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Abstract.   Many plants and sessile animals may not show actuarial senescence, the increase in mortality 
with age predicted to be ubiquitous by classic evolutionary theories of aging. Age-structured demographic 
information is, however, limited for most organisms. We assessed the age distributions of nine dwarf 
shrub species from 863 taproot samples collected in coastal east Greenland. Penalized composite link 
models (pclm) were used to fill gaps in the observed age ranges, caused by low species-specific sample 
sizes in relation to life span. Resulting distributions indicate that mortality patterns are independent of 
age. Actuarial senescence is thus negligible in these dwarf shrub populations. We suggest that smoothing 
techniques such as pclm enable consideration of noisy age data for determining age distributions. These 
distributions may, in turn, reveal age effects on demographic rates. Moreover, age determination from the 
root collars of small plants constitutes a powerful technique to further investigate age dependency of the 
demography of many plant species, including eudicot herbs. Using these methods for long-lived plants 
where long-term monitoring is unrealistic, we show that age is unlikely to be an important variable for 
making population projections and determining extinction risks.
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Introduction

It is now clear that age trajectories of mor-
tality differ widely among taxa, and it appears 
that mortality of some species may be constant 
or even decrease with age (Jones et  al. 2014). 
Actuarial senescence is the increasing risk of 
mortality with increasing age often observed in 
mammals and other animals. Determining age 
effects on mortality for a wide range of taxa is 
important for understanding the evolutionary 

background of actuarial senescence, and because 
of the potential implications of age-dependent 
demographic rates for population dynamics. 
Whether plants generally deteriorate physiolog-
ically as individuals grow old, with associated 
increases in mortality, is still unknown. There 
are a few studies indicating that such actuarial 
senescence may occur in herbaceous species, but 
most empirical studies have not found any sup-
port for this theory (reviewed in Dahlgren and 
Roach, in press).

http://dx.doi.org/10.1002/ecs2.1521
http://creativecommons.org/licenses/by/3.0/
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For woody species such as trees and shrubs, it 
has been suggested that increases in plant size can 
lead to increases in mortality over age (Peñuelas 
2005), possibly due to stress on the vascular sys-
tem (Woodruff and Meinzer 2011, Thomas 2013). 
However, in most plant populations that have 
been monitored over longer periods, mortality 
was unrelated to the age of individuals (Sarukhan 
and Harper 1973, Dahlgren and Roach, in press). 
That this is also often the case for trees is supported 
by some analyses of age structures (e.g., Hett and 
Loucks 1976). Despite these studies, there is still a 
general lack of knowledge of demographic effects 
of plant aging because in plant demographic 
studies, size dependence rather than age depen-
dence is typically assumed, and ages of plants 
often remain unknown (Caswell 2001, but see, 
e.g., Lauenroth and Adler 2008). Moreover, par-
ticularly little is known about the age-structured 
demography of shrubs (but see, e.g., Kuuseoks 
et al. 2001 for a study on the age distribution of 
aboveground stems in hazel, Corylus sp.).

To determine age trajectories of mortality of 
long-lived plants, such as shrubs, by monitoring 
individuals over their life courses is logistically 
infeasible. However, it is possible to determine 
ages of individuals based on growth increments 
in their root collars, that is, the oldest part of the 
plant where the root system transitions into the 
shoot system (Schweingruber and Poschlod 2005, 
Schweingruber and Büntgen 2013, Büntgen et al. 
2014). Assuming that populations are close to 
a stable age distribution (with a constant long-
term population growth rate) and that environ-
mental drivers have not changed directionally 
over plant life courses, age distributions can be 
used to indicate types of survivorship curves 
(e.g., Caughley 1966). Nonlinear relationships 
between log individual density and age could 
result from intrinsic changes within individu-
als altering their mortality risks. However, such 
patterns could also be caused by several other 
processes, including environmental variation, 
density dependence, and differences in the risk 
of mortality between individuals. Linear rela-
tionships would indicate no effects of any of 
these factors, including that mortality is constant 
with age, unless different processes cancel each 
other out. So-called mortality plateaus in pop-
ulations of humans and some other animals at 
high ages, for instance, have been suggested to 

reflect variations in average mortality among 
individuals masking within-individual increases 
in mortality with age, as more “frail” individuals 
gradually die (Vaupel and Yashin 1985, Steinsaltz 
and Evans 2004, Vaupel and Missov 2014).

Here, we determine ages for individuals of 
nine Greenlandic dwarf shrub species based on 
their annual growth increments. From previous 
analyses, it is known that climatic variation has 
triggered recruitment fluctuations over the life 
courses of the individuals in these populations 
(Büntgen et al. 2015). We now, for the first time, 
estimate smoothed age distribution functions 
for each species using penalized composite link 
models (Eilers 2007, Rizzi et al. 2015). We hypoth-
esize that in the Arctic environment of these slow-
growing dwarf shrubs, environmental effects on 
mortality of mature individuals would have been 
limited and not resulted in a directional change 
in mortality over time. Based on previous results 
with other plant growth forms, we also hypothe-
size that mortality is independent of age. In turn, 
we predict age distribution shapes to be log-
linear for old individuals.

