2 + C4), Min(C1), Max R 

Xu, He, and Gen (2009) 
√ 

MILP Spanning tree 

based GA 

Min(C1 + C4) 

Pishvaee and Torabi (2010) 
√ 

MILP LINGO Min(C1 + C4 + C5 + C6 + C16), Min 

(Delivery tardiness) 

Qin and Ji (2010) [1] √ 

- GA integrated 

with fuzzy 

simulation 

Min(C1 + C4 + C16 + C18) 

Zarandi, Sisakht, and Davari 

(2011) 

√ 

MILP CPLEX Min(C1 + C7 + C4), Max R 

Pishvaee, Torabi et al. (2012) 
√ 

MILP LINGO Min(C1 + C4 + C5 + C7 + C11), Min E 

Pishvaee and Razmi (2012) 
√ 

MILP LINGO Min(C1 + C4 + C5 + C16), Min E 

Pishvaee, Razmi, and Torabi 

(2012) 

√ 

MILP LINGO Min(C1 + C4 + C5 + C11), Max S 

Vahdani et al. (2012) 
√ 

MILP GAMS Min(C1 + C4 + C5 + C6 + C16), 

Min(Disruption cost) 

Bouzembrak, Allaoui, Goncalves, 

Bouchriha, and Baklouti (2013) 

√ 

MILP CPLEX Min(C1 + C3 + C4 + C6) 

Vahdani, Tavakkoli-Moghaddam, 

and Jolai (2013) 

√ 

MILP GAMS Min(C1 + C4 + C5 + C6 + C16), 

Min(Disruption cost) 

Vahdani, Tavakkoli-Moghaddam, 

Jolai, and Baboli (2013) 

√ 

MILP GAMS Min(C1 + C4 + C5 + C6 + C16), 

Min(Disruption cost) 

Jouzdani, Sadjadi, and Fathian 

(2013) 

√ 

MINLP LINGO Min(C1 + Traffic congestion cost) 

Mirakhorli (2014) 
√ √ 

MILP GA Min(C1 + C4 + C5 + C6 + C16), Min 

(Service time) 

Balaman and Selim (2014) 
√ √ 

MILP CPLEX Min(I-C1-C2-C4-C6-C7-C8), Min 

(Unused waste) 

Jindal and Sangwan (2014) 
√ 

MILP LINGO Max(I–C1-C4-C8-C16) 

Vahdani, Dehbari, Naderi-Beni, 

and Kh (2014) 

√ 

MILP Imperialist 

competitive 

algorithm (ICA) 

Min(C1 + C4), Max(Reliability of 

facilities) 

Ramezani, Kimiagari, Karimi, and 

Hejazi (2014) 

√ 

MILP CPLEX Max(I-C1-C3-C4-C5-C6-C8-C10- 

C16), Max R 

Pishvaee et al. (2014) 
√ 

MILP Benders’ 

decomposition 

Min(C1 + C4 + C5 + C6 + C7 + C11 

+ C16-C19), Min E, Max S 

Bai and Liu (2016) 
√ 

MILP LINGO Min(C1 + C4 + C5 + C8) 

Özceylan and Paksoy (2014) 
√ 

MINLP GAMS Min(C1), Min(C4), Min(C8), 

Min(C16) 

Subulan, Ta ̧s an, and Baykaso ̆glu 

(2014) 

√ 

MILP CPLEX Min(C1 + C4 + C5 + C8 + C16-I), Max 

(Coverage of return products), 

Max (flexibility) 

Subulan, Baykaso ̆glu et al. (2014) 
√ 

MILP CPLEX Min(C1 + C4 + C5 + C8 + C16-I), Max 

(Coverage of return products) 

Tong, Gleeson, Rong, and You 

(2014) 

√ 

MILP CPLEX Min(C1 + C3 + C4 

+ C5 + C6 + C7 + C11-Government 

incentives) 

Sadjadi, Soltani, and 

Eskandarpour (2014) [2] 

√ 

- Memetic 

algorithm 

Min(C1 + C2 + C4), Min (Variance 

of constrains’ deviations) 

Mousazadeh et al. (2015) 
√ 

MILP CPLEX Min(C1 + C3 + C4 + C5 + C7 + C11), 

Min(Max(unsatisfied demand)) 

Torabi et al. (2016) 
√ 

MILP CPLEX Min(C1 + C4 + C5 + C6 + C14 + C16) 

Hatefi et al. (2015a) 
√ 

MILP CPLEX Min (C1 + C4 + C5 + C6 + C16 

+ Disruption cost) 

Hatefi et al. (2015b) 
√ 

MILP CPLEX Min (C1 + C4 + C5 + C6 

+ C16 + Disruption cost) 

Fallah, Eskandari, and Pishvaee 

(2015) 

√ 

MINLP GAMS Max(I-C4-C5-C16) 

Sadghiani et al. (2015) 
√ 

MILP CPLEX Min(C1 + Capital costs for 

transportation modes), Min M 1 , 

Min M 2 

Babazadeh et al. (2017) [3] √ 

MINLP [1] CPLEX Min(C1 + C3 + C4 

+ C5 + C6 + C7 + Importing cost), 

Min E 

Table’s summary: Exact algorithms: 3% , Heuristic algorithms: 0% , 

Meta-heuristics: 18% , Commercial solvers: 79% 

MILP: 88%, 

MINLP: 12% 

Single objective (Minimization: 27% , Maximization: 

6 % ) , Multiple objectives: 67% 

[ 1 ], [ 2 ], The crisp transformed model is not presented in these studies. [ 3 ]In this study, the MINLP model is transferred to an MILP one. 
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models with disruptions in the literature are single period and only

a few papers such as Klibi and Martel (2012a) and Klibi and Martel

(2013) can be found which are multi-period. 

