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Abstract 

For at least the last 30 years it has been discussed whether mean arterial blood pressure (MAP) is 

independent of body mass or whether it increases in accordance with the vertical height between 

the heart and the brain. The debate has centered on the most appropriate mathematical models for 

analysing allometric scaling and phylogenetic relationships, there has been preciously little focus on 

evaluating the validity of underlying physiological data. Currently, the two most comprehensive 

scaling analyses are based on data from 47 species of mammals, based on 114 references. We 

reviewed all available references to determine under which physiological conditions MAP had been 

recorded. In 44 (38.6 %) of the cited references MAP was measured in anaesthetized animals. Data 

from conscious animals were reported in 59 (51.8%) of references, of these 3 (2.6 %) were 

radiotelemetric studies. In 5 species, data were reported from both anaesthetized and conscious 

animals, the mean difference in MAP between these settings was 20 ± 29 mmHg. From a literature 

search we identified MAP measurements performed by radiotelemetry in 11 of the 47 species 

included in the meta-analyses. A Bland-Altman analysis showed a bias of 1 mmHg with 95% 

confidence interval (from -35 to 36 mmHg); i.e. the limits of agreement between radiotelemetric 

studies and studies in restrained animals was double the supposed difference in MAP between the 

mouse and elephant. In conclusion, the existing literature does not provide evidence for either a 

positive or neutral scaling of arterial pressure to body mass across taxa.  
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Introduction 

For the past decades it has been discussed whether mean arterial pressure (MAP) of mammals 

remains constant or scales positively with body mass (BM). A plethora of comparative studies show 

that cardiac output (Q) scales proportional to the higher mass-specific metabolism of small animals 

by virtue of increased heart rate (fH), whilst stroke volume (Vs) constitutes a constant proportion of 

body mass 1, 2. Most authors note that MAP is unaffected by body mass 1, 3-8, such that peripheral 

vascular resistance decreases proportionally to mass-specific metabolism. Others have argued that 

MAP does indeed increase with body mass in mammals, albeit with a substantially smaller scaling 

exponent than fH (e.g. 2). It was suggested that the rise in MAP was proportional to the increased 

vertical distance between the heart and the upper extremeities, such that the scaling effect on MAP 

could be attributed to the extra work imposed on the heart by gravity 9. However, the analysis 

underlying this argument have been critized on mathematical grounds by others 10. The most recent 

phylogenetic analysis of MAP is based on data from 47 species of mammals with body mass 

spanning from 12 g to 4 tons 9. In support for this view, giraffes clearly rely on a very high MAP to 

maintain normal cerebral perfusion pressures 11, 12, tall humans appear to have higher MAP than 

shorter individuals 13, and MAP increases with body length in snakes 14, 15.  

 

Allometric studies build on regression analyses of data pooled from many studies, and any 

conclusions reached are crucially dependent on the quality of measurements. While much debate 

has been devoted to discuss the most appropriate mathematical models to analyse allometric 

scaling, there has been disappointingly little focus on quality of the underlying physiological data. 

The influence of confinement, disturbance, (post-)operational stress as well as anaesthesia and 

analgesia, remains important to consider. The American Heart Association (AHA) has emphasised 
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that measurements of blood pressure should be performed “over prolonged periods of time in 

conscious, unrestrained, unstressed animals” 16. Obviously, concerns regarding the influence of 

stress and anaesthesia are particularly pertinent for meta-analyses, where data are being compiled 

from many different studies to infer general physiological patterns across and between taxa. 

 

In an attempt to provide insight into the intriguing question of allometric scaling of arterial blood 

pressure, we reviewed the underlying biological data, rather than the mathematical models that laid 

the foundation for the differing views on allometric scaling of MAP. Furthermore, we conducted a 

litterature search to identify telemetric blood pressure recordings on as many mammal species as 

possible. Data from this search was then examined against data from anaesthetized or physically 

restrained animals. The goal of the present study is to critically examine the physiological conditions 

during measurements, and to discuss how these conditions may have influenced results.  

