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Bedside Monitoring of Cerebral Energy State During
ovel Approach Utilizing

Intravenous Microdialysis
Simon Mölström, MD,* Troels H. Nielsen, MD, PhD,† Claus Andersen, MD, PhD,‡ Carl H. Nordström, MD, PhD,†

and Palle Toft, MD, PhD, DMSc*
Objectives: This study investigated whether the lactate-

to-pyruvate (LP) ratio obtained by microdialysis (MD) of the

cerebral venous outflow reflected a derangement of global

cerebral energy state during cardiopulmonary bypass (CPB).

Design: Interventional, prospective, randomized study.

Setting: Single-center, university teaching hospital.

Participants: The study included 10 patients undergoing

primary, elective coronary artery bypass grafting.

Interventions: Patients were randomized blindly to low

mean arterial pressure (MAP) (40-60 mmHg; n ¼ 5) or high

MAP (60-80 mmHg; n ¼ 5) during CPB. The MD catheters

were positioned in a retrograde direction into the jugular

bulb, and a reference catheter was inserted into the

brachial artery. The correlations among LP ratio, MAP, data

obtained from bifrontal near-infrared spectroscopy (NIRS),

and postoperative neurologic outcome measures were

assessed.

Measurements and Main Results: The correlated difference

between pooled LP ratio (low and high MAP) of the
and Vascular Anesthesia, Vol ], No suppl (Mont
jugular venous and the arterial blood was significant

(LParterial 17 [15–20] v LPvenous 26 [23–27]; p ¼ 0.0001). No

cerebral desaturations (decrease in rSO2 4 20% from baseline)

were observed in either group during CPB. In each group, 50%

of the patients showed significant cognitive decline (mini-

mental state examination, 3 points) 2 days after surgery.

Conclusion: The LP ratio of cerebral venous blood

increased significantly during CPB, indicating compromised

cerebral oxidative metabolism. Conventional monitoring of

rSO2 by NIRS did not show a corresponding decrease in

cerebral oxygenation. As the patients exhibited decreased

cognitive functions after CPB, increases in jugular venous LP

ratio may be a sensitive indicator of impending cerebral

damage.

& 2016 Elsevier Inc. All rights reserved.
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Despite considerable progress in surgical cardiopulmonary
bypass (CPB) and anesthetic techniques, brain damage

remains an important complication of cardiac surgery.1,2

Recent studies report post–coronary artery bypass grafting
(CABG) stroke rates of 1% to 5%.3 Delirium and postoperative
cognitive dysfunction remain important problems that can
affect more than half of patients, although they may resolve
spontaneously in as many as 50% of those affected.4 A number
of pathophysiologic processes underlie the neurologic compli-
cations, which necessitate a multifaceted therapeutic
approach.2,5 The authors present a novel technique for detect-
ing threatening intraoperative neurologic complications: evalu-
ation of cerebral energy state obtained by the microdialysis
(MD) technique and biochemical analysis of the cerebral
venous outflow.

Although the combined results of various studies have
indicated that an intraoperative mean arterial pressure (MAP)
higher than 80 mmHg might reduce neurologic complica-
tions, differing opinions remain.6–9 Low-risk patients tolerate
MAPs of 50-to-60 mmHg without evident complications,
although limited data suggest that higher-risk patients may
benefit from MAP 470 mmHg.10 Intraoperative cerebral
monitoring offers a possibility to individualize and optimize
conditions during CPB and surgery. Near-infrared spectros-
copy (NIRS) is a technique frequently used to measure
cerebral oxygenation (rSO2). Intraoperative cerebral oxygen
desaturation has been reported to be associated significantly
with an increased risk of cognitive decline and prolonged
hospital stay after CABG, and monitoring cerebral rSO2 was
shown to be associated with fewer incidences of major
organ dysfunction.11,12 However, in a large systematic
review, it was concluded that only low-level evidence linked
low rSO2 during cardiac surgery to postoperative neurologic
complications.13
Cerebral energy state is dependent entirely on oxidative
metabolism, which is reflected immediately in cerebral cyto-
plasmic redox state. Under clinical conditions, cerebral cyto-
plasmic redox state conventionally is evaluated from the
lactate-to-pyruvate (LP) ratio obtained from intracerebral MD
and bedside biochemical analysis. The ratio increases instanta-
neously when energy metabolism is compromised.14 Due to
monocarboxylic acid transporters, lactate and pyruvate readily
pass cellular membranes.15 The change in cytoplasmic LP ratio
is detected immediately by interstitial MD.16 In an experimen-
tal study, the authors have shown recently that a global
decrease in cerebral oxygenation due to a pronounced
decrease in MAP was reflected in an increased LP ratio of
the draining venous blood.17 Accordingly, by adopting this
technique, it might be possible to evaluate whether cerebral
cytoplasmic redox state is affected during CPB and CABG
in patients.