Survey papers by Tang (2006a), Tang (2006b), Tang and Tom-

lin (2008) , and Tang and Musa (2011) introduced mitigation strate-

gies which could be utilized to improve SC’s resiliency in the face

of risks. Moreover, some mitigation strategies expressed by Tang

(2006a) and Tang and Tomlin (2008) can be applicable for deal-

ing with operational risks in SCs, which reveals the fact that they

are not developed only for disruption risks. However, in SCND,

these strategies have been applied to handle a SC under the un-

certainty induced by disruptions. Further, a few papers employed

mitigation strategies for designing a resilient SC network. Here,

we explore the most popular mitigation strategies in the related

literature: 

Facility fortification: In this strategy, some facilities are chosen

for an existing SC network or during the design phase of

a SC network in order to fortify them against various dis-

ruptions. Hasani and Khosrojerdi (2016), Li and Savachkin

(2016) , and Qin, Liu, and Tang (2013) utilized this strategy. 

Strategic stock: Using this strategy, a SC can hold the inventory

for raw materials, semi-finished and finished products in its

facilities within different layers of SC. This inventory is often

utilized to satisfy the needs of customers and other man-

ufacturing processes. Benyoucef, Xie, and Tanonkou (2013),

Hasani and Khosrojerdi (2016), Mak and Shen (2012), Qi and

Shen (2007) , and Qi, Shen, and Snyder (2010) employed this

strategy. 

Sourcing strategy: As pointed out by Snyder et al. (2016) , this

strategy is divided into multiple sourcing and backup sourc-

ing. In the multiple one, sourcing is carried out by using

multiple suppliers simultaneously before disruption occur-

rence. However, the backup sourcing exploits backup suppli-

ers when primary suppliers are disrupted. Cui et al. (2010),

Hasani and Khosrojerdi (2016), Klibi and Martel (2012a),

Klibi and Martel (2013), Mak and Shen (2012), Qi and Shen

(2007) , and Li et al . (2013) used one or both strategies. 

6. Applications and real-word case studies for SCND 

Here, some studies that deal with applications of SCND prob-

lem under uncertainty have been reviewed. In this regard, some

of them investigated real-life case studies and some others solved

randomly generated test instances in an industrial context. One of

the essential challenges in designing a SC network based on a spe-

cific industrial context is that the design decisions have to be often

made according to required processes for producing products (e.g.,

Schütz et al. (2009) and Govindan and Fattahi (2017) that studied

a SC for a meat and glass industry, respectively). 

In a survey paper by Barbosa-Povoa (2014) , SCs formed for pro-

cess industries, named as process SCs, are examined. For this aim,

the real-life case studies are divided into five major types, in-

cluding agricultural, biomass/biofuel, gas/hydrogen, pharmaceuti-

cal, and oil SCs. 

Unlike studies related to business SCs, non-business SC models

are often developed based on a specified application. In Table 12 ,

the reference papers developed for specific application or indus-

try and the ones that examined some real-world case studies are

listed. In the column for real-life case study, the dashes mean that

the related reference paper did not examine a real-life case study

and solved some randomly generated test instances for the consid-

ered industry or application. 

As shown in Table 12 , about 24% of reference papers defined

their SC networks on the basis of a specific industry or applica-
ion. It is worthwhile to focus more on designing SC networks for

pecific industries in business SCs and applications in non-business

Cs. Moreover, due to difficulties in collecting, preparation, and ag-

regation huge data sets, only 20% of reference papers concerned

eal-life case studies. In this regard, big data analytics tools and

echniques would be helpful for future research works. 

In terms of the type of logistics networks, about 20% of papers

reated the applications of RL or CLSC networks in Table 12 . Here,

he biomass/biofuel, chemical, gas/hydrogen, and pharmaceutical

Cs include 28%, 10%, 10%, and 5% of studies, respectively. Thus,

t can be concluded that researchers have paid more attention to

iofuel/biomass SCs recently. Furthermore, a review and system-

tic classification on biomass to energy SC networks is presented

y Balaman and Selim (2015) . 

. Discussion, conclusions, and future research directions 

In this paper, a comprehensive review was presented on the

tudies in the area of SCND problem under uncertainty. The

ecision-making environments under uncertainty were divided

nto three categories in Section 3 . In general, the uncertainty

ources include (1) the existing uncertainty in parameters such as

upply, demand, and costs, which are inherently uncertain, and (2)

he uncertainty caused by natural or man-made disruptions. Fewer

han 20% of studies considered the second uncertainty source in

heir problems. Therefore, addressing reliable and resilient SC net-

orks under disruption risks will have high potential as a future

esearch direction. In this paper, we answered the questions men-

ioned in the introduction section. For this aim, the studies were

nvestigated from two principal perspectives involving (1) SCM as-

ects, and (2) optimization aspects. In this section, a discussion is

resented and several future research directions on the basis of

iterature’s gaps are provided from these two perspectives, sepa-

ately. 