  

Data selection 

All references from the two most exhaustive and comprehensive meta-analyses  2, 9 were obtained 

through Pubmed, Google or ordered through the Library at Aarhus University. To our knowledge no 

other extensive meta-analysis of arterial blood pressure scaling have been published since 2014. 

Each article was carefully reviewed, and the methods used for blood pressure measurement were 

recorded and allocated in three overall categories: i) telemetry, ii) invasive (i.e. intravascular) or iii) 

non-invasive (i.e. tail cuff or Doppler). Thereafter, we subdivided the studies into three categories 

identifying whether animals were freely moving, physically restrained or anesthetized during 

measurements. For all anaesthtized animals the anaesthetic protocol was recorded. Please confer 

Figure 1 for an overview of how references were categorised. Furtheremore a litterature seach was 

conducted in order to identify radiotelemetric recordings of arterial pressure in freely moving 
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animals beloning to the different species included in the two meta-analyses. We searched MEDLINE 

via PubMed to identify studies for all of the 47 species.  

 

Data analysis 

All values are presented as mean ± standard deviation (SD). The agreement between radiotelemetric 

recordings and data from animals restrained by any means (i.e. including physical and chemical 

restraint) was assessed by a Bland-Altman analysis 17. Linear regression was used to calculate slopes, 

and these were considered significantly non-zero when p < 0.05.  

 

Results  

A total of 47 different species of mammals were included in the two meta-analyses 2, 9, based on a 

total of 114 references. A complete overview of all 47 species with original references are presented 

in Table 1.   

 

Data based on multiple references: In 18 species, arterial pressures had been derived from data 

reported in more than a single study. No information was provided as to how mean values were 

generated in these instances. This is also the case for the heart rate (HR) and BM values cited in 

Table 1.  

Comparison of data from conscious and anaesthetized animals: Three of the 114 studies (2.6 %) 

relied on telemetric recordings of MAP (two studies on giraffes, Giraffa camelopardalis1 and one on 

                                                            

1 Please note that the Giraffe was not included in the final allometric analyses of blood pressure in the two meta-analyses due to its long 

neck.  
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rabbits, Oryctolagus cuniculus). In 44 of the studies, MAP was measured in anaesthetized animals 

using various dosages of different drugs; in six of the studies the anaesthetic regimen was not stated 

(Table 1). In 56 studies, the measurements were performed in conscious animals. Of the 18 species 

for which several references were cited, we found 5 species where MAP had been determined in 

both conscious and anaesthetized animals. The mean difference in MAP between these two 

experimental settings was 20 ± 29 (i.e. 104 vs 84) mmHg.  

 

Invasive vs non-invasive: In 79 (69.3 %) of the 114 references blood pressure was measured 

invasively and in 22 (19.3 %) a non-invasive approach was used. In 4 (3.5 %) of the cited references 

we were unable to retrieve the relevant information. Finally, in 6 (5.3 %) the articles were deemed 

irrelevant (i.e. a study performed on Illamas cited under human data, a popular science article with 

no data, an opinion paper etc.), for overview please cf. Figure 1.  

 

Comparison of results from restrained and freely moving animals: From our own literature search on 

MEDLINE, we identified  radiotelemetric MAP measurements in 11 of the 47 species included in the 

two meta-analyses 18-27. For the remaining 36 species we were unable to find similar measures. We 

compared data on these 11 species with data from the same species (as listed in the meta-analyses) 

using a Bland-Altman analysis (Figure 2a). This showed a systematic bias of 1 mmHg with 95% Limits 

of Agreement ranging from -35 to 36 mmHg between radiotelemetry and data from restrained 

animals. Furtheremore, in restrained animals, there was a positive correlation between MAP and 

body mass (slope significantly non-zero, p<0.001. R2 = 0.292), but there was no such relationship for 

telemetry-based MAP measurements (p=0.936. R2 = 0.001) (Figure 2c).   
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Effects of animal size on methods of restrain during measurements: To examine whether there was a 

systematic bias in the method of restrain between large (BM > 100 kg) and smaller (BM < 100 kg) 

animals we examined how frequently chemical vs. physical restrain was used in these two groups. 