Methods

Data collection
Collection of individuals for age determination 

was carried out in coastal East Greenland, near 
Ittoqqortoormiit (70°26′6″ N and 21°58′100″ W). 
Temperature means and precipitation totals 
during the short growing season between mid-
June and early August are 1.9°C and 94  mm 
(Schweingruber et al. 2013). The nine most abun-
dant, circumpolar dwarf shrub species, Arcto
staphylos alpinus, Betula nana, Cassiope tetragona, 
Dryas octopetala, Empetrum nigrum, Rhododendron 
lapponicum, Salix arctica, Salix herbacea, and 
Vaccinium uliginosum, were considered (see Sch
weingruber et  al. 2013, Büntgen et  al. 2015 for 
details). Dwarf shrubs were excavated indepen-
dent of their size, which should have resulted in 
an unbiased sample of ages that reflected the age 
distribution of entire populations. All individu-
als of the study species present in each of 30 plots 
laid out over the study area were excavated. 
Sizes and locations of plots were decided with 
the aim of excavating at least 30 individuals per 
species. Excavation of intact above- and below-
ground stem and root parts was targeted for each 
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individual. The oldest remaining part of the tap-
root was analyzed. The study species can repro-
duce clonally, and the ages of some individuals 
may thus reflect the date of ramet formation 
rather than seed germination. Cross sections 
were made with a sliding microtome, and annual 
growth increments in the xylem were deter-
mined using a light microscope. Annual growth 
increments were obvious as clear rings in the 
xylem, caused by the production of large vessels 
early in the growing season. Age estimates were 
obtained for a total of 863 of the sampled individ-
uals (see Büntgen et al. [2015] for more details on 
the study area, sampling design, and age 
determination).

Statistical modeling
We used two different statistical smoothing 

techniques to describe age distributions and for 
hypothesis testing. First, we binned the data in 
age groups to remove noise caused by the small 
sample size relative to the long life spans of these 
species and fitted a penalized composite link 
model (Eilers 2007, Rizzi et  al. 2015) to obtain 
good approximations of overall age distributions. 
Then, we used the individual-based data and fit-
ted Poisson regression models to the data for the 
oldest individuals. We tested the statistical signif-
icance of linear and nonlinear parameters, mod-
eled using restricted cubic splines (Harrell 2013).

The penalized composite link model (pclm) has 
been shown to be a powerful tool for ungroup-
ing binned data in terms of human age-grouped 
data (Rizzi et al. 2015). The method is based on 
the composite link model, which in turn extends 
generalized linear models, with a penalty term 
added to ensure smoothness of the target dis-
tribution. The observed counts, in our case the 
number of individuals in a specific age group, 
are assumed to be Poisson-distributed and are 
treated as indirect observations of an ungrouped 
but latent sequence that is estimated via max-
imum likelihood. We use this model here as a 
smoothing method to retrieve shapes of the age 
distributions.

As there were no data for all ages, we pooled the 
observations into age bins. All species had uni-
modal age distributions, suggesting all available 
microsites are colonized and stable population 
sizes (entailing a stable population growth rate at 
r = 0; e.g., Knowles and Grant 1983, Johnson et al. 

1994). We assumed that individuals older than 
the modal age had established in an environ-
ment with relatively low plant densities, and we 
included only the older individuals. We included 
only the older individuals also to focus on fully 
mature individuals, expected to have reached 
their full size, because before this age mortality 
likely decreased as the plants were growing. We 
started with 10-yr bins and increased bin sizes 
to 20, 30, 40, or 50 yr, until all age groups con-
tained at least two observations, or until there 
were only three age groups (see Appendix S1). 
For the shorter-lived Salix herbacea, we used 5-yr 
bins. This resulted in smooth pclm estimations of 
age distributions for all species that were used to 
explore trends in age effects on mortality.

To corroborate the pclm results with formal 
statistical hypothesis tests of whether tail ends 
of age distributions suggested age dependence 
of mortality, we fitted log-linear curves using 
Poisson regression (corresponding to general-
ized linear models with a log link function and a 
Poisson-distributed error). We used the observed 
age data starting from the mode identified using 
the pclm analyses (i.e., the lowest ages in Fig. 1). 
Ages with zero observations were included when 
fitting the Poisson regressions, as regarding these 
as missing observations might have biased the 
fitted line due to a low number of individuals of 
very old age. The statistical significance of non-
linear relationships with age was estimated by fit-
ting five-knot restricted cubic regression splines 
using the rms R package, and testing the effect of 
nonlinear terms using Wald tests (Harrell 2013). 
We also fitted second-degree polynomial models, 
but results were similar and are not presented for 
all species. All statistical analyses were carried 
out in R v.3.2.2 (R Core Team 2015).