.1. SCM aspects in SCND under uncertainty 

The integration of strategic SC decisions and the other ones re-

ated to tactical/operational levels in a comprehensive model under

ncertainty will be a future research direction. More specifically,

 few reference papers coped with decisions such as routing and

rice of products. Pricing of products and revenue management is-

ues are addressed by some studies (e.g., Ahmadi-Javid & Hosein-

our, 2015; Fattahi et al., 2015 ) for deterministic problems, and

hese studies have the potential to be extended for an uncertain

nvironment. Moreover, a small number of papers have dealt with

ehicle routing decisions in a SCND problem under uncertainty, all

f which considered routing decisions only for one layer of SC net-

ork. Hence, this area requires more attention in the sense that

e may make routing decisions for more than one layer of SC or

onsider the vehicles with different types and capacities. Further,

s pointed out in Section 4 . 2 , many studies made inventory and

esign decisions simultaneously for single or multiple layers of a

C network. However, making such decisions for SCs with highly

erishable products such as blood SCs often depends on the prod-

cts’ characteristics and life cycle. There has not been any study

hat handles this aspect in SCND under uncertainty and hence it

romises to be an interesting future research topic. 

Only 32% of reference papers took a planning horizon with mul-

iple periods into account. Due to the strategic nature of SCND

ecisions, defining strategic periods will help a decision maker to

ave the opportunity of changing strategic decisions in future with

espect to the volatile business environment. Additionally, tactical

r operational periods can capture changes in the parameters as-

ociated with these decision levels. Thus, developing comprehen-
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Table 12 

Applications and industrial contexts addressed in the related literature. 

Articles Non-business 

supply chain 

A specific industry or application Real-life case study 

Realff et al. (2004) Recovery network for carpet recycling A case study in USA 

Liste ̧s and Dekker (2005) Recovery network for recycling sand A case study in Netherlands 

Guillen et al. (2006) A supply chain for chemical industry –

You and Grossmann (2008a) A supply chain for polystyrene industry –

Rappold and Van Roo (2009) A supply chain for handling reparable items –

Guillén-Gosálbez and Grossmann (2009) A supply chain for chemical industry A case study in Europe 

Schütz et al. (2009) A supply chain for meat industry A case study in Norway 

Guillén-Gosálbez and Grossmann (2010) A supply chain for chemical industry A case study in Europe 

Lee et al. (2010) A supply chain for an international electrical 

company 

A case study in Asia Pasific region 

Sabio et al. (2010) Hydrogen supply chain A case study in Spain 

Kim et al. (2011) Biofuel supply chain A case study in southern part of USA 

Giarola et al. (2012) Ethanol supply chain –

Noyan (2012) 
√ 

A supply chain network for distributing relieif 

supplies after occurrence of a disaster 

–

Chen and Fan (2012) Bioethanol supply chain A case study in the state of California (USA) 

Almansoori and Shah (2012) Hydrogen supply chain A case study in Great Britain 

Gebreslassie et al. (2012) Hydrocarbon biorefinery supply chain A case study in the state of Illinois (USA) 

Kazemzadeh and Hu (2013) Biofuel supply chain A case study in the state of Iowa (USA) 

Baghalian et al. (2013) A supply chain for an agri-food industry The rice industry of a country in the Middle 

East 

Jouzdani et al. (2013) Milk and dairy supply chain A case study in Iran 

Tong et al. (2013) Hydro carbon biofuel and petroleum supply 

chain 

–

Balaman and Selim (2014) Bioenergy supply chain A case study in Turkey 

Jeong et al. (2014) 
√ 

A supply chain network for distributing relieif 

supplies after occurrence of a disaster 

A case study in the state of South Carolina 

(USA) based on historical disasters 

Marufuzzaman et al. (2014) Biofuel supply chain A case study in the southeast region of USA 

Jabbarzadeh et al. (2014) 
√ 

A supply chain network for blood distribution 

after occurrence of a disaster 

A case study for Tehran’s earthquake 

Zokaee et al. (2014) Bread supply chain A case study in Iran 

Tong, You et al. (2014) and Tong, Gleeson et al. 

(2014) 

Hydro carbon biofuel supply chain A case study in the state of Illinois (USA) 

Madadi et al. (2014) Pharmaceutical supply chain –

Li and Hu (2014) Biofuel supply chain A case study in the state of Iowa (USA) 

Liu and Guo (2014) 
√ 

A supply chain network for distributing relieif 

supplies after occurrence of a disaster 

A case study based on Great Wenchuan 

earthquake in China 

Pishvaee et al. (2014) A CLSC for medical needle and syringe industry A case study for an industry in Iran 

Subulan, Ta ̧s an et al. (2014) and Subulan, 

Baykaso ̆glu et al. (2014) 

A CLSC for lead/acid battery industry A case study for an industry in Turkey 

Dayhim et al. (2014) Hydrogen supply chain A case study in the state of New Jersey (USA) 

Ayvaz et al. (2015) RL for waste management of electrical and 

electronic equipments 

A case study in Turkey 

Hasani et al. (2015) and Hasani and 

Khosrojerdi (2016) 

A CLSC for medical devices industry A case study in Iran 

Mousazadeh et al. (2015) Pharmaceutical supply chain A case study in Iran 

Babazadeh et al. (2017) Biodiesel supply chain A case study in Iran 

Govindan and Fattahi (2017) A supply chain for glass industry A case study in Iran 
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ive models under uncertainty with multiple periods requires more

ttention. In particular, deterministic multi-period SCND problems

n which there exists the possibility of changing the location and

apacity of facilities over different strategic periods, have been

idely addressed (e.g., Melo et al., 2006; Thanh, Bostel, & Péton,

008 ). These studies also have potential to be extended for an un-

ertain decision-making environment. Moreover, we could not find

ny SCND study under uncertainty that deals with a planning hori-

on where strategic and tactical periods are integrated. 