We found no statistically significant difference in the frequence with which chemical restrain was 

used in large vs. small animals (50 vs 48 %, p = n.s.). The same was true for physical restrain (50 vs. 

51 %, p = n.s.). Please see Figure 2d for details.  

 

Conclusion and perspectives 

For at least 30 years, it has been discussed whether MAP increases with body mass or 

remains unaffected and hence constant within mammals. Our analysis clearly shows that 

when data are limited to telemetric measurements performed in unrestrained animals, 

there is no indication of a positive correlation with body mass. We caution that our findings 

do not necessarily refute that MAP may indeed increase with body mass in mammals, but 

rather indicates that the quality of the available data does not allow for such a 

discremination to be made. 

We recognize the difficulties in obtaining good reliable blood pressure measurements in large exotic 

mammals such as giraffes, elephants and bears, and that standardized conditions are virtually 

impossible to attain. However, we wish to address a number of issues that may explain the 

variability of pressure measurements between species.  

 

Impact of anaesthesia: Anaesthesia exerts profound influence of blood pressure due to central 

inhibition of the barostatic regulation as well as direct vascular effects of the anaesthetics that alter 

vascular resistances 28. For example, in white rabbits implanted with telemetric pressure sensors, 
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MAP of unstressed individuals decreased in a dose-dependent manner from 88 mmHg prior to 

anaesthesia to 76 mmHg when receiving 2.7% isoflurane29. Similarly, Cabrel et al 30 noted that MAP 

decreased from 144.3 mmHg in conscious to 97.5 mmHg in anaestehtized sloths. Average blood 

pressure changes following anaesthesia in guinea pigs depends on anaesthetic regimen, such that 

ketamine decreased MAP by 14 mmHg, whilst fentanyl-citrate increased MAP by 30 mmHg, and 

fentanyl-droperidol did not cause a significant change (Flynn & Wright, 1988). Likewise, in dogs MAP 

have been shown to decrase from 163 mmHg prior to induction of anaesthsia to 99 mmHg following 

isoflurane 31. A similar decline in systolic pressure has been observed with the use halothane 32. Not 

only is the anaesthetic agent important to consider, the choice of induction agent is also of interest. 

Kojima et al. noted that while induction with medetomidine-midazolam produced “relatively large 

cardiovasvular changes” during a 120 min anaesethetic period only small changes were observed 

with midazolam-butorphanol 33.  In five of the species included in the two meta-analyses 2, 9, MAP 

was measured in both conscious and anaesthetized animals. The mean difference between these 

two states was 20 ± 29 mmHg. As pointed out by Bie 34, studies on integrative cardiovascular 

function should be limited to conscious animals due to the plethora of cardiovascular and renal 

effects of various anaesthetic regimens. A point also raised by the AHA guideline stating that 

“systemic anaesthesia should be avoided whenever feasible because of the well-documented effects 

of anaesthetics on cardiovascular function” 16.   

 

Freely moving or restrained: Restraint is likely to cause stress and elevate MAP by increased 

sympathetic tone. Indeed, restrained macaque monkeys (Macaca mulatta) have an elevation of 

MAP of 27 mmHg compared to when they are allowed to move freely 35. Our comparison of 

telemetric measurements performed on unrestrained animals with those obtained on restrained 

animals show differences ranging from -35 to 36 mmHg with a systematic bias of 1 mmHg (the 95% 

limits of agreement simply describe the possible error in estimate due to sampling error). In other 
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words, a blood pressure recording of a restrained mammal will be somewhere within -35 to 36 

mmHg of the telemetrically measured MAP. We argue that telemtric measurements are most likely 

to reflect the biologically relevant MAP. Given that the previous meta-analyses 2, 9 argue for a 

difference in MAP of roughly 30 mmHg between a 25 g mouse and a 4 tonne elephant, it is  clear 

that influence of restraint easily surpasses this difference, and that the influence of stress can have 

large consequences on the scaling relationships derived from meta-analyses. It should be noted that 

if restraint was used more frequently among large animals, this could skew measurements towards 

an overall increase in large animals. However, this appears not to be the case when we assessed the 

included data (Figure 2d).  