By utilizing intracerebral MD, the upper normal limit for the
LP ratio of normal human brain has been defined as 30.18,19 An
LP ratio above this level indicates either hypoxia/ischemia or
h), 2016: pp ]]]–]]] 1
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mitochondrial dysfunction. In this pilot study, an evaluation of
global cerebral energy state from MD catheters positioned in
the internal jugular vein in 10 patients undergoing CABG and
CPB was presented.

The patients were randomized into 2 groups, with a MAP of
either 40-to-60 mmHg (low MAP) or 60-to-80 mmHg (high
MAP). The results from the biochemical monitoring were
compared with simultaneously performed bifrontal NIRS.
Furthermore, as the decrease in MAP during CPB affected all
tissues, the LP ratio obtained in the jugular venous blood was
compared with that obtained in the arterial blood to document
that an observed change in jugular LP ratio originated from a
change in cerebral redox state.
METHODS

This feasibility randomized study was designed to determine
the yield of bedside monitoring of cerebral energy state during
cardiac surgery utilizing intravenous MD. A total of 10 patients
undergoing primary, nonemergency CABG were randomized
blindly to a low MAP (40-60 mmHg, n = 5) or a high MAP
(60-80 mmHg, n = 5) group during CPB. The association
among biochemical MD parameters, MAP, the data obtained
from simultaneously bifrontal NIRS, and postoperative neuro-
logic outcome measures, (mini-mental state examination
[MMSE]), was assessed.
Inclusion Criteria and Management Protocol

Ten patients aged 460 years, who were scheduled to
undergo elective CABG on CPB, were enrolled in the
study from February to April 2015. All participants received
written information about the study and provided informed
consent. Acute patients or reoperations, as well as patients
with an epidural catheter, previous stroke, stenotic carotids,
diabetes mellitus, ejection fraction o50%, elevated preopera-
tive serum creatinine above 200 mM, or an estimated preoper-
ative risk of 45%, were excluded. Classification of stroke
and carotid stenosis was based on clinical examination and
case history, but no specific investigations were performed
to exclude the possibility of a previous stroke or carotid
stenosis.

A protocol for anesthetic management of the participants
was designed to ensure uniform conduction of the procedure.
Anesthesia was induced with sufentanil (50-100 μg) followed
by propofol (150-300 mg). Relaxant was administered after-
ward, and the patients were intubated. Sevoflurane (2%) and
sufentanil were used for maintenance of anesthesia. During
mechanical ventilation, PaO2 was maintained at 17.0-to-22.0
kPa, PaCO2 at 5.0-to-5.3 kPa, pH at 7.35-to-7.43, and
hematocrit at 422.

The standard CPB equipment consisted of a Stökert S5
heart–lung machine with roller pumps (Sorin) with medium
occlusion settings. Dideco tubings with a Compactflo Evo adult
membrane oxygenator and a Micro 40 adult arterial filter D734
(Sorin) were primed with 1,800-mL of Ringer’s lactate solution
(Fresenius Kabi) including 5,000 IU of heparin in an open
system. Harefield cardioplegia solution was mixed with blood
in a 1:4 ratio and administered cold at 51C using a Sorin
cardioplegia heat exchanger CSC14. A triple-transducer set,
DTX Plus (Argon), was used for preoxygenator, postoxygena-
tor, and cardioplegia pressure monitoring.