As shown by Fig. 9 , a few papers addressed social responsibility

r environmental aspects in designing SC networks under uncer-

ainty. Nevertheless, government legislation and customers’ aware-

ess have caused most corporations and organizations to pay more

ttention to these issues. Evidently, more research is still required

n these aspects, whose significances have been emphasized and

aised by social and environmental concerns. Further, dealing with

nancial factors and different types of competitions in SCND prob-

ems under uncertainty are another two potential research areas.

arahani et al. (2014) surveyed competitive SCND and represented

he existing research gaps in this area. 
Designing humanitarian SC networks needs more investigations,

nd indeed many studies in this area can be done with respect

o different disaster types and desired applications. Sometimes, it

ay not be possible to satisfy all demands in humanitarian SC net-

orks, so there is a need to develop models considering fairness

or shortages that may occur at different demand points. More-

ver, demand points in this type of network often need different

ommodities, but their priority varies. This aspect has been rarely

egarded in humanitarian SC networks. In general, two aspects that

hould be considered by researchers in this area are: (1) planning

ecisions, network structure and performance measures depend on

he considered application and can be quite different from business

Cs; and (2) modeling uncertain parameters is contingent upon the

ype and magnitude of disasters. 

Designing responsive SC networks has been examined by only

2% of reference papers. In these studies, the fill rate of customers’

emands and their service time are often used as performance

easures for evaluating the responsiveness of SC. In all of these

tudies, customers’ demand is not dependent on the responsive-

ess of SC. Nonetheless, in today’s competitive business environ-
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ment, designing a SC network in which customers’ demand is sen-

sitive to SC’s responsiveness is a valuable future research. More-

over, defining other criteria for the SC’s responsiveness based on

business goals of companies is of importance in different applica-

tions. 

Finally, there were a few papers to cope with real-world sit-

uations. The reason is twofold: (1) the necessity for collecting a

large data set to model comprehensive SCND problems, and (2) the

difficulties in obtaining correct estimates for uncertain parameters.

Thus, it would be worthwhile to carry out studies based on a SC

network defined for real-life case studies. 

7.2. Optimization aspects in SCND under uncertainty 

In this paper, assorted modeling frameworks that have been ap-

plied for SCND problems under uncertainty were introduced and

thus the studies were investigated in terms of their developed so-

lution methodologies and mathematical models. In this section, re-

search gaps and potential future research guidelines in terms of

optimization aspects are discussed. 

More than 50% of reference papers made use of commercial

solvers to solve their optimization problems. This fact demon-

strates two practical issues. Firstly, commercial solvers have had

significant progress over recent years such that they have suitable

performance in solving optimization problems in this area. Sec-

ond, many industries would prefer to exploit a proven commercial

solver for solving smaller problem instances instead of using a cus-

tom designed solution approach, which results in an approximate

solution. 

A few studies applied meta-heuristics approaches. Due to the

NP-hardness nature of SCND problem under uncertainty, develop-

ing this type of solution approaches still remains a future research

direction. It is worth noting that meta-heuristics cannot guaran-

tee the optimal solution for an optimization problem. However,

these approaches can solve large-scale problems within appropri-

ate time. Therefore, developing this kind of solution approaches

is worthwhile. Further, presenting solution algorithms, which are

based on the combination of exact methods with heuristics or

meta-heuristics is another future area of research. 

In scenario-based stochastic programs for SCND, Benders’ de-

composition or L-shaped method, as exact approaches, were

widely applied due to the problem’s special structure. However, ex-

act solution approaches for problems with minimax or weighted

mean-risk objectives are still scarce and will be welcomed by

researchers and practitioners. In addition, developing multi-stage

stochastic programs and presenting efficient solution approaches

for them is another challenging issue, and it needs greater consid-

eration. In this regard, the progressive hedging algorithm, an appli-

cable method for solving two and multi-stage stochastic programs,

has been used scarcely in the related literature. 

Another significant aspect for scenario-based stochastic pro-

grams is to generate an efficient set of scenarios to model un-

derlying stochasticity in SCND. More importantly, evaluating sce-

nario generation methods in terms of stability and quality criteria

should be examined in SCND problem as well. There are different

approaches to deal with scenario generation and reduction in the

Stochastic Programming community (e.g., Dupa ̌cová et al., 2003;

Heitsch & Römisch, 20 03; Høyland & Wallace, 20 01 ) that can be

applied in this research area. 
As mentioned before, there exist two types of risks including

perational and disruption risks in a SC, for which risk manage-

ent plays an indispensable role in reducing these existing risks.

ecause only a few papers addressed this issue, risk management

n SCND problem is a potential future research direction. By explor-

ng the papers in Section 5.5 , it can also be highlighted that most

nes utilized the well-known risk measures for alleviating the risks

ased on their economic objectives such as SC’s cost or profit.

owever, studying the SC’s risk based on other strategic goals of SC

uch as responsiveness is still a challenge. It is worth noting that

eckmann et al. (2015) discussed this research gap in the area of

upply chain risk management with more details. Moreover, most

CND models with disruption risks are single period in the related

iterature. However, disruptions can affect the SC’s performance for

 long time. Thus, developing SCND models under a planning hori-

on with multiple periods and modeling uncertain effects of dis-

uptions over this planning horizon is another concern. Further, a

umber of papers employed some mitigation strategies for manag-

ng SC’s disruption risks, as discussed in Section 5.8 . However, as

ointed out by Tang (2006a) and Tang and Tomlin (2008) , there are

ther mitigation strategies such as flexible manufacturing process,

esponsive pricing, supply contracts, and so on that can be used for

esigning resilient SCs. Hence, future research works may develop

CND models based on these other strategies and assess their ef-

ectiveness. It is worth mentioning that using mitigation and con-

ingency strategies simultaneously is another interesting future re-

earch for designing resilient SC networks. 