 

Invasive versus non-invasive measurements: For some species, such as dogs, there is good 

agreement between invasive and non-invasive techniques for blood pressure measurement 36, 37. In 

goats and sheep, reported Bland-Altman 95% limits of agreement are -31 to +31 mmHg, and for 

large cattle (i.e. weight >150 kg) the limits are -81 to +45 mmHg (Aarnes 2014). In giraffes, 

oscillometric blood pressure measurements have been reported to give a systematic bias of 27 

mmHg for MAP, i.e. a systematic error of more than 10% 38. In light of such studies it seems 

pertinent to address the methods used for recording arterial pressure. But, intravascular catheters 

and conscious animals are not sufficient to guarantee adequate measurements of arterial pressure. 

Honeyman et al. recorded invasive pressures from the auricular artery in standing conscious 

elephants, but did not describe any correction for the vertical difference between the heart and 

auricular artery 39 potentially leading to underestimation of the arterial pressure at heart level. 

Furthermore, in some of the studies, where invasive pressures were reported, the measurements 

were not only performed under general anaesthesia, but blood pressures were measured following 

thoracotomy 40-42, far from a normal physiological state.  
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Diet: As previously emphasised 43, rodents are traditionally fed at least an order of magnitude more 

sodium (when normalized to body mass) than other species. MAP of normal Sprague-Dawley rat is 

salt-sensitive even down to very low levels of sodium intake 44, a phenomenon not present in for 

instance Wistar rats 45, humans 46, 47 and dogs 48. The consequence is that when extrapolating data 

between species the sodium content of the diet provided for the experimental animals should 

preferrably be similar. This is obviously difficult, but the effects of diet should at least be 

acknowledged. In the meta-analyses examined in the present paper one of the human references is 

a case report from a single obese subject undergoing a 34-day long fast to induce weight loss 49. It is 

questionable whether data from such an experiment can be incorporated into a meaningful 

mathematical analysis of normal physiological blood pressure across species.  

 

Scaling of the cardiovascular system: the influence of body size and mass (scaling) among similarly 

organized animals has been a subject of interest in biology for decades 7, 50. For instance, the classic 

work of Kleiber showed that rates of oxygen consumption vary with BM raised to the power of ¾ 51. 

So as BM increases, the metabolic rate per gram tissue decreases, which is then supported by a 

lower capillary density as animals become larger 52. Blood volume is directly proportional to BM 53.  

Heart rate in mammals varies essentially with BM raised to the -1/4 power 54, while stroke volume 

proves a constant fraction of BM, so cardiac output scales to BM raised to 2/3 55, while systolic and 

diastolic pressures are independent of BM 4, 56. The essential argument here is that blood pressure 

remains constant across species because the lower mass-specific metabolism in larger animals can 

be sustained by a lower capillary density resulting in fewer restistance arteries per mass – such that 

peripheral vascular resistance increases proportionally to the relative decrease in cardiac output. 

This argument does not consider the shape of the animals, and Seymour and colleagues have logiclly 

argued that gravity may impose additional demands on MAP 2, 9. They have therefore suggested that 

although MAP may not be influenced by BM per se, it is reasonable to expect MAP to increase 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

proportionally to the increased vertical distance between the heart and the upper extremities as 

animals get larger. We are not contending this view, and it is obvious for example that giraffes 

require a higher MAP to perfuse the brain 11, 12, 57. However, as shown in our analysis, the MAP 

measurements that have been obtained on freely moving and unanaesthetised mammals do not 

demonstrate that MAP is higher in larger versus small mammals (Figure 2b). 