A MAP target of either 40-to-60 mmHg (low MAP) or 60-
to-80 mmHg (high MAP) in accordance with clinical routine at
the department was achieved via inotropic support (metaoxi-
drine, norepinephrine o0.30 mg/kg/min) when needed. The
blood glucose level was kept between 5 and 8 mmol/L. During
CPB, the calculated flow was 2.4 L/min/m2 and was main-
tained at the same level unless SvO2 declined below 65%. The
temperature target was 37.01C initially and during CPB.
Monitoring

Vital functions were monitored according to general prac-
tice. Average MAP was measured at 20-minute intervals during
CPB. Diuresis was measured hourly. Core temperature was
recorded in the bladder. Blood glucose was monitored by
repeated arterial blood samples.

Regional cerebral oxygen saturation was monitored using
bifrontal NIRS (Somanetics INVOS Cerebral Oximeter sys-
tem). Right and left frontal rSO2 values were recorded
simultaneously preoperatively and intraoperatively and for
2 hours postoperatively. Cerebral desaturation was defined as
a decrease in the relative rSO2 value of 20% compared with the
individual preinduction baseline value.13 Values were recorded
every 20 minutes.

An MD catheter (70, MDialysis AB, Stockholm, Sweden)
was placed in a retrograde direction into the jugular bulb. A
second identical MD catheter was inserted into one brachial
artery. Both catheters were inserted through a peripheral
intravenous 17-G cannula using ultrasound guidance. The
positioning of the catheter in the jugular bulb above the inlet
of the common facial vein was verified on lateral neck
radiograph, according to accepted principles.20

The MD catheters were perfused by MD pumps (106,
MDialysis AB) at 0.3 μL/min. The perfusates were collected in
microvials and were analyzed every 20 minutes by enzymatic
photometric techniques and displayed bedside (Iscus, MDial-
ysis AB). The analyses included variables that were monitored
routinely during intracerebral MD: glucose, pyruvate, lactate,
glutamate, and glycerol.
Evaluation of Outcome

Cognitive function was assessed via the MMSE.21 Patients
were assessed preoperatively and on postoperative day 2 after
surgery. The MMSE provides measures of orientation, regis-
tration (immediate memory), short-term memory (but not
long-term memory), and language functioning and was used
to indicate the presence of cognitive impairment.22 The
MMSE has been used to determine the relationship between
changes in blood pressure during CABG surgery and early
cognitive dysfunction. A drop in MAP from a preoperative
baseline was associated with risk for early cognitive dysfunc-
tion after CABG surgery.22,23 The National Institute for
Health and Care Excellence classifies an MMSE score 21-
to-24 as mild, 10-to-20 as moderate, and o10 as severe
impairment.24



Table 1. Baseline Characteristics and Perioperative Data of the Two

MAP Groups Undergoing CABG and CPB

Low-MAP Group High-MAP Group

(N ¼ 5) (N ¼ 5)

Characteristic Median [IQR] Median [IQR]

Demographics

Age (years) 69 [66–72] 72 [72–77]

Sex 5 M 4 M, 1 F

BMI (kg/m2) 25 [23–27] 25 [24–30]

Clinical factors

Baseline MAP (mmHg) 88 [87–93] 93 [88–94]

Baseline NIRS left side (%) 73 [68–82] 68 [68–71]

Baseline NIRS right side (%) 75 [68–83] 67 [65–68]

Baseline hematocrit 0.43 [0.42-0.44] 0.40 [0.42-0.44]

Baseline MMSE 25 [25] 25 [24,25]

Intraoperative

CPB duration (min) 106 [80–123] 95 [89–105]

Calculated flow (L/min) 4.5 [4.4-4.9] 4.6 [4.5-5.0]

Cross-clamp duration (min) 56 [51–71] 52 [44–66]

Number of grafts 3 [3–5] 3 [3,4]

Fluid balance (mL) 2,575 [1,585] 2,080 [410]

Metaoxidrine (mg) 1.10 [0.80-1.10] 1.10 [1.0-1.5]

Norepinephrine (mg) 0.36 [0.26-0.39] 1.10 [0.93-1.83]

MAP (mmHg)-CPB 43 [40–47] 65 [60–76]

Lowest hematocrit 0.27 [0.26-0.28] 0.30 [0.27-0.30]

Postoperative factors

Total LOS (days) 5.0 [5.0-5.0] 6.0 [5.0-7.0]

MMSE 23 [22,23] 21 [20–22]

NOTE. NIRS was measured as regional saturation (rSO2).