Robust SCND has gained less attention in comparison with

uzzy and stochastic programs. However, it must be noted that

n many real-world applications, enough historical data are not

resent to estimate parameters’ distributions, but robust optimiza-

ion is a suitable tool for handling such a situation. Using AARC

nd DRO approaches in the area of SCND problems is another re-

earch direction for which there has not been any paper in the

elated literature. Additionally, developing modeling approaches in

he context of SCND problem that fill out the gap between stochas-

ic programming and RO could be an interesting research idea.

n addition to these aspects, exploring new applicable robustness

easures to address solution or model robustness will be another

romising research direction. 

Simulation is a powerful tool to validate obtained policies in

ncertain decision-making environments and unfortunately, such a

ethodology has been rarely examined in the related SCND litera-

ure. In addition, to the best of our knowledge, there has not been

ny research to compare different modeling philosophies such as

tochastic programming, RO, and fuzzy programming to design a

C network under uncertainty. Therefore, a systematic comparison

etween these modeling approaches will be required. 

The last conclusion that can be drawn from this survey paper

s while there are many research studies for SCND problem un-

er uncertainty, this research area still needs more studies present-

ng realism models based on real-world applications and handling

omputational aspects to solve large-sized problems. 
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A  related literature 

T

F

t

ppendix A. Features and structure of logistics networks in the
able A.1 

eatures and structure of supply chain networks and forward networks in closed-loop supply chains in the related literature. (F and TL are abbreviations of facilities and 

ransportation links, respectively). 

Articles Paper’s 

number 

RLN # of location 

layers 

Multiple 

commodities 

Flows Uncertain 

parameters in 

forward 

network 

Disruption in 

forward network 

Decision- 

making 

environment 

group 
Intra-layer 

flows 

Direct flows 

to customers 

from upper 

layers 

F TL 

Sabri and Beamon (20 0 0) [1] 2 
√ 

D, ST, PT G1 

Tsiakis et al. (2001) [2] 2 
√ 

D G1 

Daskin et al. (2002) [3] 1 D G1 

Hwang (2002) [4] 1 AF 
√ 

G1 

Shen et al. (2003) [5] 1 D G1 

Alonso-Ayuso et al. (2003) [6] 1 
√ √ 

D, C, P, PR G1 

Guillén et al. (2003) [7] 2 
√ 

D G1 

Miranda and Garrido (2004) [8] 1 D G1 

Shen (2005) [9] 1 D G1 

Shen and Daskin (2005) [10] 1 D G1 

Avittathur et al. (2005) [11] 1 D G1 

Guillén et al. (2005) [12] 2 
√ 

D G1 

Aghezzaf (2005) [13] 1 
√ 

D G1 

Santoso et al. (2005) [14] 3 
√ √ √ 

D, S, C, CA G1 

Shu et al. (2005) [15] 1 D G1 

Guillen et al. (2006) [16] 3 
√ 

D G1 

Vila et al. (2007) [17] 1 
√ √ 

D (Agreements/ 

contracts with 

customers) 

G1 

Romeijn et al. (2007) [18] 1 D G1 

Qi and Shen (2007) [19] 1 D, AF 
√ 

G1 

Shen and Qi (2007) [20] 1 D G1 

Snyder et al. (2007) [21] 1 DP G1 

Goh et al. (2007) [22] 1 D, FP G1 

Liste ̧s (2007) [23] 
√ 

1 D G1 

Shen (2007a) [24] 1 D G1 

Lee et al. (2007) [25] 
√ 

1 
√ 

D G1 

Salema et al. (2007) [26] 
√ 

2 
√ 

D G1 

Xu et al. (2008) [27] 2 D,C G3 

Chouinard et al. (2008) [28] 
√ 

1 
√ 

D G1 

Miranda and Garrido (2008) [29] 1 D G1 

Poojari et al. (2008) [30] 3 
√ 

D G1 

Selim and Ozkarahan (2008) [31] 2 
√ 

FG G3 

You and Grossmann (2008a) [32] 2 
√ √ 

D G1 

You and Grossmann (2008b) [33] 1 D G1 

Tanonkou et al. (2008) [34] 1 D, ST G1 

Azaron et al. (2008) [35] 1 
√ 

D, C, S G1 

Rappold and Van Roo (2009) [36] 2 D, PT G1 

Guillén-Gosálbez and 

Grossmann (2009) 

[37] 2 
√ 

EP G1 

Lee and Dong (2009) [38] 
√ 

1 
√ 

D G1 

Schütz et al. (2009) [39] 3 
√ √ √ 

D, S, C, CA G1 

Pishvaee et al. (2009) [40] 
√ 

2 D, C G1 

Xu et al. (2009) [41] 3 D, S, C G3 

You and Grossmann (2009) [42] 1 D G1 

Franca et al. (2010) [43] 2 
√ 

D G1 

Javid and Azad (2010) [44] 1 D G1 

Qi et al. (2010) [45] 1 D, AF 
√ 

G1 

Park et al. (2010) [46] 2 D G1 

Lee et al. (2010) [47] 
√ 

2 
√ 

D, C, CA G1 

Guillén-Gosálbez and 

Grossmann (2010) 