 

Is a mean value of MAP a mathematical abstraction with little or no physiological meaning? It is 

common practice, in the clinical as well as in the experimental setting, to summarize long-term 

blood pressure measurements into a single value. While this approach obviously facilitates 

comparisons between species or conditions, a single value for MAP should not be regarded as 

representative for the various behaviours that an animal may display on a daily basis (e.g. eating, 

sleeping, spontaneous physical activity, mating etc.). This simple point is illustrated in Figure 3 

depicting a 24-h blood pressure recording from a small and a large mammal (mouse and human). 

Blood pressure has a circadian rhythm, which peaks when the animal is awake and nadirs during 

sleep. As illustrated in Figure 3, the noctural mouse has the highest MAP at night, whereas humans 

nadir during nightime. Ideally daytime values for diurnal mammals should be compared to night-

time values for noctural animals.  However, the circadian blood pressure rhythm can be affected by 

a plethora of factors, including physical activity, autonomic function and salt intake (for reviews cf., 

58-60 all of which potentially complicates interspecies comparison of a single MAP value.  

 

In conclusion, the existing literature does not provide evidence to distinguish between a positive or 

neutral scaling of MAP in relation to body mass amongst mammals. We suggest that more focus be 

directed at obtaining high quality measurements to lay the foundation for fertile discussions on 

allometric scaling of MAP. Furthermore, we argue that the use of a single value for MAP in a given 
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species ignores the tremendous biological variation that is present both within individual animals 

and within each species.   

 

Conflict of interest 

None declared. 

 

Financial disclosure 

No financial support has been received for this project. No honorarium or grant has been given to 

any of the authors to produce this article. 

 

Table 1: Overview of the various anaesthetic regimes used in the cited studies. All species are listed 

in alphabetical order and according to latin names. Doses stated are intravenous unless stated 

otherwise. All reported values are cited from 2, 9, for those where no values were reported, we 

sought the original references to obtain values. All species included in figure 2 are marked with bold. 

Abbreviations: mean artertial pressure (MAP); body mass (BM); heart rate (HR); number of animals 

studied in the cited reference (n); intra muscular (i.m.); intraperitoneal (i.p.); not applicable (n/a); 

not specified (n.s.).  Notes:  1) The authors have not stated any other dosing than 5% w/v; 2) An 

opinion paper that cites data from various other studies. No information specied as to how data was 

obtained.; 3) A textbook from 1935 that summarizes what we assume is data from several different 

studies. No detailed information is given with regard to methods.; 4) A biology data textbook from 

1975 that summarizes physiological data from multiple species. No information is provided as to 

how data was recorded.; 5) Data from a table in a textbook from 1935, from the table it can be read 

that data was collected under local anaesthesia. No further information is provided except that the 
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data is unpublished.; 6) We are uncertain as to whether the two papers by van Citters 12, 61 are data 

from the same two animals or rather separate experiments on different animals.; 7) This is not a 

scientific paper, but an article from a popular science magazine.; 8) A study not on humans but on 

llamas.; 9) Data from a single obese subject undergoing a 34-day long fast.; 10) The concentration of 

the solution is not stated in the article.; 11) This is not a paper, but an abstract from a conference. 

Only limited information is provided with regards to methods and data. Direct arterial pressure in 

the unanesthetised rabbit. Am J Physiol. 129. P448 (abstr)”.; 12) Authors used a laboratory rat 

belonging to the rattus norvegicus species, not rattus rattus. 
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Tables 

Table 1 

Animal species MAP  

(mmHg) 

BM 

(kg) 

HR 

(bpm) 

n References Anaesthetic protocol 

Acinoyx jubatus 102.30 41.1 112 13 62 Telazol (2.63–4.29 mg kg-1, i.m.) and 

isoflurane 

Aepyceros melampus 122 29.6 n/a 44 63 A-3080 (20-90 μg kg-1) or carfentanil 

(27-83 μg kg-1)  

Arctictis binturong 123.90 20.8 80 34 64 Ketamine (8 mg kg-1). medetomidine 

(0.02 mg kg-1) and butorphanol (0.4 mg 

kg-1) or ketamine (4 mg kg-1) 

medetomidine (0.04 mg kg-1) and 

butorphanol (0.4 mg kg-1).  