Abbreviations: BMI, body mass index; CPB, cardiopulmonary

bypass; IQR, interquartile range; LOS, length of stay; MAP, mean

arterial pressure; MMSE, mini-mental state examination; NIRS, near-

infrared spectroscopy.
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Statistical Analysis

All data are presented as median and interquartile range.
When the means of 2 groups were compared, a Student t-test
was used. One-way analysis of variance (ANOVA) was
corrected for multiple comparisons using the Bonferroni test
(α ¼ 0.006) and was used to compare the means of 3 or more
groups. Repeated-measures ANOVA was used to assess the
statistical significance of differences between the repeated
recording times for MD-cerebral venous outflow, MD-arterial,
hemodynamic parameters, NIRS data, and MMSE data. Linear
regression was used to model the level or change in jugular
bulb LP ratio at each time point as a function of the level or
change in cerebral saturations, and the coefficient of determi-
nation (R2) was estimated. Statistical significance was set at
p o 0.05. Statistical analyses were calculated, and trend curves
displaying MD data, MAP, and LP ratios were illustrated with
linear plots built in Graph Pad Prism 6.0 (GraphPad Software
Inc., 2014).

Ethics

The Danish Regional Committee on Health and Research
Ethics and Danish Data Protection Agency approved the
study (trial registration: S-20130166). The study complied
with the Helsinki declaration (trial register: ClinicalTrials.gov
NCT02846818).

RESULTS

All 10 patients completed the entire protocol. One patient in
the low-MAP group had a number of MD-arterial data
excluded due to technical problems with the MD catheter.

Table 1 shows baseline clinical characteristics of the
patients prior to CPB and perioperative data. There were no
significant differences between the 2 study groups regarding
baseline physiologic variables and the American Society of
Anesthesiologists score. The durations of CPB and the aortic
cross-clamp application were comparable. The mean CPB time
was 102 (low MAP) and 92 minutes (high MAP), with an
ischemic time of 60 and 56 minutes to accomplish a mean of
3.8 and 2.8 grafts/patient, respectively. Calculated flow during
CPB normalized for body surface area was identical in the 2
groups. Intraoperatively, the means of PaCO2 over the period
of CPB were nonsignificantly different between groups. All
patients in both groups showed an increase in LP ratio during
CPB. The rSO2 obtained by NIRS did not indicate cerebral
desaturations in either group during CPB.

There was no in-hospital or 30-day mortality, nor were there
any perioperative strokes in the groups. The mean postoper-
ative hospital length of stay was 4.6 and 5.4 days, respectively.

MAP

In both groups, all patients achieved the target MAP and
remained stable during CPB. In the high-MAP group (60-80
mmHg), the target pressure was reached within a few minutes
after CPB initiation. Significant differences were observed
between the 2 groups when comparing perfusion pressure
during the entire CPB period (Fig 1B). During CPB, including
all brief periods of low flow, median MAP was 44 (interquartile
range, 41-49) mmHg for the low-MAP group and 65 (60-76)
mmHg for the high-MAP group (p o 0.001) (Fig 1B). The
high-MAP group received significantly higher mean doses of
norepinephrine compared with the low-MAP group (p ¼ 0.04).
MD—LP Ratio

After initiating CPB, the mean LP ratio obtained from MD
of the internal jugular vein increased significantly by 160%
(low MAP) and 130% (high MAP). In both groups, the mean
peak LP ratio increased significantly from baseline during CPB
(11 [10–14] to 29 [23–36]; p ¼ 0.02 and 13 [11–15] to 25 [17–
34]; p ¼ 0.02) for low and high MAP, respectively. There was
no difference between groups regarding venous outflow LP
ratio during CPB, although low-MAP patients had a tendency
to have higher LP ratios (Fig 2A). In both groups, LP ratio
returned to baseline after CPB.