[48] 2 
√ 

EP G1 

Pan and Nagi (2010) [49] > 3 D G1 

You and Grossmann (2010) [50] 1 D G1 

Nasiri et al. (2010) [51] 1 
√ 

D G1 

Sabio et al. (2010) [52] 2 
√ 

C G1 

Pishvaee and Torabi (2010) [53] 
√ 

1 D, C, CA G3 

Cui et al. (2010) [54] 1 AF 
√ 

G1 

Shu et al. (2010) [55] 1 D G1 

Mo et al. (2010) [56] 2 
√ 

D G1 

You and Grossmann (2011) [57] 1 D G1 

Bidhandi and Yusuff (2011) [58] 2 
√ 

D, C, CA G1 

Longinidis and Georgiadis 

(2011) 

[59] 2 
√ 

D, P, CA, SS G1 

( continued on next page ) 
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Table A.1 ( continued ) 

Articles Paper’s 

number 

RLN # of location 

layers 

Multiple 

commodities 

Flows Uncertain 

parameters in 

forward 

network 

Disruption in 

forward network 

Decision- 

making 

environment 

group 
Intra-layer 

flows 

Direct flows 

to customers 

from upper 

layers 

F TL 

Georgiadis et al. (2011) [60] 2 
√ 

D, CA, SS, lower 

and upper 

bounds of 

supply chain’s 

flows 

G1 

Shukla et al. (2011) [61] 1 AF, AT 
√ √ 

G1 

Cardona-Valdés et al. (2011) [62] 1 D G1 

Shimizu et al. (2011) [63] 1 D, C, P G1 

Kim et al. (2011) [64] 2 
√ 

D, S, P, CP G1 

Zarandi et al. (2011) [65] 
√ 

2 
√ 

FG G3 

Peng et al. (2011) [66] 1 AF 
√ 

G2 

Rajgopal et al. (2011) [67] 1 D, C, S, Salvage 

value of 

products 

G1 

Giarola et al. (2012) [68] 1 
√ 

C, P G1 

Kiya and Davoudpour (2012) [69] 1 
√ 

D, C G1 

Abdallah et al. (2012) [70] 
√ 

1 D G1 

Noyan (2012) [71] 1 
√ 

D, C, CA, DC 
√ √ 

G1 

Jabbarzadeh et al. (2012) ) [72] 1 DC 
√ 

G1 

Mak and Shen (2012) [73] 1 D, AF 
√ 

G1 

Chen and Fan (2012) [74] 2 D, S G1 

Klibi and Martel (2012a) [75] 1 D, CA 
√ √ 

G1 

Almansoori and Shah (2012) [76] 3 
√ √ 

D G1 

Pishvaee, Torabi et al. (2012) [77] 2 D, C, CA, EP G3 

Gebreslassie et al. (2012) [78] 1 
√ 

D, S G1 

Hasani et al. (2012) [79] 
√ 

1 
√ 

D, PR G2 

Nickel et al. (2012) [80] 1 
√ 

D, FP G1 

Pishvaee and Razmi (2012) [81] 
√ 

1 D, C, CA G3 

Pishvaee, Razmi et al. (2012) [82] 2 D,C, CA, PS G3 

Vahdani et al. (2012) [83] 
√ 

- FG, C, CA, CP G1&G2&G3 

Amin and Zhang (2013) [84] 
√ 

1 
√ 

D G1 

De Rosa et al. (2013) [85] 
√ 

2 D G1 

Benyoucef et al. (2013) [86] 1 D, ST G1 

Albareda-Sambola et al. (2013) [87] 1 D, C, Minimum 

number of 

facilities and 

customers to 

be opened and 

serviced, 

respectively 

G1 

Kazemzadeh and Hu (2013) [88] 1 C, P, S G1 

Pimentel et al. (2013) [89] 1 
√ 

D G1 

Qin et al. (2013) [90] 1 AF 
√ 

G1 

Ramezani et al. (2013a) [91] 
√ 

2 
√ 

D, C, P G1 

Ramezani et al. (2013b) [92] 
√ 

2 
√ 

D G2 

Longinidis and Georgiadis 

(2013) 

[93] 2 
√ 

D, P, FP, SS G1 

Bouzembrak et al. (2013) [94] 2 
√ √ 

D, S, C G3 

Kumar and Tiwari (2013) [95] 2 
√ 

D G1 

Azad and Davoudpour (2013) [96] 1 D G1 

Cardoso et al. (2013) [97] 
√ 

3 
√ √ √ 

D G1 

Baghalian et al. (2013) [98] 2 
√ 

D, AF, AT 
√ √ 

G1 [1] 

Vahdani, 

Tavakkoli-Moghaddam, and 

Jolai (2013) 

[99] 
√ 

1 
√ 

D, C, CA, CP, AF, 

CS 

√ 

G1&G3 

Ahmadi-Javid and Seddighi 

(2013) 

[100] 1 CA, Annual 

number of 

vehicles’ visits 

√ 

G1 

Singh et al. (2013) [101] 1 D G1 

Vahdani, 

Tavakkoli-Moghaddam, Jolai, 

and Baboli (2013) 