If needed additional drugs were 
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administered (not specified in paper).  

Bos taurus 130 508 57 12 65 Conscious, catheters placed under local 

anaesthesia (not specified) 

3 66 Conscious 

Bradypus tridactylus 115 3.73 85 9 30 Either conscious or pentobarbital (20 

mg kg-1) 

13 67 Conscious 

8 68 Conscious 

10 40 Pentobarbital (30 mg kg-1) 

7 69 Alpha-cloralose (50mg kg-1) or 

reserpine (0.35 mg kg-1, i.p.) 

Camelus bactrianus 145 400 n/s 2 70 Xylazine (1.25 mg kg-1) and thimylal 

(6.25 mg kg-1), followed byhalothane 
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(3%) and succinylcholine (800 mg) or 

gallamine (0.09 mg kg-1) 

Camelus dromedarius 149.70 369 62 1 71 Pentothal sodium (dosing not stated) 

12 72 Local followed by pentobarbitone 

sodium (5% w/v)1 

11 73 Triflupromazine hydrochloride 2 mg kg-

1 i.m 

12 74 Thiopentone (7.4 +/- 0.33 mg kg-1) and 

halothane (1-2%) 

Canis aureus 126.50 11.0 90 22 75 Medetomidine (113 μg kg-1) and 

ketamine (2 mg kg-1) or  

medetomidine (88 μg kg-1) and 

midazolam (0.5 mg kg-1, i.m.)  
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Canis lupus familiaris 128 19.2 105 5  76 Conscious 

10 77 Conscious 

5 41 Thiopental sodium (0.75 g). morphine 

(1 mg kg-1) and diphenhydramide (1 mg 

kg-1) 

6 78 Conscious 

n/a 79 n/a2 

5 80 Conscious 

12 81 Conscious 

n.s. 3 Data from several references3; 

Nembutal or only local anaesthesia. 

Canis rufus 113.10 54.4 n.s. 32 82 Xylazine (8 mg kg-1) and ketamine (2 

mg kg-1) or medetomidine (40 μg kg-1) 
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and ketamine (2 mg kg-1) or 

medetomidine (40 μg kg-1), ketamine (2 

mg kg-1) and acepromazine (0.01 mg kg-

1) or medetomidine (20 μg kg-1), 

ketamine (2 mg kg-1) and butorphanol 

(0.2 mg kg-1)  

Capra hircus 95 31.2 79 n/a 83 n/a4 

Cavia porcellus 61.90 0.52 273 10 84 Conscious 

6 85 Diazepam (dosing not stated) and 

fentanyl (dosing not stated) 

24 86 Conscious 

20 87 Conscious 

Ceratotherium dimum 124 2495 39 12 88 Conscious 
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Cevus canadensis 100 275 83 8 89 Conscious, physically retrained in 

squeeze box 

Elephas maximus 138 2960 40 8 39 Conscious 

Equus caballus 127 422 47 117 90 Conscious 

6 91 Conscious 

 92 Conscious  

12 93 Propiopromazine 50 mg (semi 

conscious) 

21 94 Not clearly stated 

6 3 Local anaesthesia5 

3 66 Conscious 

Felis silvestris 124 3.03 179 27 95 Medetomidine (0.1 mg kg-1), O2/N2O 

(40%/60%) and pentobarbital (7 mg kg-
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domesticus 1 h-1) 

20 40 Pentobarbital (30mg kg-1) 

3 96 Conscious 

17 97 Urethane (300 mg kg-1) and alpha-

chloralose (30 mg kg-1) 