Arterial LP ratio increased in both groups during CPB, but
no significant change from baseline was observed. There was
no significant difference between the venous outflow LP ratio
during CPB and the corresponding arterial LP ratio in the low-
MAP group, but significance was reached in the high-MAP
group (25 [24–27] and 17 [15–18]; p ¼ 0.0001) for LPvenous
and LParterial, respectively.

The correlated difference between pooled LP ratio (low and
high MAP) of the jugular venous blood and the arterial blood
was significant (LParterial 17 [15–20] v LPvenous 26 [23–27];
p ¼ 0.0001) (Fig 1A).



Fig 2. (A) Acute effects of cardiopulmonary bypass (CPB) on data

obtained from a microdialysis catheter, (lactate-to-pyruvate [LP]

ratio), placed in the jugular bulb. (B) Predicted association between

jugular bulb LP ratio and corresponding change in cerebral oxygen

saturation (rSO2). Data shown are LP ratio – low mean arterial

pressure (MAP) (dashed line) and LP ratio – high MAP (solid). The

difference between groups was statistically nonsignificant. Linear

regression was used to model the level or change in jugular bulb LP

ratio at each time point as a function of the level or change in

cerebral saturations, R2 value (0.007), indicating nonsignificant (NS)

MÖLSTRÖM ET AL4
MD—Glucose, Pyruvate, Lactate, Glycerol, Glutamate

In both groups, the glucose obtained in the jugular bulb
increased significantly from 5.0 (4.9-5.4) mM to 6.5 (6.3-6.8)
mM for low MAP (p ¼ 0.045) and 6.1 (4.9-7.1) mM to 7.9
(7.4-8.5) mM for high MAP (p ¼ 0.03). During CPB, the high-
MAP group showed a greater tendency to increase in glucose,
but this change was not significant compared to the low-MAP
group. A significant increase in pyruvate was observed con-
comitantly; from 79 (71-80) mM to 147 (146-148) mM for low
MAP (p ¼ 0.03) and 81 (73-96) mM to 125 (103-140) mM for
high MAP (p ¼ 0.02).

Glucose and pyruvate exhibited parallel changes during
CPB, and the high levels remained stable during the study
period (Table 2). The differences between the groups of high
and low MAP were statistically nonsignificant. During CPB,
jugular venous lactate peaked at 3.5 (3.3-4.0) mM for the low-
MAP group and 3.4 (3.0-3.8) mM for the high-MAP group. In
both groups, lactate returned to baseline after CPB. The lactate
levels during CPB were not significantly different between the
low- and high-MAP groups (one-way ANOVA analysis).
Parallel increases were obtained for venous outflow (Table 2)
and arterial glycerol levels during and immediately after CPB.
During CPB, the arterial glutamate concentration was almost
identical to the level obtained in the jugular bulb: 53 (50-57)
mM and 54 (38-56) mM, respectively.

NIRS

In the low- and high-MAP groups, the baseline right-side
rSO2 values were 75% (68%-83%) and 67% (65%-68%),
Fig 1. (A) Acute effects of cardiopulmonary bypass (CPB) on

jugular bulb lactate-to-pyruvate (LP) ratio and peripheral artery LP

ratio. (B) Corresponding mean arterial pressure (MAP). Global

cerebral LP ratio above normal (430) indicated compromised energy

metabolism.19 There is a significant difference between low MAP and

high MAP during CPB. The peak LPbulb ratio in the jugular bulb was

significantly higher than the corresponding LPartery ratio. *Significant

difference from baseline. **Significant difference between corre-

sponding data points by one-way analysis of variance and corrected

for multiple comparisons using the Bonferroni test (α ¼ 0.006).