[102] 
√ 

- 
√ 

D, C, CP, CS G1&G3 

Jouzdani et al. (2013) [103] 3 D G3 

Li et al. (2013) [104] 1 AF 
√ 

G1 

Azad et al. (2013) [105] 1 CA, AT 
√ √ 

G1 

Tong et al. (2013) [106] 3 D, S, C, 

Governmental 

incentives 

G1 

( continued on next page ) 
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Table A.1 ( continued ) 

Articles Paper’s 

number 

RLN # of location 

layers 

Multiple 

commodities 

Flows Uncertain 

parameters in 

forward 

network 

Disruption in 

forward network 

Decision- 

making 

environment 

group 
Intra-layer 

flows 

Direct flows 

to customers 

from upper 

layers 

F TL 

Klibi and Martel, (2013) [2] [107] 1 D, CA 
√ 

G1 

Nasiri et al. (2014) [108] 1 
√ 

D G1 

Tian and Yue (2014) [109] 2 
√ 

D, C, CS G1 

Mirakhorli (2014) [110] 
√ 

2 D, FG G3 

Meisel and Bierwirth (2014) [111] 3 
√ 

Arrivals of 

customers’ 

orders, PT, TT 

G1 

Jabbarzadeh et al. (2014) [112] 1 D, C, S, CA G1 

Madadi et al. (2014) [113] 1 S (the fraction 

of tainted 

production at 

facilities) 

G1 

Mari et al. (2014) [114] 2 AF 
√ 

G1 

Jeong et al. (2014) [115] 2 AF 
√ 

G1 

Balaman and Selim (2014) [116] 2 
√ 

FG G3 

Jindal and Sangwan (2014) [117] 
√ 

- 
√ 

D, C, CA G3 

Marufuzzaman et al. (2014) [118] 2 AF 
√ 

G1 

Vahdani et al. (2014) [119] 
√ 

- C G3 

Li and Hu (2014) [120] 2 PR, CP, S G1 

Cardona-Valdés et al. (2014) [121] 1 D G1 

Azad et al. (2014) [122] 1 CA, AT 
√ √ 

G1 

Ramezani et al. (2014) [123] 
√ 

2 
√ 

D, C, CA, P G3 

Liu and Guo (2014) [124] 1 
√ 

D, Amount of 

critical 

populations 

G1 

Jin et al. (2014) [125] 2 
√ 

D, C G1 

Rodriguez et al. (2014) [126] 2 D G1 

Yongheng et al. (2014) [127] 2 D G1 

Pishvaee et al. (2014) [128] 
√ 

1 D, C, CA, EP, PS G3 

Soleimani et al. (2014) [129] 
√ 

> 3 
√ 

D, P G1 

Li and Savachkin (2016) [130] 1 AF 
√ 

G1 

Bai and Liu (2016) [131] 2 
√ 

D, C G3 

Huang and Goetschalckx (2014) [132] 3 
√ 

D, C, CA, P G1 

Zokaee et al. (2014) [133] 2 D, C, S G2 

Zeballos et al. (2014) [134] 
√ 

3 
√ √ 

D, S G1 

Özceylan and Paksoy (2014) [135] 
√ 

- D, C, CA G3 

Dayhim et al. (2014) [136] 2 
√ 

D G1 

Hatefi and Jolai (2014) [137] 
√ 

2 D, AF 
√ 

G1&G2 

Subulan, Ta ̧s an et al. (2014) [138] 
√ 

1 
√ 

FG G3 

Subulan, Baykaso ̆glu et al. 

(2014) 

[139] 
√ 

1 
√ 

D, C, maximum 

allowable 

distance 

between SC 

entities 

G1&G3 

Tong, Gleeson et al. (2014) [140] 3 
√ √ 

D, S, CP G3 

Tong, You et al. (2014) [141] 3 
√ √ 

D, S G2 

Mousazadeh et al. (2015) [142] 3 
√ √ 

D, C, SS G3 

Li et al. (2015) [143] 1 AT 
√ 

G1 

Pasandideh et al. (2015) [144] 1 
√ 

D, C, PT G1 

Kılıç and Tuzkaya (2015) [145] 1 
√ 

D, P G1 

Torabi et al. (2016) [146] 
√ 

2 D, C, CA 
√ 

G2&G3 

Khatami et al. (2015) [147] 
√ 

- 
√ 

D G1 

Hasani et al. (2015) [148] 
√ 

3 
√ 

D, C G2 

Hatefi et al. (2015a) [149] 
√ 

2 D, C, CA 
√ 

G1&G3 

Hatefi et al. (2015b) [150] 
√ 

2 D, C, CA 
√ 

G1&G3 

Fallah et al. (2015) [151] 
√ 

2 D, C, CA G3 

Akbari and Karimi (2015) [152] 1 
√ 

CR G2 

Sadghiani et al. (2015) [153] 1 
√ 

D, C, CA, TT, S 
√ 

G1&G3 

Dubey et al. (2015) [154] 
√ 

1 
√ 

D G2 

Govindan et al. (2015) [155] 3 
√ 

D G1 

Keyvanshokooh et al. (2016) [156] 
√ 

2 D, C G1&G2 

Hasani and Khosrojerdi (2016) [157] 3 
√ 

D, C, CA, S 
√ 

G1&G2 

Babazadeh et al. (2017) [158] > 3 
√ 

D, C, S, EP G3 

Govindan and Fattahi (2017) [159] 2 
√ 

D G1 - G2 

[ 1 ] In this study, both scenario based and continuous stochastic parameters are considered. 

[ 2 ] This study proposed a generic mathematical model; however, the Table’s information is based on the location-transportation case studies that were solved by the study. 
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Table A.2 

Features and structure of reverse logistics networks and reverse network in closed-loop supply chains in the related literature. 