Leptailurus serval 101.10 13.7 85 7 98 Medetomidine (47 μg kg-1), ketamine 

(1 mg kg-1) and butorphanol (0.2 mg kg-

1) 

Gazella dama 120 48 n/s 16 99 Carfentanil citrate (18 μg kg-1) 

Giraffa camelopardalis 214 651 102 4 100 Conscious 

2 12 Conscious 

2 61 Conscious6 
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n/a 101 n/a7 

Gorilla gorilla n/s 83.5 n/s 5 102 Phencyclidine (1 mg kg-1), promazine (1 

mg kg-1) and ketamine (0.5-1.0 mg kg-1 

or 1-2 mg kg-1 i.m.).  

4 of 5 animals also received atropine 

(0.01 mg kg-1) 

Homo sapiens 93 68.8 70 n/a 103 n/a8 

22 104 Conscious 

65 105 Conscious 

1 49 Conscious9 

11 106 Conscious 

18 107 Conscious 
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n/a 79 n/a2 

9 108  Conscious 

Lama glama 132 108 58 3 103 Conscious 

5 109 Conscious 

5 110 Xylazine (0.25 mg kg-1), ketamine (2.5 

mg kg-1) and halothane  

(dose variable, range not specified) 

Loxodonta africana 154 4080 40 7 39 Conscious 

1 111 Etorphine (0.0017 mg kg-1), azaperone 

(0.06 mg kg-1) and isoflurane 

Macaca fascicularis 90 4.6 175 21 112 Ketamine (15 mg kg-1) 

6 113 Conscious 
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Macaca mulatta 82 4.24 154 14 35 Conscious, physically restrained 

13 114 Conscious, physically restrained 

14 115 Conscious 

4 116 Conscious, physically restrained 

Macropus robustus 93.30 30.3 90 1 117 Dial-urethane-Nembutal (0.75 ml kg-

1)10 

Marmota flaviventris 133.40 4 149 9 118 Conscious or pentobarbital (40 mg kg-1) 

Martes pennanti 96 3.95 n/s 13 119 Medetomidine (0.4 mg) and ketamine 

(20 mg) or ketamine (100 mg) 

Mesocricetus auratus 101.90 0.12 n/s Appr

ox10

0 

120 Hypothermia induced hibernation 

(cooled to a core body temperature of 

5°C) 

Mus musculus 111 0.03 580 8 121 Consicous (4 hours after recovery after 
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recovery from surgery) 

8 122 Conscious 

21 123 Ketamine (40 mg kg-1, i.p.) and 

pentobarbital sodium (33 mg kg-1, i.p.) 

12 4 Urethane or ether (dosing not stated) 

Mustela eversmanni  0.971 n/s 24 124 Sevoflurane or isoflurane 

Mustela putoris furo 91.20 1.35 274 7 42 Sevoflurane 

Odocoileus virginianus 101 52 53 11 125 Yxlazine (6 mg kg-1, i.m.) and ketamine 

(7 mg kg-1, i.m.)  

Oryctolagus cuniculus 77 2.51 251 6 126 Pentobarbitone (30 mg kg-1) 

16 127 Ketamine (40 mg kg-1 bolus, followed 

by constant infusion) 
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18 128 Conscious 

23 29 Conscious 

46 129 Alpha-chloralose (50 mg kg-1) and 

urethane (500 mg kg-1) 

n/a 130 n/a11 

6 131 Not clearly stated in article 

Ovis aries 104 47.5 126 4 132 Conscious 

8 133 Conscious 

13 3 Local anaesthesia5 

13 134 Conscious 

Pan troglodytes 96.70 55 n/s 26 135 Ketamine (10-15 mg kg-1, i.m.) and 

diazepam (0.2 mg kg-1)  
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Pelea capreolus  19.4 n/s 12 136 Xylazine (0.4 mg kg-1) and either 

carfetanil (0.01 mg kg-1) or etorphine 

(0.01 mg kg-1) 