Values are median and error with interquartile range (n ¼ 10).

correlation. Cerebral desaturation (rSO2) was defined as a decrease

in the relative rSO2 value of 20% compared with the individual pre-

induction baseline value. * Significant difference from baseline by

one-way analysis of variance and corrected for multiple comparisons

using the Bonferroni test (α ¼ 0.006). Values are median and error

with interquartile range (n ¼ 10).
respectively. Baseline rSO2 values left side were 73%
(68%-82%) and 68% (68%-71%) (Table 1). No cerebral
desaturations (decrease in rSO2 420% from baseline) were
observed in either group during CPB. The average decrease in
the relative rSO2 values compared with the individual pre-
induction baseline level were at the right side of the low-MAP
group and high-MAP group 9% (4%-12%) and 5% (3%-10%),
respectively. The corresponding decreases of the left-side rSO2
values were 6% (3%-12%) versus 4% (5%-12%). The corre-
lation between jugular LP ratio and rSO2 was not significant
(R2 ¼ 0.007) (Fig 2B).
MMSE

All patients were assessed preoperatively and on post-
operative day 2. No difference in presurgery score was
observed between the 2 groups (low MAP 25 [25] v high
MAP 25 [24,25]). In each group, 50% of the patients showed
significant cognitive decline (MMSE 3 points) 2 days after the
surgery (low MAP, p ¼ 0.002; high MAP, p ¼ 0.01).
Difference in MAP did not have a significant impact
on cognitive function postoperatively (22 [21–23] v 20
[19–22]).
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DISCUSSION

A technique for bedside evaluation of cerebral energy state
during CPB might contribute to a reduction of neurologic
complications during cardiac surgery. As the brain is dependent
completely on aerobic energy metabolism, all complications
threatening cerebral energy state are reflected immediately in a
shift in the cytoplasmic redox state conventionally described by
the LP ratio. Because of highly effective monocarboxylic acid
transporters present in cell membranes, lactate and pyruvate
readily pass to the extracellular interstitium.15,25,26 Thus,
cerebral energy state during neurocritical care is evaluated
routinely from the LP ratio obtained by intracerebral MD.18 In
an experimental study, the authors have shown recently that
during induced hemorrhagic shock, the LP ratio obtained from
MD of the superior sagittal sinus reflects the simultaneously
measured intracerebral LP ratio.17 The present prospective,
randomized, observational study was performed to test whether
monitoring of the LP ratio of the venous outflow from the brain
obtained by the MD technique is feasible and would reflect a
shift in the global cerebral energy state during CPB. The
information from the biochemical analyses were compared to
that obtained from simultaneously performed bifrontal NIRS.

After the start of CPB, the mean LP ratio obtained from MD
of the internal jugular vein increased significantly by 130%
(high MAP) and 160% (low MAP). The 2 groups had no
significant difference in venous outflow LP ratio during CPB,
although low-MAP patients tended to have higher LP ratios
(Fig 2A). The increase in LP ratio indicates compromised
cerebral oxidative metabolism due to a decrease in cerebral
blood flow, which is expected during CPB when MAP is below
the normal range of cerebral autoregulation (60-160
mmHg).27,28 The relation between LPBulb ratios and the
corresponding MAP (mmHg) for patients with low MAP
showed a significant correlation between the 2 variables
(R2 = 0.46; p=0.006).

In both groups, the LP ratio returned to baseline after CPB,
indicating that in the studied patients, the cerebral mitochon-
drial function and energy metabolism were not damaged
permanently.29–31 In the simultaneously performed monitoring
of NIRS, no significant change in rSO2 was found in either
group. No significant correlation between LP ratio and rSO2

was obtained (Fig 2B). This finding indicated that the
monitoring LP ratio of cerebral venous blood was more
sensitive to changes in cerebral oxidative metabolism than
conventional NIRS measurements of rSO2. This interpretation
is supported by the fact that NIRS did not detect any difference
between the high- and low-MAP groups.

The increase in glycerol concentration during cerebral
MD conventionally is interpreted as a result of the degrada-
tion of cellular membranes.32 As the intact blood–brain
barrier permeability for glycerol is limited (reflection coef-
ficient approximately 0.48), the increase observed in jugular
venous blood during CPB probably does not reflect cell
membrane degradation (Table 2). Glycerol is known to be a
marker of stress because augmented lipolysis releases
glycerol and free fatty acids. The biochemical process is
activated not only by increased sympathetic activity but also
by cytokines.33
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An experimental study of induced hemorrhagic shock has
shown that it is possible to diagnose cerebral energy crisis from
measuring LP ratio by MD of venous blood in the superior
sagittal sinus.17 The present study was performed to validate a
similar method in humans. There were, however, several
important differences between the 2 studies. First, in the
experimental study,17 the reduction in MAP caused irreversible
cerebral damage as shown by a continuing increase in LP ratio
after retransfusion of blood. In the present clinical study, the
energy crisis was mild, and the energy state apparently was
restored after finishing CPB (Figs 1A and 2A).