Articles Paper’s 

number 

FLN # of 

location 

layers 

Multiple 

commodities 

Uncertain 

parameters 

in reverse 

network 

Disruption in 

reverse network 

Decision- 

making 

environment 

group 
Facilities Transportation 

links 

Realff et al. (2004) [160] 1 
√ 

R, SP G2 

Liste ̧s and Dekker (2005) [161] 2 R, DS G1 

Liste ̧s (2007) [23] 
√ 

1 R G1 

Lee et al. (2007) [25] 
√ 

1 
√ 

R, PA G1 

Lieckens and Vandaele (2007) [162] 1 Inter-arrival time of 

returns, PT 

G1 

Salema et al. (2007) [26] 
√ 

2 
√ 

R G1 

Chouinard et al. (2008) [28] 
√ 

2 
√ 

R, DS, DR, PA G1 

Lee and Dong (2009) [38] 
√ 

1 
√ 

R G1 

Pishvaee et al. (2009) [40] 
√ 

3 R, C, DR G1 

Lee et al. (2010) [47] 
√ 

2 
√ 

R, C, CA G1 

Pishvaee and Torabi (2010) [53] 
√ 

3 R, C, CA, DS, DR G3 

Qin and Ji (2010) [163] 1 R, C G3 

Kara and Onut (2010a) [164] 1 R, DS G1 

Kara and Onut (2010b) [165] 2 R, DS G1 

Pishvaee et al. (2011) [166] 
√ 

3 C, CA, DS, R G2 

Zarandi et al. (2011) [65] 
√ 

1 
√ 

FG G3 

Abdallah et al. (2012) [70] 
√ 

1 R G1 

Hasani et al. (2012) [79] 
√ 

1 
√ 

- G2 

Pishvaee and Razmi (2012) [81] 
√ 

1 R, C, CA G3 

Vahdani et al. (2012) [83] 
√ 

1 
√ 

FG, C, AF 
√ 

G1&G2&G3 

Amin and Zhang (2013) [84] 
√ 

2 
√ 

R G1 

De Rosa et al. (2013) [85] 
√ 

2 R G1 

Ramezani et al. (2013a) [91] 
√ 

2 
√ 

R, C G1 

Ramezani et al. (2013b) [92] 
√ 

2 
√ 

R G2 

Cardoso et al. (2013) [97] 
√ 

3 
√ 

- G1 

Vahdani, Tavakkoli-Moghaddam, 

and Jolai (2013) 

[99] 
√ 

2 
√ 

R, C, CA, PA, AF, CS 
√ 

G1&G3 

Vahdani, Tavakkoli-Moghaddam, 

Jolai, and Baboli (2013) 

[102] 
√ 

2 
√ 

R, C, CA, PA, AF, CS 
√ 

G1&G3 

Mirakhorli (2014) [110] 
√ 

2 R, FG G3 

Jindal and Sangwan (2014) [117] 
√ 

3 
√ 

R, C, CA, PA, PP G3 

Vahdani et al. (2014) [119] 
√ 

3 R, C, CA, DS, AF 
√ 

G3 

Ramezani et al. (2014) [123] 
√ 

2 
√ 

R, C, CA, DR, PA G3 

Pishvaee et al. (2014) [128] 
√ 

1 R, C, CA, EP, PS G3 

Soleimani et al. (2014) [129] 
√ 

> 3 
√ 

R, DS, SP, BP G1 

Zeballos et al. (2014) [134] 
√ 

> 3 
√ 

R G1 

Özceylan and Paksoy (2014) [135] 
√ 

1 R, C, CA G3 

Hatefi and Jolai (2014) [137] 
√ 

3 R, DR, AF 
√ 

G1&G2 

Subulan, Ta ̧s an et al. (2014) [138] 
√ 

2 
√ 

FG G3 

Subulan, Baykaso ̆glu et al. (2014) [139] 
√ 

2 
√ 

R, C, DR, BP, PA, SP, 

maximum number of 

opened facilities, 

maximum allowable 

distance for collecting 

return products 

G1&G3 

Sadjadi et al. (2014) [167] 1 
√ 

R G3 

Kaya et al. (2014) [168] 2 
√ 

R, DS G1 

Soleimani and Govindan (2014) [169] 3 
√ 

DS, BP, SP G1 

Torabi et al. (2016) [146] 
√ 

3 R, C, CA 
√ 

G2&G3 

Khatami et al. (2015) [147] 
√ 

2 
√ 

R G1 

Hasani et al. (2015) [148] 
√ 

1 
√ 

DS G2 

Hatefi et al. (2015a) [149] 
√ 

3 R, C, CA 
√ 

G1&G3 

Hatefi et al. (2015b) [150] 
√ 

3 R, C, CA 
√ 

G1&G3 

Fallah et al. (2015) [151] 
√ 

3 R, C, CA G3 

Dubey et al. (2015) [154] 
√ 

2 
√ 

R G2 

Ayvaz et al. (2015) [170] 3 
√ 

R, C, PA G1 

Keyvanshokooh et al. (2016) [156] 
√ 

2 R, C G1&G2 
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ppendix B. Mathematical definition of well-known risk measu

Table B.1 

Definition of well-known risk measures

Risk measure D

Variance ρ

Absolute deviation ρ

Standard deviation ρ

Conditional value at risk ρ

p th central semideviation ρ

p th semideviation from target T ρ
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