Phoca vitulina 120 60.3 98 5 137 Local anaesthesia  

Rattus norvegicus 103.70 0.23 n/s 350 138 Pentobarbital sodium (4.5 mg 0.1 kg-1) 

Rattus rattus 111 0.34 340 13 139 Conscious12 

6 140 Conscious12 

10 141 Pentobarbital (50 mg kg-1, i.p.)12 

25 142 Conscious12 

46 143 Urethane (2.5 - 3 ml 50% kg-1, i.p.)12 

14 144 Not clearly stated12 

n/a 79 n/a2 
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10 145 Inactin (120 mg kg-1, i.p.)12 

8 146 Conscious12 

Suncus murinus 98.20 0.046 n/s n.s. 147 Urethane (1g kg-1, i.p.) 

Sus scrofa 84 102 84 14 3 n/a3 

Not 

state

d 

83 Unknown4 

18 148 Ketamine (20 mg kg-1), atropine (0.02 

mg kg-1)  

and pentobarbital (20 mg kg-1) 

4 149 Azaperone and halothane followed by 

chloralose infusion 

Tragulus javanicus 99 1.18 n/s 3 150 Sodium pentothal (25 mg kg-1) 
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Tursiops truncatus 134 93.1 n/s 4 151 Nitrix-oxide  

Ursus arctos horribilis 88 58.8 103 6 152 Tiletamine and zolazepam (2 or 5 mg 

kg-1) 

Ursus maritimus 145.30 145 n/s 11 153 Multiple different anaesthetic 

regimens, please see paper for details. 
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Legends: 

Figure 1: Diagram showing the distribution of references grouped according to the methods used to 

record blood pressure; and secondly whether or not anesthesia was used. Telemetry; radiotelemetry 

in freely moving animals. Invasive; invasive measurements performed in an artery in restrained 

animals. Non-invasive; measurements performed using tail-cuff or Doppler. Unknown; method or 

anesthesia regimen not clearly stated. Inappropriat; in our opinion an irrelevant paper. GA; general 

anesthesia. –GA; without general anesthesia. N/A; not applicable.  

 

Figure 2: Differences in measurements of mean arterial blood pressure (MAP) in the same species in 

either consicous freely moving animals (telemetry) and during restraint (physical or chemical i.e. 

anaesthesia). A) Bland-Altman analysis showing the difference as a function of the average of 

measurements in the same species for freely moving or restarined animals. Dotted lines indicate the 

95% limits of confidence  (-35 and 36 mmHg, respectively). Only species for which data is available 

for both experimental settings are included. B) Semi-logarithmic plot showing MAP as a function of 

body mass in freely moving animals (blue circles) and restrained animals (black open circles). C) 

Semi-logarithmic plot showing MAP as a function of body mass obtained in freely moving animals 

(blue line) or during restrained (black line).  Please note that for restarined animals there is a 

significant increase in pressure with body mass (slope significantly non-zero, p<0.001. R2 = 0.292), 

whereas for the freely moving animals this is not the case (slope not significantly difference from 

zero, p=0.936. R2 = 0.001). Dotted lines indicate 95% limits of confidence. D) Effects of animal seize 

on methods of restrain during measurements.  To examine if there was a systematic bias in the 

method of restrain between large (BM > 100 kg) and small (BM < 100 kg) animals we examined how 

frequently chemical vs. physical restrain was used in these two groups. Chemical restrain was used 

in 11 of 22 studies on large animals (50 %) and in 39 of 78 studies on small animals (51%). Physical 
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restrain was used in 11 of 22 studies on large animals (50%), and in 38 of 77 studies on small animals 

(49%).  

 

Figure 3: 24-hour blood pressure recordings. A) Oscillometric ambulatory blood pressure recordings 

from a young healthy man. Shaded black area indicates the night time when the subject was asleep. 

Please note the nocturnal dipping of arterial pressure that occurs during sleep. B) Telemetric blood 

pressure recording from a mouse. The shaded black area indicates the nocturnal period where the 

animal is most active and thus has a higher blood pressure.  
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