Results and Discussion

The pclm analyses supported our hypothesis 
of negligible actuarial senescence in the nine 
studied Arctic dwarf shrub species. Age distribu-
tions for old individuals were approximately 
log-linear, with deviations from log-linearity 
varying among species and curves not being 
consistently either concave or convex (Fig.  1). 
This result was corroborated by the Poisson 
regressions, where nonlinear components were 
never statistically significant (P  >  0.2 in all 
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species; P > 0.3 in seven of nine species; Table 1). 
Linearized age effects on the other hand were 
clearly significant for all species. Slopes in the 
linear Poisson regressions ranged from −0.017 to 
−0.069 for the eight long-lived species, corre-
sponding to a range of annual mortality rates of 
1.7–6.7% for old individuals in a stable popula-
tion. In the relatively short-lived Salix herbacea, 
the slope corresponded to an annual mortality of 
18% after age 10 years. The identification of lin-
ear (“Type II”; Deevey 1947) log-survivorship 
curves indicates constant mortality. Log-linear 
patterns may also result from variation in indi-
vidual frailty masking within-individual 
increases in mortality risk over age because 
frailer individuals will die at younger ages, or 
from positive or negative age effects being coun-
teracted by environmental change. However, 
we  would argue that the similar approxi-
mately log-linear relationships in all nine study 
species make both these processes less likely 

explanations of the observed patterns, and the 
most parsimonious interpretation of the results 
would be that no substantial effects of age on 
mortality occurred. This is in agreement with our 
predictions based on similar patterns in several 
other plant species (Sarukhan and Harper 1973, 
Dahlgren and Roach, in press), and the general 
consensus that plant demographic rates are more 
strongly size- than age-dependent (Caswell 2001, 
Horvitz and Tuljapurkar 2008).

Due to the low sample sizes, it cannot be 
ruled out that the nonlinear terms in the Poisson 
regressions reflected true age-dependent effects 
on mortality, despite not being statistically sig-
nificant. It is therefore interesting to examine 
observed trends. In the Poisson regressions, 
P-values for nonlinear terms were relatively 
low for two species. For Empetrum nigrum, there 
was tendency (P  =  0.21) suggesting decreased 
mortality with age (cf. Fig. 1). For Dryas octope-
tala, there was a tendency (P = 0.27) suggesting 

Fig. 1. The density of observed individuals (log) over age for nine Greenlandic dwarf shrub species. The 
minimum age per species is the observed mode of the age distribution. Curves were estimated using penalized 
composite link models (pclm). Note that axes vary among panels, but that all panels indicate the general shape 
of mortality over ages of adult plants as suggested by observed age distributions.
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increased mortality with age. Still, if this relation-
ship reflects actuarial senescence in D. octopetala, 
then it may indeed be regarded as “negligible.” 
The slope of a second-degree polynomial term 
was only −0.00034, corresponding to an increase 
in annual mortality over 100 yr of 3.4%. The ten-
dency of age dependence in mortality for these 
two species in the regression analysis was corrob-
orated by the pclm analysis, and based on Fig. 1, 
weak increases in mortality with age may have 
occurred also in Cassiope tetragona and Vaccinium 
uliginosum. In addition, a few of the individual 
density–age relationships indicated very weak 
decreases in mortality with age. Overall, how-
ever, remaining distributions were either linear 
after a potential increase after the “hump” around 
the modal age or contained additional local max-
ima which may reflect past recruitment bursts 
(cf. Büntgen et  al. 2015). The trends of changes 
with age illustrate that further research is needed 
to validate that actuarial senescence is negligible 
in these dwarf shrubs. In future studies, it would 
be particularly interesting to correlate mortality 
patterns with other aspects of life history or envi-
ronmental conditions if there is variation among 
species. We do not attempt such comparisons 
here, however, due to the weak relationships.

We conclude that the available data support that 
actuarial senescence is negligible in nine stress-
tolerant and long-lived Greenlandic dwarf shrubs. 
A lack of actuarial senescence in plants contradicts 
classical theories of aging based on expected selec-
tion pressures (Hamilton 1966). It does not contra-
dict the disposable soma theory of aging, which 
predicts actuarial senescence in all organisms 

with clear early-life separation of the germ line 
from somatic cells (Kirkwood and Holliday 1979); 
as such, a separation is not clear in plants. A lack-
ing indication of senescence does support the 
proposition that indeterminately growing organ-
isms may avoid senescence (Vaupel et  al. 2004). 
Moreover, this result indicates that age structures 
may not have to be accounted for when estimating 
population growth rates of shrubs, for example, 
when determining extinction risks of threatened 
species (cf. Morris and Doak 2002).

The age-determination method and the sta-
tistical pclm method used here should both 
constitute highly useful tools in future studies 
of aging in species for which no long-term data 
exist. The age-determination technique based on 
growth rings in root collars is not applicable only 
to plants that form woody aboveground stems 
but also to many eudicot herbs that form growth 
rings in the root xylem in seasonal environments 
(Schweingruber and Poschlod 2005). There is 
thus a large untapped pool of readily available 
data on age structures of herbs. There is also a 
large potential in analyzing existing age data on 
various organisms utilizing pclm to reconstruct 
age distributions if exact ages of individuals are 
unknown or uncertain, or if data are sparse. To 
obtain sufficient data to allow investigation of 
mortality patterns across large taxonomic scales, 
these and similar age-determination and statisti-
cal methods may be necessary.
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