Second, in the experimental study of hemorrhagic shock,17

the arterial LP ratio did not increase markedly after induction of
shock. In the present study, the arterial LP ratio distinctly
increased during CPB, although the difference between the LP
ratio of the jugular venous blood and the arterial blood was
significant in both the high-MAP group and the correlated
pooled LP data (Fig 1A). During a marked decrease in MAP,
an increase in LP ratio will occur in most tissues and will be
reflected in the draining venous blood. However, in contrast to
most other tissues, the brain is dependent exclusively on
oxidative metabolism. Anaerobic energy metabolism that may
be well tolerated in many organs will be deleterious for the
brain. Accordingly, the significant increase in jugular LP ratio
indicates compromised cerebral energy metabolism, thus val-
idating the novel MD technique presented in this paper.

Third, during induced hemorrhagic shock, the pulmonary
circulation is intact.17 In the lungs, the capillary blood not only
is oxygenated but the LP ratio also is equilibrated with that of
the lining pulmonary cells. It is well documented that alveolar
epithelial type-II cells have a rapid cellular metabolism and the
potential to influence substrate availability and bioenergetics
both locally in the lungs and throughout the body.34,35

Accordingly, during hemorrhagic shock with intact pulmonary
circulation, a normalization of the LP ratio would be expected
when venous blood passes the lung. During CPB, the venous
blood is oxygenated, but as the blood is not equilibrated by the
metabolism of surrounding cells, the LP ratio of the venous
blood would be expected to be similar to that of the
arterial blood.

Intravascular MD previously has been used to monitor the
lactate level of the superior vena cava during cardiac surgery.36

Although the technique used was similar to that used in the
present study, the information obtained and the objectives of
the measurements were different. Measurement of lactate alone
does not directly reflect cytoplasmic redox state or oxidative
metabolism. Analysis of lactate in the superior vena cava will
reflect its level in all tissues. Accordingly, the authors
suggested that the technique might be useful for early lactate-
guided therapy in critically ill patients.
In the present clinical study, all patients exhibited a
moderate decrease in cognitive functions, as shown by a
decrease in MMSE. In this small series of patients, there was
no correlation to the level of MAP during CPB. Further, LP
ratio rapidly returned to normal after CPB, indicating that the
insult to cerebral energy metabolism was minor. However, it
should be noted that the observed cognitive decline was
paralleled by a significant increase in jugular venous LP ratio
while no significant decline in rSO2 was obtained by NIRS.
The observation indicates that a larger study including high-
risk patients might be indicated.

Limitations of the Study

The sample size of this feasibility study was limited, and no
sample size calculation was performed. This limited the power of
the study, and the possible clinical value of the technique should be
evaluated in a larger study. Future studies should include definition
of normal variations in LP ratio of cerebral venous blood.

CONCLUSIONS

The study documented that it is technically simple and
feasible to place an MD catheter in the jugular bulb and
monitor biochemical variables related to energy metabolism
bedside. The LP ratio of cerebral venous blood increased
significantly during CPB, indicating compromised cerebral
oxidative metabolism, and was correlated to the decrease in
MAP. In this limited number of patients, there was no
significant difference between low- and high-MAP groups
regarding venous outflow LP ratio during CPB, but low-
MAP patients tended to have higher LP ratios. The increase
in the jugular bulb LP ratio was significantly higher than the
increase in LP ratio of the arterial blood. Conventional
monitoring of rSO2 by NIRS did not show a corresponding
decrease in cerebral oxygenation. As the patients exhibited
decreased cognitive functions after CPB, an increase in jugular
venous LP ratio may be a sensitive indicator of impending
cerebral damage.

The possible clinical value of the technique should be
evaluated in a larger study. Future studies should include
definition of normal variations in LP ratio of cerebral venous
blood and the relation between the increase in LP ratio and the
development of permanent cognitive deterioration and neuro-
logic lesions.
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